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Abstract 
In an effort to meet the reliability standards that 

control systems operating in safety-critical roles 
require, we have started laying the foundation for a 
tool-set that migrates control theory properties and 
proofs into the software implementation of those 
control systems designs. By using this tool the 
engineer can provide a more rigorous guarantee of the 
quality of the software and initiate the formal 
verification process. The tool focuses on control 
software in order to leverage the domain knowledge 
from existing mathematical techniques for the analysis 
and synthesis of control systems. As a first step in the 
development of the tool-set, we have created a 
prototype of a Scilab to C translator with proof 
annotation support. Though limited in its current 
functionalities, the development of this prototype 
allowed us to identify the key issues which will be 
used to further refine the translator. This paper 
describes the prototype and the further improvements 
planned for the translator. 

Introduction 
Safety-critical applications have become an 

important part of modern life. One can find many 
examples of safety-critical applications in the fields of 
aerospace, defense, medical, nuclear and mass 
transportation. Whether it is the avionics in a 
commercial passenger jet, the heart valve inside a 
cardiovascular impaired patient, or the automatic 
speed and signaling system in a high-speed railway 
network, one thing they all have in common is the 
presence of embedded control systems. As the level of 
automation increases in the modern world, one can 
expect more and more embedded control systems that 
operate in safety-critical roles. The notion of what is 
safety-critical refers to the unacceptable characteristic 
of the consequence due to failure. The consequence 
can be the loss of human life, massive economic and 
property damage, or severe disruptions to the 
environment. The reliability of these embedded 
control systems therefore is very important. 

An embedded control system has both hardware 
and software components. To ensure the quality of the 
software component, it is usually submitted through a 
rigorous certification process that involves both 
extensive testing and analysis using 
mathematics-based verification techniques developed 
by the formal methods community. Sophisticated 
automated or semi-automated tools already exist and 
are being used by the industry for the formal analysis 
of complex computer programs. Despite these 
advances, one limitation in program analysis remains 
in that the properties from the program specifications 
can be arbitrarily complex and proving them can be 
difficult even by hand, let alone computers. This 
limitation comes from an inherent underlying 
undecidability issue. Fortunately it is common 
practice in the control engineering community to 
provide rigorous safety analysis of control designs 
before their implementation. For example take the 
following linear compensator in the state-space form.   

  ��� = ���� + ���          (1) 

  � = 	��� + 
�� 

Given the input � that is bounded, ��  being a 
Hurwitz matrix, (��, ��)  is controllable, we can 
prove by hand that the control system in (1) is 
invariant with respect to an ellipsoid parameterized by 
a matrix �: �
 =� {� � ��|���� � 1} where � is a 
solution to a linear matrix inequality (LMI) [1]. As 
proposed and demonstrated in [2], this property along 
with the proof if inserted into the code in a format such 
as Hoare triples [3] can be helpful to the program 
analyzer in formally verifying the code. 

One of the obstacles to using control theory to 
assist the formal analysis of control software is that 
two communities effectively operate in different 
worlds and speak different technical languages. For 
example the control engineer is comfortable with 
state-space systems while the formal method scientist 
deals with finite-state machines. Also the fact remains 
that for all but the simplest examples, manually 
transforming and inserting control theoratic properties 
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and proof into line by line assertions about the output 
code is prohibitively time consuming. One solution is 
to have a tool-set that can translate the complete 
control system specifications into annotated code in an 
automatic fashion. For that purpose we propose a 
tool-set coined informally as an  autocoder with 
proofs that satisfies the following general 
requirements. 1. The front-end environment for the 
creation of the control system specifications should be 
familiar to the control engineers. 2. The front-end 
specification language should have precise semantics 
for both controller design and property/proof 
annotations. 3. The back-end code generator can 
translate both the controller specifications into code as 
well as the properties and proofs into code 
annotations. 4. The generator's output is analyzable by 
tools developed by the formal methods community. 

The organization of the remainder of this paper is 
as follows. First, a short overview of the proposed 
tool-set is described. From there we give the reasons 
for the development of the Scilab to C translator, then 
a technical description of the Scilab to C translator is 
given. In the ensuing sections a description of its 
shortcomings are provided. Afterwards we 
recommend a set of refinements for the translator and 
as well as new functionalities and specifications for 
the next prototype translator. Finally a discussion on 
future improvements on the overall tool-set is 
provided. 

A Description of the Tool-Set 

Front-End 
As described in more detail in [4] the front-end 

environment is Simulink-like i.e. a data-flow language 
underlying a graphical interface featuring blocks, 
subsystems, and signal wires. Simulink being the 
industry's standard platform, is the natural choice due 
to its familiarity to control engineers. The front-end 
environment is further enhanced with the semantics of 
control proofs and properties. This allows the 
insertions of those properties and proofs at the control 
design level. A graphical example of this functionality 
is shown in Figure 1 using existing Simulink blocks.  

 

 
Figure 1. Graphical Annotation of the Control 

System 

In this example, the full control system 
specifications is consisted of a lead-lag controller, the 
plant model, a closed-loop Lyapunov function 
parameterized by � , and the invariant property: 
(��, ��)��(��, ��) � 1 . The invariant property is 
inserted into the Simulink diagram as the annotation. 
This can be done graphically by connecting the 
Lyapunov function blocks with the signals that 
represent the controller and plant states. The value of 
� can be generated automatically by a robust control 
analysis toolbox such as IQC-�[5] or �-tools[6]. 

Back-End 
The back-end of the tool-set is a translator that 

transforms the control system specifications into the 
annotated program in an industrial language. This 
necessity for an  autocoder with proofs led to the 
development of the prototype translator described in 
this paper. The target annotation language for the 
translator can be a matter of preference, and is also 
dependent on the target language. For the 
demonstration of the prototype translator in this paper, 
we picked the target language based on the criteria of 
industry popularity and the amount of support in terms 
of program analysis tools by the formal methods 
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community. We settled on the C language, which is 
commonly used in the industry. Naturally we also 
decided to go with the ANSI C Specification 
Language (ACSL) [7] for the annotations. Supporting 
ACSL are a rich set of program analyzers such as 
Frama-C with its jessie and weakest precondition (wp) 
plugin, [8], which can generate the necessary proof 
conditions to be discharged by a variety of interactive 
theorem provers such as the Prototype Verification 
System by SRI [9]. 

The choice of the source language logically 
would be the data-flow language used in the front-end 
environment. However due to the multitude of 
synchronous data-flow languages used in the industry, 
we decided,for the first prototype translator, to use a 
source language that was easy to annotate and 
transform. We eventually settled on the translation 
layers as shown in Figure 2. The Simulink language 
cannot be altered so easily and doesn't have native 
commenting capability. Simulink's autocoder 
Real-Time Workshop uses an intermediate language 
for translation that is internal and also unavailable for 
alteration. Simulink is however part of Matlab. One of 
the advantages of this integration with Matlab is the 
ability for the user to insert any Matlab code into a 
Simulink diagram. The entire Simulink design can be 
one Matlab function.  

 

  
Figure 2. Language Layers 

Matlab itself is a popular language among control 
engineers for doing design and simulation. The syntax 
and matrix manipulation capabilities of Matlab allows 
for compact description of control properties and 
proofs. We can manually, and with ease provide these 
proofs and properties as Matlab comments. Matlab's 
imperative style also makes it relatively easy to 
translate to C. These conveniences coupled with the 
fact that there is an open-source version of Matlab 

called Scilab led to the final decision to choose Scilab 
as the source language in our prototype  autocoder 
with proofs. Scilab also has a Simulink-like modeling 
environment called Scios which can be adapted to be 
the front-end layer. However for this early version of 
our prototype translator, we are looking to 
demonstrate the translation of control annotations 
rather than the best way for the control engineer to 
provide those annotations. 

Scilab to C Translator 
Scilab is an open source numerical computation 

software created by the French National Institute for 
Computer Science and Control (INRIA). It is a project 
that is currently backed by an international consortium 
of 25 members from both the industry and academia. 
For the rest of this paper we shall refer to Scilab as 
both the software package and the technical 
computing language. 

Scilab Semantics 
  Scilab is a high-level interpreted, imperative 

language with similar array programming capabilities 
as Matlab. Like Matlab, the type system in Scilab was 
designed mainly with convenience of scientific 
computing in mind. The main data type is the matrix 
which is expressed in Scilab as   

[���, … , ���; ���, … , ���; … ���, … , ���] (2) 
where the entries ��� can be either floats or booleans. 
There are other data types in Scilab but we only 
consider the following list for the translator (see 
Figure 3). Let � be the quasi-ring of floating-point 
numbers.  

     ��� �!: �                 

        #�$!%�: ��×�    (3) 

        �&& '�*: {0,1} 

        �&& '�*#�$!%�{0,1}�×� 

Figure 3. Basic Data Types in Scilab 

The conversion from the one element matrix i.e. 
��×� to the scalar type is implicit. To the translator, 
all matrices with one element are considered as 
scalars. The vector ��  from the state-space 
representation of the linear controller in (2) is 
expressed as a matrix of dimension * × 1. 

In the translator we consider the following set of 
operations (see Figure 4). The scalar operations plus, 
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minus, multiply and divide {+, -, ./, ./}  are 
generalized to operate element-wise on matrices. In 
addition, basic linear-algebra operations such as 
matrix multiplication and matrix transpose {/, 3} are 
also supported by Scilab. Their semantics are 
formalized internally and presumably in a more 
strongly-typed language. For the formal verification 
of these operations, efforts such as the one in [7] to 
formalize linear algebra semantics in a theorem prover 
has led to a linear algebra module in the NASA 
langley PVS libraries. The mixed matrix scalar binary 
operations {+,/,/} are also considered. The necessity 
comes from the need for expressing certain proof 
formulas that is the end product of a relaxation 
procedure using Lagrange multipliers, see 
S-Procedure in [11]. The {-} operation is skipped 
over because it is not needed for expressing any of the 
control semantics that we have mentioned. 

#�$!%��44/��5$!��${+, -}: ��×� × ��×� 6 ��×� 

#�$!%�7 '8'*$9�: {./, ./}: ��×� × ��×� 6 ��×� 

#�$!%�#� $%� %��$%&*:/: ��×� × ��×< 6 ��×< 

#�$!%�>!�*?�&?'3: ��×� 6 ��×� 

@ABCDE&GHAIACJK: {+,/,/}: �L×M × � 6 �L×M 
(4) 

Figure 4. Basic Math Operations in Scilab 

In addition to operations we also translate the 
following binary relations in Figure 5. The binary 
relations on scalars are used both in the code and the 
annotations. 

  N� {<, >, <=, >=, ==, <>}         (5)  
  
��� �!Q' �$%&*?:N: � × � 6 {0,1}  
#�$!%�Q' �$%&*?:N: ��×� × ��×� 6 {0,1}�×� 

@ABCDE&GHAIACRSIABDTLU:N: �L×M × � 6
{V, W}L×M         

(6)  Figure 5. Basic Relations in Scilab 

Scilab support commenting in the code using the 
symbol "//". We specified a new commenting symbol 
"//@" to denote annotations that are to be translated 
instead of being discarded. For example the loop 
invariant � � �
 is expressed in Scilab as in Figure 6.  

1  //@ transpose(x_0)*inverse(P)*x_0<=1   

Figure 6. Scilab Annotation 

The flow control in Scilab shares many common 
elements with C. Both languages have the  while and  
for loops as well as the  if-else-then statement. One 
key difference is the way that the  for loop variable is 
handled. In Scilab the loop variable is initiated to a 
matrix. We denote this matrix the  loop matrix. The 
total number of loop iterations corresponds to the 
number of columns in the  loop matrix. Before the 
*th iteration, the *th column of the  loop matrix is 
assigned to the loop variable implictly by the Scilab 
interpreter. We provide the following Scilab code (see 
Figure 7) and the C code output (see Figure 8) to 
highlight this difference.  
1   for (i = [1,2;3,4]) 
2   j = i+1 
3   end   

Figure 7. for loop in Scilab 

The output C code in Figure 8 has an index variable 
i_0_loopIndx that keep track of the current iteration 
number and the variable i_0_loopMat to hold the values 
of the loop matrix. In addition the function   submatrix 
is used to return a column of the loop matrix.  
 1   #include "tools.h" 
 2 
 3   int main(int argc, char *argv[]) 
 4   { 
 5     char false;  
 6     double** i_0; 
 7     int i_0_loopIndx;  
 8     double** i_0_loopMat; 
 9     double** j_0;  
10     char true; 
11     i_0 = allocM ( 2, 1); 
12     i_0_loopMat = allocM ( 2, 2); 
13     j_0 = allocM ( 2, 1); 
14     i_0_loopMat[0][0]=1; 
15     i_0_loopMat[1][0]=3; 
16     i_0_loopMat[0][1]=2; 
17     i_0_loopMat[1][1]=4; 
18     for ( i_0_loopIndx=0 ; i_0_loopIndx < 2 ; 
           i_0_loopIndx++ ) 
19    {   
20       i_0 = submatrix (i_0_loopMat,0,i_0_loopIndx, 2, 1); 
21       j_0 = add_scalar(1, i_0,2,1,0); 
22 
23    } 
24    return 0; 
25 
26  } 

 
Figure 8. C Code Output 
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Description of ACSL and Frama-C 
ANSI C Specification Language (ACSL) is a 

specification language developed by the French 
Atomic Energy Commission (CEA) and INRIA. 
Using ACSL we can insert annotations expressing the 
expected functional and safety properties of C 
functions. The annotation format is in the style of a 
Hoare triple. Given a function call <myfunction> we 
can label a contract on the function that is consisted of 
a required pre-condition � that guarantees a certain 
post-condition X after the function call is executed.   

 {�} < 8�Y�*�$%&* > {X}   (7) 

The pre and post-conditions are first-order logic 
formulas. The syntax of the ACSL contract is shown 
in Figure 9. The pre-condition is indicated by the 
keyword  requires and the post-condition is indicated 
by the keyword  ensures. 

 

 1  /*@ requires <pre-condition> 
 2    @ ensures <post-condition> 
 3    */ 
 4  <type> myfunction(<arguments list>)   

Figure 9. Example of ACSL Contract 

For memory safety we can specify pre-conditions 
on pointer validity using the keyword  valid. For 
example to check the validity of an array of size 2 i.e. 
A[2] we can write the following pre-condition: 

 

1   /*@ requires (A+(0..1)) \valid (A + (0. .1)) 

 

Frama-C is a set of tools also developed by the 
CEA and INRIA for the purpose analyzing C 
programs. The jessie plug-in in Frama-C can be used 
to generate verification conditions from the ACSL 
annotated code, and then outputs the verification 
conditions to interactive and automated theorem 
provers. It generates verification conditions by 
computing the weakest pre-condition that can 
guarantee the post-condition. For example, if we have 
an ACSL contract that requires � and ensures X for 
the function call � , and given that the �3  is the 
weakest precondition for X  and �  i.e. �3 =
\�(�, X) then the verification condition generated by 
jessie is   

   � ^ �3   (8) 

Translation Scheme and Verifying C Functions 
The approach that we have taken in the 

translation process is tailored so the output will be 
suitable for analysis by Frama-C's jessie plugin. We 
translate only the subset of Scilab that is used to 
implement linear control programs as well as 
expressing Lyapunov stability proofs, S-procedure 
and ellipsoids. The following points describe the the 
translation scheme and some of the formal 
verifications done on the C functions. 

I. The matrix type is translated into double 
pointers of the  double type. We also 
implemented a memory allocator function  
allocM to dynamically 1  create the 
2-dimensional array of the correct size for 
storing the values from the matrix. 

II. The Scilab operations are implemented into 
C functions using the formal semantics 
described earlier. The translator then maps 
the operations in the Scilab code into their 
corresponding C functions.  

III. The binary relations for matrices are also 
implemented as C functions but the details 
are skipped since they are not relevant to 
controller implementation or annotation. 

IV. The C functions that implement the Scilab 
operations are verified using jessie and 
ACSL for their functional correctness. 
Specifically the semantics of the C 
functions are verified against the 
formalized semantics of the Scilab 
operators. 

V. No control semantics i.e. � � �
  are 
verified for the C functions namely because 
without knowing their point of call in the 
overall code, no pre-conditions from 
control system analysis can be inserted. 

VI. The language of annotation is also in 
Scilab. The annotation translation is 
handled exactly the same way as the code 
i.e. using the C functions to replace Scilab 
operators. 

                                                      
1 This dynamic allocation is done only once at the beginning of the 
program to initiate the array. 
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VII. The prototype Scilab to C translator can be 
found in Table 1. Here in the appendix we 
provide an example of annotated Scilab 
code and the translated output. 

VIII. Strictly speaking, the annotated C code 
output is not directly analyzable by 
Frama-C with jessie. A preprocessor is 
needed to format the pre-condition and 
post-conditions as Frama-C contracts as 
well as convert each line of code to a 
function call. 

Table 1. Scilab Operations Mapped to C Functions 

{+, -, ./, ./} add, substract, mult_elem, div_elm 
{/, 3}   mult, transpose  

{+,/,/}  add_scalar, mult_scalar, 
div_scalar  

  

Discussion 
The motivation behind implementing the 

translator to directly map Scilab operators to verified 
C functions can be summarized as follows. Using 
these C functions we can generate C code that is 
similar to the original Scilab code in form. This 
improves the readability of the annotations as well as 
the code. Furthermore the translator does not have to 
perform ellipsoid calculus to generate the ellipsoid 
invariants for all the intermediate steps in a matrix 
operation. The control semantics can then be verified 
essentially on the Scilab level and the result can be 
assumed to hold true for the output C code with all the 
function calls inlined. The reasoning behind this claim 
is as follows: since all the translator has done is to 
directly copy over the C functions to replace the Scilab 
operators, and since the semantics of these C functions 
are already verified against the semantics of the Scilab 
operators that they replaced, thus any invariant from 
control theory that holds true in the Scilab code should 
also hold for the output of our prototype translator. 
This argument was formed during the development of 
the translator. However there are several issues with it. 
One being that the choices made for the translation 
scheme which led to this line of reasoning run in 
counter to industry practice. 

To adhere to industry practice, the translation of 
the code and the proof has to be as close as possible to 
a form that is actually executed on the target machine. 
This practice also fits for our purpose since we want to 

leave as few translation tasks as possible to the 
compiler, so that most of the formal verifications can 
be done on the source code level or above. This means 
all the functions should be inlined. It also means for 
the example linear controller in (1), an ellipsoid 
invariant containing all the relevant variables should 
be propagated into every line of the output code. 
Having C functions that are verified for their 
functional property and then inlined directly into the 
translated code leaves a lot of lines without an 
ellipsoid invariant. 

One possible way around this problem that we 
have explored is to create a set of pre-built annotation 
templates and then insert them into a library of linear 
algebra C functions such as LAPACK. The template 
can be parameterized by an ellipsoid. During the 
inlining, the translator inserts the function with the 
annotation template. Here we give an example of such 
annotative template for a hypothetical C function  
mult that multiplies the � matrix by the controller 
state ��. First we give the syntax of the template. 

1   /*@ invariant (x,y)    R */   

The comment has the semantics of the ellipsoid 
invariant   

 {[`
a]| b �

cd
ef

g g[` a]h
i f > 0}  (9) 

 With � = j�
k  l�

l�m, �� = jk
�m and the hypothetical C 

function  mult, we have the following annotative 
template,  

 1 
 2   mult(double** A,double** xc, double** xtmp) 
 3   { 
 4      /*@ xc  &&  inverse(P) */ 5 
 5      xtmp[0][0]=A[0][0]*x[0]+A[0][1]*x[1]; 
 6      /*@ (xc,xtmp[0][0]) && 
             T1*inverse (P)*transpose(T1) */ 
 7      xtmp[1][0]=A[1][0]*x[0]+A[1][1]*x[1]; 
 8      /*@ (xc,xtmp[0][0],xtmp[1][0]) && 
 9        @ T2 *T1 *inverse(P) *transpose(T1)  
              *transpose(T2) */ 
10     return 0; 
11   } 
    

>1  and >2  are the appropriate transformation 
matrices .  
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 >1 n c opqp
r[k][k]     r[k][�] f     

      (10) 

>21 n b Itut
A[1][0]     A[1][1] v    

After inlining, the parameter � is substituted for 
the ellipsoid from the pre-condition of the function 
call. 

The problem with this "static template" is that it 
only works for our hypothetical C function  mult 
which has a very "restrictive" semantics of ��� 
where � � ��×�  and �� � ��×� . The actual 
implemented C function  mult is more general and 
computes the product of two matrices of any 
appropriate sizes. It uses several nested  while loops 
and the total number of loop iterations in the function 
depends on the dimensions of the input matrices. To 
make the template idea above work with  mult, we 
need to check if the second input matrix is the variable 
representing the controller state ��. We also need a 
"dynamic template" that can used to annotate 
post-conditions for all the possible lines of executions 
due to loop iterations. The following is an example of 
a dynamic template for  mult. The input matrices are 
A and B. 
1   /*@ requires colA==rowA colA==rowB colB==1  
2   @ ensures (B,xtmp(i,k)) && T(i,k)* inverse(P)* 
    transpose(T(i,k)) */   

The first line enforces the condition � � ��×� and 
� � ��×�. The variable  xtmp is the output array. The 
i,j,k are the loop variables. Both i and k iterate from 0 
to * - 1. The outer-loop variable j iterates from 0 to 1 
so this loop can be ignored. For every loop iteration 
the function computes xtmp[i][j]+=A[i][k]*B[k][j]. 
The comment after "ensures" represents the 
post-condition after �th execution of  
xtmp[i][j]+=A[i][k]*B[k][j] where � = % / * + w. 
The expression T(i,k) has the following semantics   

Y1(�): = Y &&!(�/*) 

Y2(�): = !'8�%*4'!(�/*) 

Xx:
= by(��z�(x))×(��z�(x)) ~(��z�(x))×��[z�(x),z�(x)]

1 v 

�x: = [y(��z�(x))×(��z�(x))~�×(��z�(x))]   (11)  

#x: = �Xx�x %YY2(�) = 0Xx
%YY2(�) � 0 g 

>(%, w) = �  
k

x��/��<
#x 

  

 where �[z�(x),z�(x)]  denotes a matrix of size 
1 × (* + Y1(�)) with each entries of the matrix being 
0 except   

 
�[z�(x),z�(x)](1, Y2(�) + 1) = �[Y1(�)][Y2(�)] (13) 

 Finally the expression  xtmp(i,k) means 
�$8�[0][0], �$8�[1][0], … , �$8�[%][0]. 

Refinements for the Prototype 
Translator 

Based on the work described earlier in the paper, 
we have planned several changes for the next version 
of the prototype translator. 

Simulink vs Lustre 
There are many control design platforms used by 

the industry that are based on the synchronous 
language paradigm. MathWorks' Simulink is one of 
the most popular ones used by control engineers 
especially in the automobile field. Esterel's SCADE 
which is based on the language Lustre is another one. 
Built with safety-critical software in mind, SCADE 
has been used mostly in the aerospace, nuclear and 
high-speed railway sectors. 

Simulink's popularity makes it the most logical 
choice for our interface layer, However for software 
verification purpose, Simulink presents a difficult 
challenge since it sacrifices some strict formalism for 
the purpose of improving usability to control 
engineers. Lustre on the other hand was designed 
primarily as a programming language[12] rather than 
a control design and simulation platform. Lustre is a 
synchronous language with data-flow like properties 
created in the 1980s by researchers from the French 
institution VERIMAG, The language was eventually 
integrated into the tool-set ESTEREL SCADE which 
is now widely used for the production of safety-critical 
embedded control software. Some of the important 
features in SCADE are its certified code generation 
tools to ADA/C, a built-in model checker, and a 
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wealth of static analysis tools in support. Like 
Simulink, Lustre has a graphical interface featuring 
wires and blocks. Although neither can be truly 
categorized as a programming language, Lustre has a 
set of more precisely-defined semantics as well as 
strong typing. This has led the industry (see Rockwell 
Collins in [13]) to place Lustre in the role of a 
"gateway language" between the interface layer used 
in the high-level design and the languages used in the 
formal methods tools. For these reasons, we think 
Lustre is a good intermediate language for our  
autocoder with proofs. 

Translating Simulink to Lustre with 
Annotations 

There is a lot of work in the literature concerning 
tools to translate Simulink into some other 
representation for the purpose of formal verification. 
As referenced earlier in [13], Rockwell Collins built a 
tool chain that translates from Simulink to 
Scade/Lustre, and finally from Lustre to a collection 
of model checkers and theorem provers. The tool 
described in [14] translates Simulink directly into the 
input language of a model-checker, and the work in 
[15] describes translation from Simulink to a hybrid 
automata. Finally these papers from [16], [17], 
describe efforts to translate a subset of Simulink into 
Lustre. We now refine our original approach to 
include Lustre as the intermediate layer between the 
Simulink-like interface and the C layer. First we give a 
short description of the Lustre language. 

A Lustre program at its core is a set of functions 
over a set of flows. Each flow can be described as a 
function that maps an infinite sequence of natural 
numbers to an infinite set of real values or booleans. 
The sequence of natural numbers represents a clock. 
The flow is also analogous to the signal in Simulink 
with the exception that in Simulink the mapping is 
done from ��. From this basic difference, we can see 

that Lustre inherently has a discrete-time semantics. In 
addition to the scalar operations {+, -,/,/} and basic 
control flow structures i.e.  if-else-then, Lustre also 
has few special operators {�!', 6, \�'*, ��!!'*$}. 
The  pre operator is similar to the �

�  block in 
Simulink. The only difference is that it doesn't take an 
argument that specifies the initial state. The way this is 
done in Lustre is by using the 6 operator. Here is an 
example of Euler integration on the flow �  with 
sampling time Ts in Lustre.   

1  x=0->pre(x)+Ts*x 

Each function in Lustre is called a node. The node is 
analogous to the blocks provided in Simulink. For 
example the step command block in Simulink can be 
implemented in Lustre with discrete-time semantics as 
the following: 

1  node step_command(step_time: int, initial_value,  
        final_value: real) 
2  return (output:real) 
3  var count: int; 
4  let  
5    count=0->(pre(count)+1); 
6    if (count<step_time) then output=initial_value 
         else output=final_value;  
7  tel  

The variable  counter keep tracks of the number 
of time-steps that have lapsed. The  if-else-then 
statement assigns the initial value to the output if the 
counter is less than the step time. Once the counter 
reaches the step time, the final value is assigned to the 
output. 

There exists a tool called  Simulink2Lustre 
developed at VERIMAG that can translate a subset of 
discrete-time Simulink into Lustre, This subset is 
shown in Figure 10. We are interested in adapting this 
tool for the translation of annotated Simulink to 
annotated Lustre.
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Figure 10. Translated Blocks by 

Simulink2Lustre [12] 

Simulink2Lustre (S2L) tries to preserve the 
semantics of the Simulink blocks as much as possible. 
To verify this, the authors of the tool checked the 
simulation result of the output Lustre program against 
the simulation result of the input for a variety of 
Simulink models. In addition to that, our goal is also to 
preserve the control semantics. For example the 
ellipsoid invariant needs to be true in both the input 
Simulink model and the output Lustre program. For 
the most part, this can be done precisely by preserving 
the semantics of the Simulink blocks at least if the 

annotated model only uses discrete-time blocks 2 . 
However in adaptive control, all the high-level design 
and analysis is done in the continuous-time domain. 
The questions become how to handle the model that is 
constructed with continuous-time blocks. There are 
several issues to translating the continuous-time 
blocks.  

I. Lustre doesn't have continuous-time 
semantics. Any continuous-time block in 
the Simulink model would have to be 
converted to discrete-time.  

II. Lyapunov stability proof derived from the 
analysis of continuous-time controllers 
doesn't necessarily have to work for the 
discretized controller, although it often 
does.  

III. Lyapunov stability proof of the discretized 
controller doesn't have to exist e.g. the case 
of adaptive controllers.  

IV. A stability proof that works for one method 
of discretization doesn't have to work for 
another.  

V. A discretized state-space block can have a 
different semantic from the discretized 
transfer function of the same state-space 
system even if the methods of discretization 
are the same.  

VI. The semantics of the continuous-time 
blocks is dependent on the simulation 
method and the sample time.  

 Most of these issues are not strictly speaking a 
problem for the translator. For example the existence 
of a Lyapunov function for an Euler discretized 
adaptive controller is matter of control theory. To get 
around this problem at least for now, we can restrict 
the translator inputs to a class of controllers where the 
same stability proof exists for both the 
continuous-time controller and the discretized version. 
To accomplish this in an automatic fashion, we need 
to build a type checker that can analyze the Simulink 
model and infer the controller class. 

Figuring out the set of additional Simulink blocks 
and types for expressing control semantics can be 
done in an ad-hoc manner i.e. by adding on more 

                                                      
2 Actually even Simulink's discrete-time blocks have 
continuous-time semantics. They are actually piece-wise constant 
but we ignore this fine distinction for now. 
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features as the need to demonstrate the autocoder on 
more complex controllers arises in the future. For now 
we describe a list of blocks and types required for the 
case of the linear controller. 

Extensions to Simulink, Lustre and S2L 
For our purpose we first need some sort of 

annotation indicator in both Simulink and Lustre. 
There are two ways to do this. One is to simply add an 
annotation flag to the elements of both languages. 
Since all the linear control proofs and properties can 
be constructed using the existing elements in either 
language, indicating the annotations should be as 
simple as switching on a flag. 

The second approach requires defining formal 
semantics for a new set of Simulink blocks that are 
specifically designed to indicate the stability property 
of the control system. For example the linear 
compensator in (1) has bounded-input and bounded 
output stability with a quadratic function as the 
certificate. In the case of Simulink, these certificate 
blocks also can be used to indicate that the control 
semantics are only valid in the field of real numbers. 

Now we can describe the additional Simulink 
blocks that need to be translated because they are 
necessary for the insertion of control semantics such 
as Lyapunov functions, S-Procedure based 
inequalities, and the plant model.  

I. The translator should be extended to cover 
continuous-time blocks as well. Indeed in 
nearly all control system specifications, the 
plant models are in continuous-time. The 
plant model is used in the proof of the 
closed-loop stability of the controller 
therefore it cannot be ignored. Additionally 
most control analysis performed at the 
design level are in continuous-time. To 
maintain the familiarity of the interface 
level, we need to make sure that these 
blocks are available to the user. 

II. The semantics of a Simulink model is 
dependent on the method of the solver and 
the sampling time. To reduce the total 

number of possible different semantics that 
a model can have, we restrict the solver to 
Euler's method with a fixed time-step of 
>?. We also fixed the sampling rate to a 
constant �

�� . We can always insert 
higher-fidelity discretization scheme later. 

III. The continuous-time transfer function and 
state-space blocks need to be transformed 
into a discrete-time form. Under the 
restrictions above, the only possible 
method of discretization is Euler's with the 
step-size >?. 

IV. Using Euler's discretization on the 
integrator block �

�  yields the 
transformation in Figure 11. The 
transformation identity used is ? = �l�

�� . 
We can easily see that the transformed 
model maps directly to Lustre operators 
and flows. 

 
Figure 11. Continuous -Time Integrator to 

Discrete-Time 

V. Using Euler's discretization scheme on a 
proper transfer function such as the one in 
top of Figure 12 yields a discrete-time 
model consisting of the following blocks:  
adder,  forward difference, unit delay and  
gains, This output can also be mapped 
directly to Lustre operators and flows.
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Figure 12. Continuous Transfer Function to Discrete-Time 

 

VI. As we have demonstrated in the Scilab to C 
prototype, the translation of control proofs 
and properties requires the handling of the 
linear algebra types and operations such as 
vector, matrix, matrix product, and matrix 
transpose. Although both the  constant 
block and the  product block are in the 
subset of Simulink that S2L can translate, it 
is unclear whether or not the tool can 
translate a matrix constant or a product of 
matrices. 

VII. The linear algebra types and operations are 
not supported natively in Lustre (unlike in 
Matlab), therefore we cannot perform a 
direct mapping from Simulink. Nor can we 
map the Lustre operators directly to the C 
functions implemented for the Scilab to C 
translator. 

VIII. Blocks that are signal sources such as the 
step command input will also be translated 
since they are part of the stability property 
specification. 

Lustre to C 
Lustre to C represents the final step in the 

migration of control semantics from the design level 
down to the code level. The main problem now is not 
so much generating the C code from Lustre but 
translating the annotations expressing control 
semantics. SCADE already has a certified autocoder 
but we cannot adapt it for our purpose because it is a 
closed-source project. Unlike in our Scilab to C 
translator, the structure of Lustre does not allow a 
direct mapping to a library of C functions. This makes 
using the annotative template system described earlier 
difficult if not impossible. We have started looking at 
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tools such as Gene-Auto[18] which is a open-source 
code-generation framework for the translation of 
data-flow languages into imperative languages. At the 
moment Gene-Auto can handle 50 Simulink blocks 
and can output to C. 

Conclusions 
We have created an early prototype of Scilab to C 

autocoder in demonstration of generating C code with 
ellipsoidal invariants. This was done as part of the 
project to create a tool-set that can translate control 
system semantics from the design level to the source 
code level for the purpose of assisting formal 
verification. We hope that the creation of this  
autocoder with proofs will pave the path to a more 
rigorous guarantee of quality for safety-critical 
embedded control systems. From the prototype Scilab 
to C translator, we have further refined the language 
layers for the next prototype. An intermediate layer of 
Lustre will be added and the source language will be 
changed to Simulink with certain control annotation 
extensions. Future work includes completing the 
second prototype, testing the prototype on real control 
systems designs, adapting program analyzers and 
theorem provers tools to automate much of the 
verification of the annotated output. 
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Appendix I 
  Linear Compensator in Scilab with Annotation 

of Control Semantics 
 1  Ac = [0.4990, -0.0500 ; 0.0100, 1.0000] 
 2  Cc = [564.48, 0] 
 3  Bc = [1;0];Dc = -1280 
 4  xc = zeros(2,1); 
 5  y=0  
 6  yd=0  
 7  receive(y,2)  
 8  receive(yd,3) 
 9  yc=3 
10  P = [1e-3*0.6742, 1e-3*0.0428;1e-3*0.0428,1e- 
         *2.4651]; 
11  while 1 
12     //@ y^2 <=1  
13     yc = max(min(y-yd,1),-1) 
14     //@ y^2 <=1  
15     u= Cc*xc + Dc*yc 
16     //@ transpose(xc)*inverse(P)*xc<=1  
17     xc = Ac*xc + Bc*yc  
18     //@ transpose(xc)*inverse(P)*xc<=1  
19     send(u,1) 
20     receive(yd,2) 
21   end; 

Scilab to C Translator Output 
 1  #include "tools.h" 
 2 
 3  int main(int argc, char *argv[]) 
 4  { 
 5    double** Ac_0;  
 6    double** Bc_0;  
 7    double** Cc_0;  
 8    double Dc_0;  
 9    double** P_0;  
10    char false;  
11    char true;  
12    double u_0;  
13    double** xc_0;  
14    double** xc_0_temp;  
15    double y_0;  
16    double yc_0; 

17    double yd_0;  
18    Ac_0 = allocM ( 2, 2);  
19    Bc_0 = allocM ( 2, 1);  
20    Cc_0 = allocM ( 1, 2);  
21    P_0 = allocM ( 2, 2);  
22    xc_0 = allocM ( 2, 1);  
23    xc_0_temp = allocM ( 2, 1);  
24    Ac_0[0][0]=0.499;  
25    Ac_0[1][0]=1.0e-2;  
26    Ac_0[0][1]=-5.0e-2;  
27    Ac_0[1][1]=1.0;  
28    Cc_0[0][0]=564.48;  
29    Cc_0[0][1]=0;  
30    Bc_0[0][0]=1;  
31    Bc_0[1][0]=0;  
32    Dc_0=-1280;  
33    xc_0 = zeros(2, 1);  
34    y_0=0;  
35    yd_0=0;  
36    receive(y_0, 2) receive(yd_0, 3) yc_0=3; 
37    P_0[0][0]=1e-3*0.6742; 
38    P_0[1][0]=1e-3*4.28e-2; 
39    P_0[0][1]=1e-3*4.28e-2; 
40    P_0[1][1]=1e-3*2.4651;  
41    while (1) 
42 
43    { 
44 
45  /*@ (y_0^2)<=1 */  
46       yc_0=max(min(y_0+-yd_0, 1),-1); 
47 
48  /*@ (y_0^2)<=1 */ 
49       u_0=Cc_0[0][0]* xc_0[0][0]+Cc_0[0][1]*  
               xc_0[1][0]+Dc_0* yc_0; 
50 
51  /*@ mult(mult(transpose(xc_0 ), 2, 1,inverse 
         (P_0 )),1,2,xc_0,2,1)<=1 */ 
52       xc_0_temp = copy(xc_0,2,1);  
53       xc_0 = add(mult  
               (Ac_0,2,2,xc_0_temp,2,1,0,1) ,2 ,1, 
               mult_scalar(yc_0, Bc_0,2,1,0), 
               2,1,1,1); 
54 
55  /*@ mult(mult(transpose (xc_0 ),2,1, inverse 
         (P_0 )), 1, 2, xc_0,2,1)<=1 */ 
56       send(u_0, 1)receive(yd_0, 2)  return 0; 
57    } 
58    return; 
59 
60  } 
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