

978-1-61284-798-6/11/$26.00 ©2011 IEEE
 7C1-1

AUTOCODING CONTROL SOFTWARE WITH PROOFS I: ANNOTATION
TRANSLATION

Romain Jobredeaux, Timothy E. Wang, Eric M. Feron
Georgia Institute of Technology, Atlanta, GA

Abstract
In an effort to meet the reliability standards that

control systems operating in safety-critical roles
require, we have started laying the foundation for a
tool-set that migrates control theory properties and
proofs into the software implementation of those
control systems designs. By using this tool the
engineer can provide a more rigorous guarantee of the
quality of the software and initiate the formal
verification process. The tool focuses on control
software in order to leverage the domain knowledge
from existing mathematical techniques for the analysis
and synthesis of control systems. As a first step in the
development of the tool-set, we have created a
prototype of a Scilab to C translator with proof
annotation support. Though limited in its current
functionalities, the development of this prototype
allowed us to identify the key issues which will be
used to further refine the translator. This paper
describes the prototype and the further improvements
planned for the translator.

Introduction
Safety-critical applications have become an

important part of modern life. One can find many
examples of safety-critical applications in the fields of
aerospace, defense, medical, nuclear and mass
transportation. Whether it is the avionics in a
commercial passenger jet, the heart valve inside a
cardiovascular impaired patient, or the automatic
speed and signaling system in a high-speed railway
network, one thing they all have in common is the
presence of embedded control systems. As the level of
automation increases in the modern world, one can
expect more and more embedded control systems that
operate in safety-critical roles. The notion of what is
safety-critical refers to the unacceptable characteristic
of the consequence due to failure. The consequence
can be the loss of human life, massive economic and
property damage, or severe disruptions to the
environment. The reliability of these embedded
control systems therefore is very important.

An embedded control system has both hardware
and software components. To ensure the quality of the
software component, it is usually submitted through a
rigorous certification process that involves both
extensive testing and analysis using
mathematics-based verification techniques developed
by the formal methods community. Sophisticated
automated or semi-automated tools already exist and
are being used by the industry for the formal analysis
of complex computer programs. Despite these
advances, one limitation in program analysis remains
in that the properties from the program specifications
can be arbitrarily complex and proving them can be
difficult even by hand, let alone computers. This
limitation comes from an inherent underlying
undecidability issue. Fortunately it is common
practice in the control engineering community to
provide rigorous safety analysis of control designs
before their implementation. For example take the
following linear compensator in the state-space form.

 ��� = ���� + ��� (1)

 � = 	��� +
��

Given the input � that is bounded, �� being a
Hurwitz matrix, (��, ��) is controllable, we can
prove by hand that the control system in (1) is
invariant with respect to an ellipsoid parameterized by
a matrix �: �
 =� {� � ��|���� � 1} where � is a
solution to a linear matrix inequality (LMI) [1]. As
proposed and demonstrated in [2], this property along
with the proof if inserted into the code in a format such
as Hoare triples [3] can be helpful to the program
analyzer in formally verifying the code.

One of the obstacles to using control theory to
assist the formal analysis of control software is that
two communities effectively operate in different
worlds and speak different technical languages. For
example the control engineer is comfortable with
state-space systems while the formal method scientist
deals with finite-state machines. Also the fact remains
that for all but the simplest examples, manually
transforming and inserting control theoratic properties

 7C1-2

and proof into line by line assertions about the output
code is prohibitively time consuming. One solution is
to have a tool-set that can translate the complete
control system specifications into annotated code in an
automatic fashion. For that purpose we propose a
tool-set coined informally as an autocoder with
proofs that satisfies the following general
requirements. 1. The front-end environment for the
creation of the control system specifications should be
familiar to the control engineers. 2. The front-end
specification language should have precise semantics
for both controller design and property/proof
annotations. 3. The back-end code generator can
translate both the controller specifications into code as
well as the properties and proofs into code
annotations. 4. The generator's output is analyzable by
tools developed by the formal methods community.

The organization of the remainder of this paper is
as follows. First, a short overview of the proposed
tool-set is described. From there we give the reasons
for the development of the Scilab to C translator, then
a technical description of the Scilab to C translator is
given. In the ensuing sections a description of its
shortcomings are provided. Afterwards we
recommend a set of refinements for the translator and
as well as new functionalities and specifications for
the next prototype translator. Finally a discussion on
future improvements on the overall tool-set is
provided.

A Description of the Tool-Set

Front-End
As described in more detail in [4] the front-end

environment is Simulink-like i.e. a data-flow language
underlying a graphical interface featuring blocks,
subsystems, and signal wires. Simulink being the
industry's standard platform, is the natural choice due
to its familiarity to control engineers. The front-end
environment is further enhanced with the semantics of
control proofs and properties. This allows the
insertions of those properties and proofs at the control
design level. A graphical example of this functionality
is shown in Figure 1 using existing Simulink blocks.

Figure 1. Graphical Annotation of the Control

System

In this example, the full control system
specifications is consisted of a lead-lag controller, the
plant model, a closed-loop Lyapunov function
parameterized by � , and the invariant property:
(��, ��)��(��, ��) � 1 . The invariant property is
inserted into the Simulink diagram as the annotation.
This can be done graphically by connecting the
Lyapunov function blocks with the signals that
represent the controller and plant states. The value of
� can be generated automatically by a robust control
analysis toolbox such as IQC-�[5] or �-tools[6].

Back-End
The back-end of the tool-set is a translator that

transforms the control system specifications into the
annotated program in an industrial language. This
necessity for an autocoder with proofs led to the
development of the prototype translator described in
this paper. The target annotation language for the
translator can be a matter of preference, and is also
dependent on the target language. For the
demonstration of the prototype translator in this paper,
we picked the target language based on the criteria of
industry popularity and the amount of support in terms
of program analysis tools by the formal methods

 7C1-3

community. We settled on the C language, which is
commonly used in the industry. Naturally we also
decided to go with the ANSI C Specification
Language (ACSL) [7] for the annotations. Supporting
ACSL are a rich set of program analyzers such as
Frama-C with its jessie and weakest precondition (wp)
plugin, [8], which can generate the necessary proof
conditions to be discharged by a variety of interactive
theorem provers such as the Prototype Verification
System by SRI [9].

The choice of the source language logically
would be the data-flow language used in the front-end
environment. However due to the multitude of
synchronous data-flow languages used in the industry,
we decided,for the first prototype translator, to use a
source language that was easy to annotate and
transform. We eventually settled on the translation
layers as shown in Figure 2. The Simulink language
cannot be altered so easily and doesn't have native
commenting capability. Simulink's autocoder
Real-Time Workshop uses an intermediate language
for translation that is internal and also unavailable for
alteration. Simulink is however part of Matlab. One of
the advantages of this integration with Matlab is the
ability for the user to insert any Matlab code into a
Simulink diagram. The entire Simulink design can be
one Matlab function.

Figure 2. Language Layers

Matlab itself is a popular language among control
engineers for doing design and simulation. The syntax
and matrix manipulation capabilities of Matlab allows
for compact description of control properties and
proofs. We can manually, and with ease provide these
proofs and properties as Matlab comments. Matlab's
imperative style also makes it relatively easy to
translate to C. These conveniences coupled with the
fact that there is an open-source version of Matlab

called Scilab led to the final decision to choose Scilab
as the source language in our prototype autocoder
with proofs. Scilab also has a Simulink-like modeling
environment called Scios which can be adapted to be
the front-end layer. However for this early version of
our prototype translator, we are looking to
demonstrate the translation of control annotations
rather than the best way for the control engineer to
provide those annotations.

Scilab to C Translator
Scilab is an open source numerical computation

software created by the French National Institute for
Computer Science and Control (INRIA). It is a project
that is currently backed by an international consortium
of 25 members from both the industry and academia.
For the rest of this paper we shall refer to Scilab as
both the software package and the technical
computing language.

Scilab Semantics
 Scilab is a high-level interpreted, imperative

language with similar array programming capabilities
as Matlab. Like Matlab, the type system in Scilab was
designed mainly with convenience of scientific
computing in mind. The main data type is the matrix
which is expressed in Scilab as

[���, … , ���; ���, … , ���; … ���, … , ���] (2)
where the entries ��� can be either floats or booleans.
There are other data types in Scilab but we only
consider the following list for the translator (see
Figure 3). Let � be the quasi-ring of floating-point
numbers.

 ��� �!: �

 #�$!%�: ��×� (3)

 �&& '�*: {0,1}

 �&& '�*#�$!%�{0,1}�×�

Figure 3. Basic Data Types in Scilab

The conversion from the one element matrix i.e.
��×� to the scalar type is implicit. To the translator,
all matrices with one element are considered as
scalars. The vector �� from the state-space
representation of the linear controller in (2) is
expressed as a matrix of dimension * × 1.

In the translator we consider the following set of
operations (see Figure 4). The scalar operations plus,

 7C1-4

minus, multiply and divide {+, -, ./, ./} are
generalized to operate element-wise on matrices. In
addition, basic linear-algebra operations such as
matrix multiplication and matrix transpose {/, 3} are
also supported by Scilab. Their semantics are
formalized internally and presumably in a more
strongly-typed language. For the formal verification
of these operations, efforts such as the one in [7] to
formalize linear algebra semantics in a theorem prover
has led to a linear algebra module in the NASA
langley PVS libraries. The mixed matrix scalar binary
operations {+,/,/} are also considered. The necessity
comes from the need for expressing certain proof
formulas that is the end product of a relaxation
procedure using Lagrange multipliers, see
S-Procedure in [11]. The {-} operation is skipped
over because it is not needed for expressing any of the
control semantics that we have mentioned.

#�$!%��44/��5$!��${+, -}: ��×� × ��×� 6 ��×�

#�$!%�7 '8'*$9�: {./, ./}: ��×� × ��×� 6 ��×�

#�$!%�#� $%� %��$%&*:/: ��×� × ��×< 6 ��×<

#�$!%�>!�*?�&?'3: ��×� 6 ��×�

@ABCDE&GHAIACJK: {+,/,/}: �L×M × � 6 �L×M
(4)

Figure 4. Basic Math Operations in Scilab

In addition to operations we also translate the
following binary relations in Figure 5. The binary
relations on scalars are used both in the code and the
annotations.

 N� {<, >, <=, >=, ==, <>} (5)

��� �!Q' �$%&*?:N: � × � 6 {0,1}
#�$!%�Q' �$%&*?:N: ��×� × ��×� 6 {0,1}�×�

@ABCDE&GHAIACRSIABDTLU:N: �L×M × � 6
{V, W}L×M

(6) Figure 5. Basic Relations in Scilab

Scilab support commenting in the code using the
symbol "//". We specified a new commenting symbol
"//@" to denote annotations that are to be translated
instead of being discarded. For example the loop
invariant � � �
 is expressed in Scilab as in Figure 6.

1 //@ transpose(x_0)*inverse(P)*x_0<=1

Figure 6. Scilab Annotation

The flow control in Scilab shares many common
elements with C. Both languages have the while and
for loops as well as the if-else-then statement. One
key difference is the way that the for loop variable is
handled. In Scilab the loop variable is initiated to a
matrix. We denote this matrix the loop matrix. The
total number of loop iterations corresponds to the
number of columns in the loop matrix. Before the
*th iteration, the *th column of the loop matrix is
assigned to the loop variable implictly by the Scilab
interpreter. We provide the following Scilab code (see
Figure 7) and the C code output (see Figure 8) to
highlight this difference.
1 for (i = [1,2;3,4])
2 j = i+1
3 end

Figure 7. for loop in Scilab

The output C code in Figure 8 has an index variable
i_0_loopIndx that keep track of the current iteration
number and the variable i_0_loopMat to hold the values
of the loop matrix. In addition the function submatrix
is used to return a column of the loop matrix.
 1 #include "tools.h"
 2
 3 int main(int argc, char *argv[])
 4 {
 5 char false;
 6 double** i_0;
 7 int i_0_loopIndx;
 8 double** i_0_loopMat;
 9 double** j_0;
10 char true;
11 i_0 = allocM (2, 1);
12 i_0_loopMat = allocM (2, 2);
13 j_0 = allocM (2, 1);
14 i_0_loopMat[0][0]=1;
15 i_0_loopMat[1][0]=3;
16 i_0_loopMat[0][1]=2;
17 i_0_loopMat[1][1]=4;
18 for (i_0_loopIndx=0 ; i_0_loopIndx < 2 ;
 i_0_loopIndx++)
19 {
20 i_0 = submatrix (i_0_loopMat,0,i_0_loopIndx, 2, 1);
21 j_0 = add_scalar(1, i_0,2,1,0);
22
23 }
24 return 0;
25
26 }

Figure 8. C Code Output

 7C1-5

Description of ACSL and Frama-C
ANSI C Specification Language (ACSL) is a

specification language developed by the French
Atomic Energy Commission (CEA) and INRIA.
Using ACSL we can insert annotations expressing the
expected functional and safety properties of C
functions. The annotation format is in the style of a
Hoare triple. Given a function call <myfunction> we
can label a contract on the function that is consisted of
a required pre-condition � that guarantees a certain
post-condition X after the function call is executed.

 {�} < 8�Y�*�$%&* > {X} (7)

The pre and post-conditions are first-order logic
formulas. The syntax of the ACSL contract is shown
in Figure 9. The pre-condition is indicated by the
keyword requires and the post-condition is indicated
by the keyword ensures.

 1 /*@ requires <pre-condition>
 2 @ ensures <post-condition>
 3 */
 4 <type> myfunction(<arguments list>)

Figure 9. Example of ACSL Contract

For memory safety we can specify pre-conditions
on pointer validity using the keyword valid. For
example to check the validity of an array of size 2 i.e.
A[2] we can write the following pre-condition:

1 /*@ requires (A+(0..1)) \valid (A + (0. .1))

Frama-C is a set of tools also developed by the
CEA and INRIA for the purpose analyzing C
programs. The jessie plug-in in Frama-C can be used
to generate verification conditions from the ACSL
annotated code, and then outputs the verification
conditions to interactive and automated theorem
provers. It generates verification conditions by
computing the weakest pre-condition that can
guarantee the post-condition. For example, if we have
an ACSL contract that requires � and ensures X for
the function call � , and given that the �3 is the
weakest precondition for X and � i.e. �3 =
\�(�, X) then the verification condition generated by
jessie is

 � ^ �3 (8)

Translation Scheme and Verifying C Functions
The approach that we have taken in the

translation process is tailored so the output will be
suitable for analysis by Frama-C's jessie plugin. We
translate only the subset of Scilab that is used to
implement linear control programs as well as
expressing Lyapunov stability proofs, S-procedure
and ellipsoids. The following points describe the the
translation scheme and some of the formal
verifications done on the C functions.

I. The matrix type is translated into double
pointers of the double type. We also
implemented a memory allocator function
allocM to dynamically 1 create the
2-dimensional array of the correct size for
storing the values from the matrix.

II. The Scilab operations are implemented into
C functions using the formal semantics
described earlier. The translator then maps
the operations in the Scilab code into their
corresponding C functions.

III. The binary relations for matrices are also
implemented as C functions but the details
are skipped since they are not relevant to
controller implementation or annotation.

IV. The C functions that implement the Scilab
operations are verified using jessie and
ACSL for their functional correctness.
Specifically the semantics of the C
functions are verified against the
formalized semantics of the Scilab
operators.

V. No control semantics i.e. � � �
 are
verified for the C functions namely because
without knowing their point of call in the
overall code, no pre-conditions from
control system analysis can be inserted.

VI. The language of annotation is also in
Scilab. The annotation translation is
handled exactly the same way as the code
i.e. using the C functions to replace Scilab
operators.

1 This dynamic allocation is done only once at the beginning of the
program to initiate the array.

 7C1-6

VII. The prototype Scilab to C translator can be
found in Table 1. Here in the appendix we
provide an example of annotated Scilab
code and the translated output.

VIII. Strictly speaking, the annotated C code
output is not directly analyzable by
Frama-C with jessie. A preprocessor is
needed to format the pre-condition and
post-conditions as Frama-C contracts as
well as convert each line of code to a
function call.

Table 1. Scilab Operations Mapped to C Functions

{+, -, ./, ./} add, substract, mult_elem, div_elm
{/, 3} mult, transpose

{+,/,/} add_scalar, mult_scalar,
div_scalar

Discussion
The motivation behind implementing the

translator to directly map Scilab operators to verified
C functions can be summarized as follows. Using
these C functions we can generate C code that is
similar to the original Scilab code in form. This
improves the readability of the annotations as well as
the code. Furthermore the translator does not have to
perform ellipsoid calculus to generate the ellipsoid
invariants for all the intermediate steps in a matrix
operation. The control semantics can then be verified
essentially on the Scilab level and the result can be
assumed to hold true for the output C code with all the
function calls inlined. The reasoning behind this claim
is as follows: since all the translator has done is to
directly copy over the C functions to replace the Scilab
operators, and since the semantics of these C functions
are already verified against the semantics of the Scilab
operators that they replaced, thus any invariant from
control theory that holds true in the Scilab code should
also hold for the output of our prototype translator.
This argument was formed during the development of
the translator. However there are several issues with it.
One being that the choices made for the translation
scheme which led to this line of reasoning run in
counter to industry practice.

To adhere to industry practice, the translation of
the code and the proof has to be as close as possible to
a form that is actually executed on the target machine.
This practice also fits for our purpose since we want to

leave as few translation tasks as possible to the
compiler, so that most of the formal verifications can
be done on the source code level or above. This means
all the functions should be inlined. It also means for
the example linear controller in (1), an ellipsoid
invariant containing all the relevant variables should
be propagated into every line of the output code.
Having C functions that are verified for their
functional property and then inlined directly into the
translated code leaves a lot of lines without an
ellipsoid invariant.

One possible way around this problem that we
have explored is to create a set of pre-built annotation
templates and then insert them into a library of linear
algebra C functions such as LAPACK. The template
can be parameterized by an ellipsoid. During the
inlining, the translator inserts the function with the
annotation template. Here we give an example of such
annotative template for a hypothetical C function
mult that multiplies the � matrix by the controller
state ��. First we give the syntax of the template.

1 /*@ invariant (x,y) R */

The comment has the semantics of the ellipsoid
invariant

 {[`
a]| b �

cd
ef

g g[` a]h
i f > 0} (9)

 With � = j�
k l�

l�m, �� = jk
�m and the hypothetical C

function mult, we have the following annotative
template,

 1
 2 mult(double** A,double** xc, double** xtmp)
 3 {
 4 /*@ xc && inverse(P) */ 5
 5 xtmp[0][0]=A[0][0]*x[0]+A[0][1]*x[1];
 6 /*@ (xc,xtmp[0][0]) &&
 T1*inverse (P)*transpose(T1) */
 7 xtmp[1][0]=A[1][0]*x[0]+A[1][1]*x[1];
 8 /*@ (xc,xtmp[0][0],xtmp[1][0]) &&
 9 @ T2 *T1 *inverse(P) *transpose(T1)
 *transpose(T2) */
10 return 0;
11 }

>1 and >2 are the appropriate transformation
matrices .

 7C1-7

 >1 n c opqp
r[k][k] r[k][�] f

 (10)

>21 n b Itut
A[1][0] A[1][1] v

After inlining, the parameter � is substituted for
the ellipsoid from the pre-condition of the function
call.

The problem with this "static template" is that it
only works for our hypothetical C function mult
which has a very "restrictive" semantics of ���
where � � ��×� and �� � ��×� . The actual
implemented C function mult is more general and
computes the product of two matrices of any
appropriate sizes. It uses several nested while loops
and the total number of loop iterations in the function
depends on the dimensions of the input matrices. To
make the template idea above work with mult, we
need to check if the second input matrix is the variable
representing the controller state ��. We also need a
"dynamic template" that can used to annotate
post-conditions for all the possible lines of executions
due to loop iterations. The following is an example of
a dynamic template for mult. The input matrices are
A and B.
1 /*@ requires colA==rowA colA==rowB colB==1
2 @ ensures (B,xtmp(i,k)) && T(i,k)* inverse(P)*
 transpose(T(i,k)) */

The first line enforces the condition � � ��×� and
� � ��×�. The variable xtmp is the output array. The
i,j,k are the loop variables. Both i and k iterate from 0
to * - 1. The outer-loop variable j iterates from 0 to 1
so this loop can be ignored. For every loop iteration
the function computes xtmp[i][j]+=A[i][k]*B[k][j].
The comment after "ensures" represents the
post-condition after �th execution of
xtmp[i][j]+=A[i][k]*B[k][j] where � = % / * + w.
The expression T(i,k) has the following semantics

Y1(�): = Y &&!(�/*)

Y2(�): = !'8�%*4'!(�/*)

Xx:
= by(��z�(x))×(��z�(x)) ~(��z�(x))×��[z�(x),z�(x)]

1 v

�x: = [y(��z�(x))×(��z�(x))~�×(��z�(x))] (11)

#x: = �Xx�x %YY2(�) = 0Xx
%YY2(�) � 0 g

>(%, w) = �
k

x��/��<
#x

 where �[z�(x),z�(x)] denotes a matrix of size
1 × (* + Y1(�)) with each entries of the matrix being
0 except

�[z�(x),z�(x)](1, Y2(�) + 1) = �[Y1(�)][Y2(�)] (13)

 Finally the expression xtmp(i,k) means
�$8�[0][0], �$8�[1][0], … , �$8�[%][0].

Refinements for the Prototype
Translator

Based on the work described earlier in the paper,
we have planned several changes for the next version
of the prototype translator.

Simulink vs Lustre
There are many control design platforms used by

the industry that are based on the synchronous
language paradigm. MathWorks' Simulink is one of
the most popular ones used by control engineers
especially in the automobile field. Esterel's SCADE
which is based on the language Lustre is another one.
Built with safety-critical software in mind, SCADE
has been used mostly in the aerospace, nuclear and
high-speed railway sectors.

Simulink's popularity makes it the most logical
choice for our interface layer, However for software
verification purpose, Simulink presents a difficult
challenge since it sacrifices some strict formalism for
the purpose of improving usability to control
engineers. Lustre on the other hand was designed
primarily as a programming language[12] rather than
a control design and simulation platform. Lustre is a
synchronous language with data-flow like properties
created in the 1980s by researchers from the French
institution VERIMAG, The language was eventually
integrated into the tool-set ESTEREL SCADE which
is now widely used for the production of safety-critical
embedded control software. Some of the important
features in SCADE are its certified code generation
tools to ADA/C, a built-in model checker, and a

 7C1-8

wealth of static analysis tools in support. Like
Simulink, Lustre has a graphical interface featuring
wires and blocks. Although neither can be truly
categorized as a programming language, Lustre has a
set of more precisely-defined semantics as well as
strong typing. This has led the industry (see Rockwell
Collins in [13]) to place Lustre in the role of a
"gateway language" between the interface layer used
in the high-level design and the languages used in the
formal methods tools. For these reasons, we think
Lustre is a good intermediate language for our
autocoder with proofs.

Translating Simulink to Lustre with
Annotations

There is a lot of work in the literature concerning
tools to translate Simulink into some other
representation for the purpose of formal verification.
As referenced earlier in [13], Rockwell Collins built a
tool chain that translates from Simulink to
Scade/Lustre, and finally from Lustre to a collection
of model checkers and theorem provers. The tool
described in [14] translates Simulink directly into the
input language of a model-checker, and the work in
[15] describes translation from Simulink to a hybrid
automata. Finally these papers from [16], [17],
describe efforts to translate a subset of Simulink into
Lustre. We now refine our original approach to
include Lustre as the intermediate layer between the
Simulink-like interface and the C layer. First we give a
short description of the Lustre language.

A Lustre program at its core is a set of functions
over a set of flows. Each flow can be described as a
function that maps an infinite sequence of natural
numbers to an infinite set of real values or booleans.
The sequence of natural numbers represents a clock.
The flow is also analogous to the signal in Simulink
with the exception that in Simulink the mapping is
done from ��. From this basic difference, we can see

that Lustre inherently has a discrete-time semantics. In
addition to the scalar operations {+, -,/,/} and basic
control flow structures i.e. if-else-then, Lustre also
has few special operators {�!', 6, \�'*, ��!!'*$}.
The pre operator is similar to the �

� block in
Simulink. The only difference is that it doesn't take an
argument that specifies the initial state. The way this is
done in Lustre is by using the 6 operator. Here is an
example of Euler integration on the flow � with
sampling time Ts in Lustre.

1 x=0->pre(x)+Ts*x

Each function in Lustre is called a node. The node is
analogous to the blocks provided in Simulink. For
example the step command block in Simulink can be
implemented in Lustre with discrete-time semantics as
the following:

1 node step_command(step_time: int, initial_value,
 final_value: real)
2 return (output:real)
3 var count: int;
4 let
5 count=0->(pre(count)+1);
6 if (count<step_time) then output=initial_value
 else output=final_value;
7 tel

The variable counter keep tracks of the number
of time-steps that have lapsed. The if-else-then
statement assigns the initial value to the output if the
counter is less than the step time. Once the counter
reaches the step time, the final value is assigned to the
output.

There exists a tool called Simulink2Lustre
developed at VERIMAG that can translate a subset of
discrete-time Simulink into Lustre, This subset is
shown in Figure 10. We are interested in adapting this
tool for the translation of annotated Simulink to
annotated Lustre.

 7C1-9

Figure 10. Translated Blocks by

Simulink2Lustre [12]

Simulink2Lustre (S2L) tries to preserve the
semantics of the Simulink blocks as much as possible.
To verify this, the authors of the tool checked the
simulation result of the output Lustre program against
the simulation result of the input for a variety of
Simulink models. In addition to that, our goal is also to
preserve the control semantics. For example the
ellipsoid invariant needs to be true in both the input
Simulink model and the output Lustre program. For
the most part, this can be done precisely by preserving
the semantics of the Simulink blocks at least if the

annotated model only uses discrete-time blocks 2 .
However in adaptive control, all the high-level design
and analysis is done in the continuous-time domain.
The questions become how to handle the model that is
constructed with continuous-time blocks. There are
several issues to translating the continuous-time
blocks.

I. Lustre doesn't have continuous-time
semantics. Any continuous-time block in
the Simulink model would have to be
converted to discrete-time.

II. Lyapunov stability proof derived from the
analysis of continuous-time controllers
doesn't necessarily have to work for the
discretized controller, although it often
does.

III. Lyapunov stability proof of the discretized
controller doesn't have to exist e.g. the case
of adaptive controllers.

IV. A stability proof that works for one method
of discretization doesn't have to work for
another.

V. A discretized state-space block can have a
different semantic from the discretized
transfer function of the same state-space
system even if the methods of discretization
are the same.

VI. The semantics of the continuous-time
blocks is dependent on the simulation
method and the sample time.

 Most of these issues are not strictly speaking a
problem for the translator. For example the existence
of a Lyapunov function for an Euler discretized
adaptive controller is matter of control theory. To get
around this problem at least for now, we can restrict
the translator inputs to a class of controllers where the
same stability proof exists for both the
continuous-time controller and the discretized version.
To accomplish this in an automatic fashion, we need
to build a type checker that can analyze the Simulink
model and infer the controller class.

Figuring out the set of additional Simulink blocks
and types for expressing control semantics can be
done in an ad-hoc manner i.e. by adding on more

2 Actually even Simulink's discrete-time blocks have
continuous-time semantics. They are actually piece-wise constant
but we ignore this fine distinction for now.

 7C1-10

features as the need to demonstrate the autocoder on
more complex controllers arises in the future. For now
we describe a list of blocks and types required for the
case of the linear controller.

Extensions to Simulink, Lustre and S2L
For our purpose we first need some sort of

annotation indicator in both Simulink and Lustre.
There are two ways to do this. One is to simply add an
annotation flag to the elements of both languages.
Since all the linear control proofs and properties can
be constructed using the existing elements in either
language, indicating the annotations should be as
simple as switching on a flag.

The second approach requires defining formal
semantics for a new set of Simulink blocks that are
specifically designed to indicate the stability property
of the control system. For example the linear
compensator in (1) has bounded-input and bounded
output stability with a quadratic function as the
certificate. In the case of Simulink, these certificate
blocks also can be used to indicate that the control
semantics are only valid in the field of real numbers.

Now we can describe the additional Simulink
blocks that need to be translated because they are
necessary for the insertion of control semantics such
as Lyapunov functions, S-Procedure based
inequalities, and the plant model.

I. The translator should be extended to cover
continuous-time blocks as well. Indeed in
nearly all control system specifications, the
plant models are in continuous-time. The
plant model is used in the proof of the
closed-loop stability of the controller
therefore it cannot be ignored. Additionally
most control analysis performed at the
design level are in continuous-time. To
maintain the familiarity of the interface
level, we need to make sure that these
blocks are available to the user.

II. The semantics of a Simulink model is
dependent on the method of the solver and
the sampling time. To reduce the total

number of possible different semantics that
a model can have, we restrict the solver to
Euler's method with a fixed time-step of
>?. We also fixed the sampling rate to a
constant �

�� . We can always insert
higher-fidelity discretization scheme later.

III. The continuous-time transfer function and
state-space blocks need to be transformed
into a discrete-time form. Under the
restrictions above, the only possible
method of discretization is Euler's with the
step-size >?.

IV. Using Euler's discretization on the
integrator block �

� yields the
transformation in Figure 11. The
transformation identity used is ? = �l�

�� .
We can easily see that the transformed
model maps directly to Lustre operators
and flows.

Figure 11. Continuous -Time Integrator to

Discrete-Time

V. Using Euler's discretization scheme on a
proper transfer function such as the one in
top of Figure 12 yields a discrete-time
model consisting of the following blocks:
adder, forward difference, unit delay and
gains, This output can also be mapped
directly to Lustre operators and flows.

 7C1-11

Figure 12. Continuous Transfer Function to Discrete-Time

VI. As we have demonstrated in the Scilab to C
prototype, the translation of control proofs
and properties requires the handling of the
linear algebra types and operations such as
vector, matrix, matrix product, and matrix
transpose. Although both the constant
block and the product block are in the
subset of Simulink that S2L can translate, it
is unclear whether or not the tool can
translate a matrix constant or a product of
matrices.

VII. The linear algebra types and operations are
not supported natively in Lustre (unlike in
Matlab), therefore we cannot perform a
direct mapping from Simulink. Nor can we
map the Lustre operators directly to the C
functions implemented for the Scilab to C
translator.

VIII. Blocks that are signal sources such as the
step command input will also be translated
since they are part of the stability property
specification.

Lustre to C
Lustre to C represents the final step in the

migration of control semantics from the design level
down to the code level. The main problem now is not
so much generating the C code from Lustre but
translating the annotations expressing control
semantics. SCADE already has a certified autocoder
but we cannot adapt it for our purpose because it is a
closed-source project. Unlike in our Scilab to C
translator, the structure of Lustre does not allow a
direct mapping to a library of C functions. This makes
using the annotative template system described earlier
difficult if not impossible. We have started looking at

 7C1-12

tools such as Gene-Auto[18] which is a open-source
code-generation framework for the translation of
data-flow languages into imperative languages. At the
moment Gene-Auto can handle 50 Simulink blocks
and can output to C.

Conclusions
We have created an early prototype of Scilab to C

autocoder in demonstration of generating C code with
ellipsoidal invariants. This was done as part of the
project to create a tool-set that can translate control
system semantics from the design level to the source
code level for the purpose of assisting formal
verification. We hope that the creation of this
autocoder with proofs will pave the path to a more
rigorous guarantee of quality for safety-critical
embedded control systems. From the prototype Scilab
to C translator, we have further refined the language
layers for the next prototype. An intermediate layer of
Lustre will be added and the source language will be
changed to Simulink with certain control annotation
extensions. Future work includes completing the
second prototype, testing the prototype on real control
systems designs, adapting program analyzers and
theorem provers tools to automate much of the
verification of the annotated output.

References
[1] Aditya Agrawal and Gyula Simon and Gabor
Karsai. Semantic Translation of Simulink/Stateflow
Models to Hybrid Automata Using Graph
Transformations. Electronic Notes in Theoretical
Computer Science, 109:43 - 56, 2004. Proceedings of
the Workshop on Graph Transformation and Visual
Modelling Techniques (GT-VMT 2004).

[2] Gary J. Balas and John C. Doyle and Keith
Glover and Andy Packard and Roy Smith.
�-analysis and Synthesis Toolbox. 1993.

[3] Patrick Baudin and Jean-Christophe Filliâtre and
Claude Marché and Benjamin Monate and Yannick
Moy and Virgile Prevosto. ACSL: ANSI/ISO C
Specification Language. 2008.
http://frama-c.cea.fr/acsl.html.

[4] S. Boyd and L. El Ghaoui and E. Feron and V.
Balakrishnan. Linear Matrix Inequalities in System
and Control Theory, volume 15 of Studies in Applied
Mathematics. SIAM, Philadelphia, PA, 1994.

[5] Caspi, Paul and Curic, Adrian and Maignan,
Aude and Sofronis, Christos and Tripakis, Stavros and
Niebert, Peter. From Simulink to Scade/Lustre to
TTA: a layered approach for distributed embedded
applications. SIGPLAN Not., 38:153--162, 2003.

[6] Feron, E. From Control Systems to Control
Software. Control Systems, IEEE, 30(6):50 -71,
2010.

[7] Heber Herencia-Zapana and Alwyn Goodloe.
Formal Verification of Control Algorithms. Technical
report, National Institute of Aerospace, 2011.

[8] Hoare, C. A. R. An axiomatic basis for computer
programming. Commun. ACM, 12:576--580, 1969.

[9] Ulf Jonsson and Chung-Yao Kao and Alexandre
Megretski and Anders Rantzer. A Guide to IQC-�:
A MATLAB Toolbox for Robust Stability and
Peformance Analysis. 2004.

[10] Meenakshi, B. and Bhatnagar, Abhishek and
Roy, Sudeepa. Tool for Translating Simulink
Models into Input Language of a Model Checker. In
Liu, Zhiming and He, Jifeng, editors, Formal
Methods and Software Engineering in Lecture Notes
in Computer Science, pages 606-620. Springer Berlin
/ Heidelberg, 2006.

[11] Yannick Moy and Claude Marché. Jessie
Plugin Tutorial, Beryllium version. INRIA, 2009.
http://www.frama-c.cea.fr/jessie.html.

[12] Owre, S. and Rushby, J. and Shankar, N. PVS:
A Prototype Verification System. in Kapur, Deepak,
Editors, Automated Deduction in Lecture Notes in
Computer Science, pages 748-752. Springer Berlin /
Heidelberg, 1992.

[13] Ana-Elena Rugina and Dave Thomas and
Xavier Olive and Guillaume Veran. Gene-Auto:
Automatic Software Generation for Real-time
Embedded Systems. 2010.

[14] Timothy Wang and Romain Jobredeaux and E.
Feron. A Graphical Environment to Express the
Semantics of Control Systems. 2011.
arXiv:1108.4048.

[15] V.A. Yakubovich. The S-Procedure in
Nonlinear Control Theory. Vestnik Leningrad
University Math, 4:73-93, 1971.

 7C1-13

Acknowledgement
The authors would like to thank the United States

Army Research Office for the MURI project. The
authors would also like to thank the National Science
Foundation, the Northeastern University, and the
National Aeronautics and Space Administration for
their financial support. The authors would finally like
to thank Alwyn E. Goodloe of NASA Langley for all
the good discussions on a variety of topics.

Appendix I
 Linear Compensator in Scilab with Annotation

of Control Semantics
 1 Ac = [0.4990, -0.0500 ; 0.0100, 1.0000]
 2 Cc = [564.48, 0]
 3 Bc = [1;0];Dc = -1280
 4 xc = zeros(2,1);
 5 y=0
 6 yd=0
 7 receive(y,2)
 8 receive(yd,3)
 9 yc=3
10 P = [1e-3*0.6742, 1e-3*0.0428;1e-3*0.0428,1e-
 *2.4651];
11 while 1
12 //@ y^2 <=1
13 yc = max(min(y-yd,1),-1)
14 //@ y^2 <=1
15 u= Cc*xc + Dc*yc
16 //@ transpose(xc)*inverse(P)*xc<=1
17 xc = Ac*xc + Bc*yc
18 //@ transpose(xc)*inverse(P)*xc<=1
19 send(u,1)
20 receive(yd,2)
21 end;

Scilab to C Translator Output
 1 #include "tools.h"
 2
 3 int main(int argc, char *argv[])
 4 {
 5 double** Ac_0;
 6 double** Bc_0;
 7 double** Cc_0;
 8 double Dc_0;
 9 double** P_0;
10 char false;
11 char true;
12 double u_0;
13 double** xc_0;
14 double** xc_0_temp;
15 double y_0;
16 double yc_0;

17 double yd_0;
18 Ac_0 = allocM (2, 2);
19 Bc_0 = allocM (2, 1);
20 Cc_0 = allocM (1, 2);
21 P_0 = allocM (2, 2);
22 xc_0 = allocM (2, 1);
23 xc_0_temp = allocM (2, 1);
24 Ac_0[0][0]=0.499;
25 Ac_0[1][0]=1.0e-2;
26 Ac_0[0][1]=-5.0e-2;
27 Ac_0[1][1]=1.0;
28 Cc_0[0][0]=564.48;
29 Cc_0[0][1]=0;
30 Bc_0[0][0]=1;
31 Bc_0[1][0]=0;
32 Dc_0=-1280;
33 xc_0 = zeros(2, 1);
34 y_0=0;
35 yd_0=0;
36 receive(y_0, 2) receive(yd_0, 3) yc_0=3;
37 P_0[0][0]=1e-3*0.6742;
38 P_0[1][0]=1e-3*4.28e-2;
39 P_0[0][1]=1e-3*4.28e-2;
40 P_0[1][1]=1e-3*2.4651;
41 while (1)
42
43 {
44
45 /*@ (y_0^2)<=1 */
46 yc_0=max(min(y_0+-yd_0, 1),-1);
47
48 /*@ (y_0^2)<=1 */
49 u_0=Cc_0[0][0]* xc_0[0][0]+Cc_0[0][1]*
 xc_0[1][0]+Dc_0* yc_0;
50
51 /*@ mult(mult(transpose(xc_0), 2, 1,inverse
 (P_0)),1,2,xc_0,2,1)<=1 */
52 xc_0_temp = copy(xc_0,2,1);
53 xc_0 = add(mult
 (Ac_0,2,2,xc_0_temp,2,1,0,1) ,2 ,1,
 mult_scalar(yc_0, Bc_0,2,1,0),
 2,1,1,1);
54
55 /*@ mult(mult(transpose (xc_0),2,1, inverse
 (P_0)), 1, 2, xc_0,2,1)<=1 */
56 send(u_0, 1)receive(yd_0, 2) return 0;
57 }
58 return;
59
60 }

30th Digital Avionics Systems Conference
October 16-20, 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

