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Abstract — Operating vehicles in adversarial environments require 
non-conventional planning techniques. A two-player, zero-sum non-
cooperative game is introduced, and solved via a linear program. 
An extension is proposed to construct networks displaying good 
representations of the environment characteristics, while offering 
acceptable results for the technique used. Sensitivity of the solution to 
the LP solver algorithm is identified. The planner's performances are 
finally assessed by comparison with those of conventional planners. 
Results are used to formulate secondary objectives to the problem. 
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I. I N T R O D U C T I O N 

Most of us travel repeatedly between the same departure 
and arrival places. For usual applications, conventional path 
planning techniques are sufficient to determine how to get 
from one point to another. However in a hostile environment 
such journeys can be threatened by opponent actions such as 
ambushes. These ambushes might have different purposes, for 
instance stealing the content of a transport or attacking security 
officers. But in all cases the assessment is the same: following 
a path repeatedly from one occurrence to the next is not a 
good idea, because it helps adversaries make their attacks most 
efficient. 

The end goal of this project is to develop both strategic 
and dynamic ambush avoidance algorithms, i.e. global route 
decision and real time maneuvers, that would increase human­
itarian convoy safety in hostile environments. In this paper, the 
problem of reducing the risk incurred by a convoy along its 
entire path is approached by using the model developed in [2]. 
Only single-stage single-ambush games are addressed, where 
both players decide of their strategy before the beginning of 
the games. 

Section II relates some previous approach addressing the 
pursuit-evasion game. Section III presents the model that 
supports this research. Section IV extends the model to un­
structured environments in order to make it more practical 
and realistic. In Section V the set of optimal solutions to the 
formulated linear problem is studied, leading to the description 
of secondary objectives. 

II. R E L A T E D W O R K 

While ambush games have been classical examples of game 
theory problems for a long time now, there have been only 
a few attempts to solve this particular kind of game with 
practical applications in mind. The idea of such an application 
of operations research is presented in [1]. Joseph and Feron 
[2], [3] model this problem as a zero-sum non-cooperative 
two players game. Considering a roadmap, their goal is to 
minimize the expected penalty of getting ambushed over the 
probability vector representative of the stochastic behavior 
of a convoy at each intersection on the road, the output of 
this model being the corresponding optimal vector. Salani, 
Duyckaerts and Schwartz [4] adapted the model in [2] for 
convoys that must stop at multiple locations, for instance in 
the case of money distribution vehicles. The works above do 
not assume any information about the opponent position. This 
a relatively good assumption for ground vehicles in hostile 
environment with possible attacks from any direction. Other 
approaches suppose more information about the opponent. 
For example, Karaman and Frazzoli [5] use a hierarchical 
(Stackelberg) game to model the problem, where the convoy 
has information about the initial position of the opponent(s). 
The model is used to construct a dynamic pursuit-evasion 
game where the opponent(s) can change their strategy during 
the game. 

III. A P P R O A C H 

A. Game Description 

The problem of interest is to plan a path for a convoy 
that needs to journey from point A to point B in a given 
environment. It is modeled as a two players non-cooperative 
zero-sum game where Player 1 runs the convoy while Player 2 
tries to ambush it. The environment is described by a network 
(N, E) and a risk map. Ambushes take place at intersection 
(nodes) of the network. Each vertex rii is associated with a 
real value α^ that represents the outcome for Player 2 if he 
sets an ambush on vertex n^ and Player 1 path goes through 
it. The set a is the risk map, as it measures the possible losses 
for Player 1. 

A possible strategy for Player 1 is represented by a proba­
bility vector p that contains the probability pij that the convoy 
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uses edge ê - between nodes rii and rij. Similarly, a strategy 
for Player 2 is represented by a probability vector q that 
contains the probability qj that he sets an ambush at node rij. 
Given the network and the risk map, the goal of the game is to 
find the optimal strategy p* for Player 1, assuming that Player 
2 follows its optimal strategy q*. It is likely to be a mixed 
strategy: Player 1 and Player 2 strategies are not deterministic. 
Instead they are probabilistic and the effective path followed 
by the convoy as well as the location of the ambush may be 
different for a same strategy p or q. 

B. Mathematical Formulation 
Let (N, E) be a network with n edges and m nodes. Let p 

(resp. q) be the probability vector representative of Player l's 
(resp. Player 2's) mixed strategy. 

Assume that the two players strategies are independent. At 
each node rij, the probability that Player 1 gets ambushed 
is equal to the probability that Player l's path goes through 
rij times the probability that Player 2 sets an ambush at this 
node. The gain for Player 2 at this node being on, the expected 
outcome of the game relative to this node is: Σ PijQjaj-

i\(i,j)eE 
Therefore the global outcome of the game is 

V = Σ Σ PiJ<Hai = 1* DP (1) 
jeNi\(i,j)eE 

with Djk = OLj if the kth line of p represents the probability 
that Player 1 uses an edge e -̂ directed towards rij, and Djk = 
0 otherwise. 

As to minimize the risk encountered by the convoy, the 
objective of the approach is to find the strategy for Player 1 
that minimizes the maximal possible outcome for Player 2: 

arg min max q Dp. 
p q 

(2) 

Providing the fact that qj < 1 Vj, Player 2 can always 
maximize V by choosing the node rij for which the probability 
of Player 1 passing through that node weighted by the value 
OLj is maximal. Therefore Player l's optimal solution is to 
minimize this product across all nodes: 

arg mm max 
p \ jeN Σ ptjc (3) 

i\(i,j)eE 

The other constraints of this problem illustrate the flow 
conservation inside the network. The probability of the convoy 
arriving at node rij is equal to the probability of the convoy 
leaving this node. Probabilities of the convoy being at origin 
and destination nodes are equal to 1. 

Σ Pij = Σ Pjk, Vj G N\{n0,nd} 
i\(i,j)eE k\(j,k)eE 

Σ Pn0j= 1 
j\(n0,j)eE 

Σ Pjnd= 1 
I 3\U,nd)eE 

(4) 

Fig. 1. Left - A trivial network example. Right - Optimal strategy (interior-
point solution) for the network displayed on the left. The wider the arrow is, 
the higher the probability that Player use this edge is. 

This problem is solved as a linear optimization problem by 
introducing a variable z constrained as follow. 

z > Σ PijUj 
i | ( i , j )e£ 

Vj eN (5) 

minimize z 
subject to Dp lz 

Ap 
P 

<o 
= b 
> o 

Rewriting Equations (3), (4) and (5) the Linear Problem 
can be written under the following matrix form, with A and b 
representing the flow conservation constraints. 

(6) 

It is important to note that Player 2 does not need to 
have access to the network description. Since Player l's path 
follow the network, the probability that Player 1 goes through 
a point P somewhere else in the environment is null and 
so is the local outcome of the game at point P. Therefore 
Player 2's optimal strategy is non-zero only on the network 
nodes and can be represented by the discrete distribution q = 
[?i <?2 ■■■ qm] ■ 

C. Example 

A example of very simple network (8 nodes, 13 edges) is 
displayed in Figure 1 (Left). Edges are directed so that the 
vehicle can only move in the directions shown by the arrows. 
The cost a of an ambush is assumed to be equal to one for 
each internal node and zero on departure and arrival nodes. 

The result of the optimization technique presented above 
is displayed in Figure 1 (Right). The probability of each 
edge being used is computed as to minimize expected losses. 
This probability is represented as the width of each edge. 
Using a symmetric, alpha-uniform network, an interesting 
result is obtained: the probability of the vehicle passing by 
is well spread across the network and preserve the initial 
symmetry. This property is very interesting regarding the goal 
of this technique, which is to avoid ambushes. It seems to 
indicate that optimal solutions to the problem are also the most 
deceptive ones because most paths are as likely. Note that the 
linear solver used for this optimization was the interior-point 
algorithm. 



Method # 
1 
2 
3 

Sampling 
Random 
Uniform 
Uniform 

Connectivity 
Delaunay triangulation 

8 connected grid 
Delaunay triangulation 

TABLE I 
DIFFERENT NETWORK CONSTRUCTION METHODS. 

IV. NETWORK CONSTRUCTION 

A. Method description 
Though this approach is described in [2], it assumes the 

prior existence of a network to optimize on. Furthermore, 
no description is provided of the sensitivity of the solution 
towards the alpha distribution ("risk map"). An attempt to 
address these issues is presented in this part. 

Assuming the existence of a network limits the number of 
possible routes for the vehicle. Therefore, it decreases the 
advantage of this approach that is to increase variability in 
the convoy's trajectory. Moreover, most ambush situations 
nowadays take place in warfare zones where the vehicles 
concerned are more likely to be off-road or aerial vehicles. 
Hence it is expected that adapting this approach as to create 
a graph representation of the environment would improve its 
efficiency. This representation would have to be adapted to the 
vehicle physical model and environment characteristics. 

Several methods were tried in order to create a network 
that would be as representative of the environment as possi­
ble while allowing reasonably fast computation. Differences 
were made on the sampling method and on the connectivity 
between nodes, as displayed in Table I. Each link between 
two nodes requires two oriented edges (one per direction) for 
its representation. While randomly sampled nodes connected 
through a Delaunay triangulation result in a relatively small 
and computationally efficient representation of the environ­
ment, Method 1 might not be representative enough of the 
details of the environment. The best representation of the 
environment is obtained through Method 2, but it requires 
the creation of 16 directed edges per node (8 neighboring 
nodes, 2 directions per edge). This method is computationally 
intense, therefore it might be preferable to choose a less 
precise technique that would allow good precision on the 
environment description. By intensively reducing the number 
of edges inside the network through simplified connectivity, 
Method 3 appears as a good alternative for this task. 

B. Examples 
Figure 2 shows different optimal solutions obtained on 

the same environment with networks constructed using the 
methods described above. It is important to note that a good 
network leads to results that display features relative to the 
alpha distribution and to the topology of the environment. 
Whereas several very efficient conventional path planning 
algorithm are based on random sampling of the environment, 
Figure 2. a shows that the paths generated by Method 1 are 
rather erratic and do not seem to avoid dangerous area of 
the environment, which lead to the conclusion that random 
sampling is not adapted to this specific type of planning. 

a. Method 1: Random sampling, Delaunay triangulation 
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b. Method 2: Uniform sampling, 8-connected grid 
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c. Method 3: Uniform sampling, Delaunay triangulation 

Fig. 2. Optimization results for different network construction methods. 
Departure point in the lower left corner. Arrival point in the upper right corner. 
The background grayscale represents the casualty forecast alpha if the convoy 
gets ambushed. The gray square in the middle is an obstacle. The left image 
represents the actual probability for every edge of the network, while the right 
image represents the mean direction from every node of the network. 

As expected, the best results are obtained with Method 2 
because it ends up creating a network where all possible paths 
from the departure node to the arrival node are included. 
The optimization being realized over all possible paths, the 
solution obtained is the best given the level of discretization. 
Therefore it can be assumed that any good representation of 
the environment should end up with solutions relatively close 
to solutions obtained in Figure 2.b, ie avoiding the areas where 
alpha is high while being well spread across the map. The 
mean direction figure (right column of Figure 2.b) highlights 
the fact that there are nodes where the probability of going 
to a specific node is so high that it makes the transition 
almost deterministic. This is due to the fact that the algorithm 
leads the convoy to nodes where the hypothetic loss is lower. 
Figure 2.c illustrates the good result obtained with the lower 
connectivity of Method 3. While the probability map might 
seem slightly different from Figure 2.b, the mean direction 
is almost the same, meaning that at each node the transition 
probability will be very close. These examples illustrate the 



good behavior of networks obtained through Method 3 and 
justify the decision to go on with this method for further 
studies. 

As shown in Figures 2.b and 2.c, the method returns good 
results in the sense that many edges all around the environment 
present similar probability, which means that they are as likely 
to be used. Our goal being to build a planner that returns less 
straightforward paths for the opponent to guess, this method 
succeeds in constructing very deceptive "paths". Not only 
can the path generated from throwing the dices over these 
probabilities be almost any path from A to B, it will also 
vary a lot form one day to another as the dices throw will be 
reiterated. 

Note that current integration of three dimensional topo-
logical data leads to the idea that a good alternative to the 
technique employed here would be to construct a network 
with a sampling biased towards to elevation gradient and a 
Delaunay triangulation connectivity. While this is not yet the 
main subject of interest in this research, this technique could 
be implemented in the future as an enhancement of the method 
currently in use. 

V. EVALUATION 

A. Sensitivity to the LP solver 

It has been shown in the analysis of the solution displayed in 
Figure 1 that a very interesting feature of the method presented 
in this paper is the high deceptiveness of the optimal solution 
returned by the planner. This is due to the fact that most edges 
have a non-zero probability of being used, meaning that almost 
all possible paths from A to B have a non-zero probability 
of being used. However, it was noted that these results were 
obtained using the Interior-Point algorithm to solve the linear 
optimization problem. 

In order to examine the sensitivity of the planner to other 
linear optimization algorithm, a similar method is applied to 
the example in Figure 1 using the Simplex algorithm. The 
result is displayed in Figure 3. Instead of spreading across 
the entire network, thus allowing 7 different paths from A to 
B, the optimal solution here returned only use 70% of the 
network, allowing only 3 different paths from A to B that are 
completely determined by the first dice throw. This feature 
is also present when applying the simplex algorithm to the 
networks of Figure 2. As shown in Figure 4, the portion of 
network used by the optimal solution is much smaller than 
in the previous case. While the possible paths from A to B 
seem much more erratic, the ambush avoidance behavior of 
the solution is still observable in the mean direction figures. 
At each node, among all possible following nodes the convoy 
is most likely to go towards the ones where the possible loss, 
in case of an ambush, is the lowest. 

This difference in results between the planner using the 
Interior-Point algorithm and the one using the Simplex algo­
rithm ([6]) is explained by the fact that the Interior-Point al­
gorithm is known to lead to solutions maximizing the entropy 
among the set of optimal solutions. This fact is illustrated in 

Fig. 3. Optimal strategy (simplex solution) for the network displayed in 
Figure 1. 

Network 
1 s t example 
Method 1 
Method 2 
Method 3 

Interior-Point 
4.10 

934.58 
331.54 
404.21 

Simplex 
3.30 

117.05 
244.54 
239.96 

TABLE II 
ENTROPY FOR DIFFERENT NETWORKS 

Table II: the Simplex algorithm always returns lower entropy 
solutions. 

These results lead to two conclusions. The first one is that, 
given the difference between the solutions obtained through 
the different LP solver, the set of solutions is reasonably 
wide. Therefore it is possible to add constraints or secondary 
objectives to the problem, such as entropy maximization. The 
second conclusion is that entropy is indeed a very good criteria 
to evaluate the deceptiveness of the solutions: the more spread 
the solution is across the network and the higher the entropy 
is. 

In previous research of Joseph and Feron, the sensitivity 
of the method to the LP solver used had not been identified, 
furthermore no evaluation of the solutions quality was realized. 
Here the entropy of the probability distribution p was identified 
as a possible measure for this quality, which justifies the choice 
of the Interior-Point algorithm as the LP solver of the planner. 

B. Performances 
The performances of this technique are evaluated by com­

paring it to more conventional deterministic planners. The first 
planner returns the shortest path from A to B on the network. 
The second planner returns the trivial safer path from A to B 
on the network, i.e. the one that goes through the nodes with 
low alpha. 

The different properties being evaluated over these planners 
are: 

• Expected energy cost / length E. 
• Probability of ambush for 1 iteration of the game (com­

pute q for each node once solution has been found). 
• Probability of ambush for the nth iteration of the game, n 

large, when Player has had time to learn the deterministic. 
strategies. 

• Expected game outcome V^ for the nth iteration of the 
game, n large. 

In order to compute the outcome of the game, it is assumed 
that Player 2 knows Player l's strategy but cannot guess the 



a. Method 1: Random sampling, Delaunay triangulation 

c. Method 3: Uniform sampling, Delaunay triangulation 

Fig. 4. Optimization results for different network construction methods (sim­
plex algorithm). The background grayscale represents the casualty forecast 
alpha if the convoy gets ambushed. The gray square in the middle is an 
obstacle. The left image represents the actual probability for every edge of 
the network, while the right image represents the mean direction from every 
node of the network. 

results of the dice throw for each game. This is justified by the 
fact that for the technique presented here, Player l's strategy 
consists in choosing the optimal strategy assuming that Player 
2 does the same. Therefore Player 2 is able to guess this 
strategy. However he is not able to guess the exact path the 
convoy follows for a specific iteration of the game because 
the strategy is not deterministic. This makes the convoy safe 
even if the global strategy is common knowledge. The two 
other planners being deterministic, it is assumed that Player 2 
can determine the complete path after a few iterations of the 
game, meaning that he will set the ambush as to maximize V. 
For the first iteration Player 2 assumes that Player l's strategy 
is the one described in Section II but after a large number of 
iterations he knows the path taken by the convoy and place 
his ambush in consequence. 

Given the strategy p for Player I, q is computed as the 
argument that maximizes the outcome V of the game as 

Planner 
Stochastic - Method 3 

Energy efficient 
Risk avoidance 

^ l ^ΎΠΧΎΙ 

1.34 
1.07 
1.37 

Pi 
1/3 
1/3 
1/3 

■"CO 

1/3 
1 
1 

Voo 
4.37 
5.99 
6.43 

TABLE III 
COMPARISON TO TRADITIONAL DETERMINISTIC PLANNERS. 

defined in Equation (1). 

q* = argniaxp*Dtq. (7) 
q 

For a given iteration of the game, the probability of being 
ambushed is computed as the joint probability of the convoy 
going through a node while Player 2 is at this node. 

* ambushed / J / J PijQj v"/ 
jeNi\(i,j)eE 

Results presented in Table III show the performances of 
the different planners regarding chosen criteria. The technique 
described in II appears to be energetically inefficient. The 
expected length of a path issued by this planner is three 
times the minimal length from A to B. The risk avoidance 
planner offers decent energy efficiency, being only 30% less 
efficient than the cost efficient planner. However this feature is 
completely dependent on the nature of the environment: if the 
path of low risk nodes was to wind across the environment, 
this planner could end up being very inefficient. But the 
most interesting criteria to compare these planners regard the 
ambush probability and resulting casualties (outcome of the 
game). A great feature of the stochastic planner is that even 
if the opponent ends up choosing the best strategy possible, 
he is not able to ambush the convoy with a probability of 1. 
In fact, the probability of being ambushed at a given iteration 
cannot exceed the probability of being ambushed when Player 
2 chooses its optimal strategy. As the paths returned by the 
planner are random there is no possibility for the opponent 
to learn more than the probability distribution of Player l's 
optimal strategy. On the other hand, when facing deterministic 
planners Player 2 can quickly learn the path used by the 
convoy and place its ambush on this path. Therefore the 
probability of the convoy being ambushed converges to 1 with 
the number of iterations of the game, meaning that it ends up 
being ambushed every time it goes from A to B. Moreover, 
the expected loss to Player 1 when his convoy is ambushed is 
much more important with the deterministic planners. 

While the energy efficiency of the method is not satisfying, 
it is possible to modify the optimization in order to make 
it much more efficient. For example by minimizing 0.99z + 
0.01 Σ Σ Pijhj instead of minimizing z, the expected 

jeNi\{i,j)eE 
length of the path decreases from 89.57 to 33.14, close to the 
optimal value. This improvement occurs at the expense of the 
safety constraints, as shown in Figure 5 (Left). Probabilities 
have increased for edges in the SE area where alpha is high 
because shorter path goes through this area. 

Another improvement possibility is to forbid areas of the 
environment where the cost of being ambushed would be to 
high. By discarding nodes rii for which α̂  > athreshoid, a 



Fig. 5. Secondary objective improvement. Left - Energy efficiency. Right -
Safety (little white squares represent the optimal strategy for Player 2). 

reduced network is obtained. While this might be an interesting 
improvement to the technique, a major drawback is that, if 
the threshold is chosen too low, all paths merge into a few 
bottlenecks, as shown in Figure 5 (Right). The danger of these 
bottlenecks is that they ease the opponent task, which is to 
choose nodes where the convoy is more likely to go through. 
Because of this difficulty to choose a good value for alpha, it 
might not be recommended to use this feature. 

Using deterministic planners becomes increasingly danger­
ous with the number of repetition of the game. If ambushed, 
losses are much more important with this kind of planners. 
Overall these evaluations show that the method described in 
this paper in more adapted to solve ambush games. Some en­
hancement can be included through the definition of secondary 
objectives. 

VI. FUTURE WORK 

For the purpose of this paper the risk assessment map, 
i.e. assigning value for alpha at each node, was constructed 
arbitrarily. In order to get this technique one step closer to a 
practical application, research is being pursued on strategic 
field analysis for realistic risk assessment. The first step, 
currently in development, is to be able to analyse real 3D GPS 
data and understand how the topological configuration of the 
environment will influence the amount of damages inflicted 
to the convoy if ambushed. Once able to efficiently forecast 
the casualties from their correlation with the environment, this 
method will represent a good high-level planner for vehicles 
moving in hostile environments. The second step is to develop 
a lower level planner based on real-time risk assessment that 
might come from video flow analysis and threat detection. 
This threat could then be by-passed using high speed ma­
noeuvres control algorithm currently investigated at Georgia 
Tech and MIT under the MURI "Neuro-Inspired Event-Driven 
Perception and Control of Autonomous Vehicles for Aggressive 
Driving". 

Among other subjects in need for further investigation is the 
importance of the degree of information Player 1 and Player 2 
share. It was assumed in Section IV that Player 2 had perfect 
knowledge of the strategy of Player 1 for this method, or that 
he could guess it for the two deterministic planners. This idea 
of "revealing" and "non-revealing" strategies is currently under 

investigation by Jones & Shamma (Georgia Tech) and would 
represent a good addition to the game theoretic aspect of this 
method. 

Finally, more attention will be brought to the specificities 
of the environment discretization. The node-ambush relation, 
for example, need to be developed. Currently, if Player 2 is at 
node (1,1) and Player 1 goes through node (1,2) then Player 
1 cannot be ambushed. But in an unstructured environment it 
might be possible that Player 2 intercepts Player 1 if the nodes 
are close enough. Keeping in mind practical applications, this 
type of situations has to be studied more deeply. 

VII. CONCLUSION 

A method for probabilistic path planning using game theory 
and Linear Programming was presented. Several methods of 
discretization of the environment are presented and compared. 
While both Method 2 and Method 3 (cf. Section III.A) result 
in a good representation of the environment, the later one is 
chosen for its computational power efficiency. 

Though this method had been studied before, an important 
feature was presented, which is the sensitivity of the type of 
solution returned by the method to the LP solver used. The 
entropy of the resulting probability distribution is explained 
to be a good indicator of the quality of the solution for the 
purpose of ambush games and deception. The Interior Point 
algorithm is preferred over the Simplex algorithm because of 
the higher entropy of its solutions. 

The energy efficiency of this method being relatively low, a 
secondary objective is proposed for the linear optimization that 
allows some trade-off between safety and energy efficiency. In 
the end, this method is shown to offer more safety than tradi­
tional deterministic planners, especially for repetitive journeys. 
This feature is the most important, as it is meant to increase 
the security of convoys having such a dangerous routine. 
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