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Abstract— We discuss an implementation of the RRT∗ op-
timal motion planning algorithm for the half-car dynamical
model to enable autonomous high-speed driving. To develop
fast solutions of the associated local steering problem, we
observe that the motion of a special point (namely, the front
center of oscillation) can be modeled as a double integrator
augmented with fictitious inputs. We first map the constraints
on tire friction forces to constraints on these augmented inputs,
which provides instantaneous, state-dependent bounds on the
curvature of geometric paths feasibly traversable by the front
center of oscillation. Next, we map the vehicle’s actual inputs to
the augmented inputs. The local steering problem for the half-
car dynamical model can then be transformed to a simpler
steering problem for the front center of oscillation, which
we solve efficiently by first constructing a curvature-bounded
geometric path and then imposing a suitable speed profile on
this geometric path. Finally, we demonstrate the efficacy of the
proposed motion planner via numerical simulation results.

I. INTRODUCTION

Motion planning for autonomous mobile vehicles [1] has
traditionally focused on relatively simple unicycle-type kine-
matic models, owing both to the sufficiency of the resultant
plans for low-speed vehicle motion, and to the computational
efficiency afforded by these models. However, the resultant
trajectories do not exploit the vehicle’s maneuvering capa-
bilities, and motion planning based on such vehicle models
is unsuitable for enabling autonomous high-speed motion of
car-like vehicles in complex and dynamic environments.

Motion planning for higher-dimensional, higher-fidelity
vehicle dynamical models is, in general, difficult. Whereas
computationally efficient motion planning in high-
dimensional state spaces is made possible via randomized
sampling-based algorithms [2], [3], these algorithms ignore
the quality of the resultant motion, and often result in
highly sub-optimal motion plans. Recent developments in
optimal randomized sampling-based planning [4], and in
deterministic approaches that include vehicle dynamical
constraints [5] promise fast computation of near-optimal
paths with higher-fidelity vehicle dynamical models. Both of
these approaches, however, rely on the availability of a local
steering algorithm – a two-point boundary value (TPBV)
problem solver – that computes a near-optimal control input
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to steer the vehicle between specified initial and final states,
neither of which is necessarily an equilibrium state.

The main contributions of this paper are a fast local steer-
ing algorithm specific to the half-car dynamical model [6],
which captures yaw dynamics and normal load transfer of
wheeled vehicles, and the implementation of the RRT∗ mo-
tion planning algorithm using this local steering algorithm.

A. Motivation and Related Work

Whereas the solution of the local steering problem is
difficult in general, in some specific cases it is possible to
exploit the structure of the dynamical system to develop a fast
solution algorithm suitable for real-time implementations. In
particular, the property of differential flatness [7] may be
advantageously used. The states and inputs of differentially
flat dynamical systems can be fully recovered from the so-
called flat outputs of the system (and their derivatives).

In the context of motion planning, differential flatness of
the vehicle dynamical model is particularly useful when the
flat outputs are workspace1 coordinates of a point associated
with the vehicle. In such cases, the vehicle dynamical be-
havior may be inferred from workspace trajectories of this
point. Conversely, the problem of motion planning subject
to vehicle dynamical constraints may be transformed to a
workspace trajectory generation problem, which is beneficial
owing to the low dimensionality of the workspace and to the
ease of collision checking with (workspace) obstacles.

For a half-car model of front-steered vehicles that incor-
porates wheel slip, special points associated with the model,
called the front and rear Huygens centers of oscillation (CO)
are associated with differential flatness. A crucial physical
property of a CO is that its acceleration is independent of
one of the lateral tire friction forces [8]. The coordinates in
a body-fixed frame of the velocity of the rear CO have been
identified as flat outputs of a half-car model that incorporates
wheel slip but does not consider normal load transfer [9].

More pertinent to motion planning, the coordinates in an
inertial frame of the position of the front CO have been identi-
fied as “pseudo-flat” outputs for the half-car model [10]. The
mapping from these outputs and their derivatives to the states
and inputs of the vehicle involve not only algebraic equa-
tions, but also differential equations. The position coordinates
of front and/or rear CO have been considered as reference
inputs for trajectory tracking controllers in [11] (rear CO),
in [12] (both front and rear CO with four-wheel steering), and

1The workspace is the planar region in which the mobile vehicle operates.



in [13] (front CO). The notion of “pseudo-flatness” is closely
related to the notion of near-identity diffeomorphisms [14],
wherein stabilization and tracking of non-holonomic systems
are discussed. The crucial difference between the proposed
work and [14] is that we address the more involved TPBV
problem of optimal trajectory generation. In this context, nu-
merical optimal control techniques have been applied in [15]
for reproducing a Trail-Braking maneuver, and in [16] for
generating a minimum-time double lane-change maneuver.
The generation of a minimum-time speed profile for a half-
car traversing a given geometric path has been addressed
in [17]. Preliminary results on the implementation of the
RRT∗ algorithm for the half-car model have appeared in [18],
where the local steering problem was solved numerically in
a lower dimensional state space of the vehicle.

B. Contributions

The main contributions of this work are as follows. Firstly,
we provide a fast local steering algorithm for the half-
car dynamical model, which may be applied independently
in conjunction with motion planners different from that
considered in this paper (RRT∗). The key idea that enables
this fast local steering is its separation into a geometric path
planning step and an optimal time parametrization step, while
always maintaining guarantees of feasibility vis-a-vis the
dynamical constraints and input constraints of the half-car
model. This separation provides a significant advantage in
the implementation of RRT∗: rough collision checking can
be performed after the geometric path planning step, and
the computationally intensive optimal time-parametrization
step can be skipped for cases where collisions are detected.
The proposed local steering algorithm and the resulting
RRT∗-based motion planner constitute vast improvements
in computation time over the implementation of [18], and
enables the solutions of problems that were found to be
impractically slow to solve using the approach of [18].

Secondly, we drop the simplifications to the half-car model
adopted in [9], [10]: specifically, we allow normal load
transfer between the front and rear tires – a phenomenon
commonly utilized by rally racing drivers to control the yaw
dynamics [15] – and we consider as inputs the longitudinal
tire slips instead of the longitudinal tire forces. Manipulating
the longitudinal tire slips (with thrust/brakes) is more realistic
than manipulating longitudinal forces because these forces
depend on the total tire slips, not the longitudinal slips alone.

Thirdly, we map the constraints on tire friction forces
to equivalent constraints on the flat output trajectory. This
mapping is itself a novelty in the context of differential
flatness-based trajectory generation and control algorithms
for the half-car, because friction force constraints are ignored
in similar earlier works [9], [10].

Finally, we study an implementation of RRT∗ with the
proposed local steering algorithm, which is a fundamental
way to develop an autonomous high-speed driving system
that fully utilizes the vehicle’s maneuvering capabilities.

The rest of this paper is organized as follows. In Section II,
we describe the half-car dynamics model and discuss its

differential flatness properties. In Section III, we discuss
an efficient local steering algorithm for the half-car model.
In Section IV, we provide simulation results of the said
implementation of RRT∗. Finally, we conclude the paper in
Section V with remarks about future extensions of this work.

II. THE HALF-CAR MODEL

The half-car dynamical model is used in applications
where the vehicle’s position, heading, and sideslip are of pri-
mary interest (cf. [6], [9], [10], [15] and references therein).
We consider a half-car model, as shown in Fig. 1, with mass
m, and yaw moment of inertia Iz . We denote by pcg the
position vector of the center of gravity (CG) with respect to
a pre-specified inertial axis system; by ψ the heading of the
vehicle, and by vx and vy the components in a body-fixed
axis system of the velocity v of the CG. We denote by `f
and `r, respectively, the distances of the centers to the front
and rear wheel from the center of gravity; by h the height of
the CG; and by Fαβ , α ∈ {f, r}, β ∈ {x, y}, the components
in axes attached to the tires (with the x-axis in the plane of
the tire) of frictional forces of the front and rear tires. The
equations of motion of the half-car model are:

mv̇x = (Ffx cos δ − Ffy sin δ + Frx) +mvyψ̇, (1)

mv̇y = (Ffx sin δ + Ffy cos δ + Fry)−mvxψ̇, (2)

Izψ̈ = `f (Ffx sin δ + Ffy cos δ)− `rFry, (3)

where δ is the steering angle of the front wheel, which we
consider a control input. In what follows, we denote by ξ
the state of the vehicle, i.e., ξ = (pcg,x, pcg,y, ψ, vx, vy, ψ̇).
The lateral slips sfy and sry of the front and rear tires are:

sfy =
(vy + `f ψ̇) cos δ − vx sin δ
vx cos δ + (vy + `f ψ̇) sin δ

, sry =
vy − `rψ̇

vx
, (4)

We consider as control inputs the longitudinal tire slips
sfx and srx. The total tire slips are then given by sα =√
s2αx + s2αy , α ∈ {f, r}, and the tire friction forces Fαβ are:

Fαβ = µαβFαz, α ∈ {f, r}, β ∈ {x, y}, (5)

where Fαz are the normal tire loads given by (cf. [15]):

Ffz =
mg (`r − µrxh)

`f + `r + h (µfx cos δ − µfy sin δ − µrx)
, (6)

Frz = mg − Ffz, (7)

and µαβ are coefficients given by Pacejka’s formula [19]:

µαβ := −(sαβ/sα)µα (8)
with µα = Dα sin

(
Cα tan

−1 (Bαsα)
)
, (9)

for α ∈ {f, r}, β ∈ {x, y}, where Bα, Cα, and Dα are
constants. Note that (6)-(7) capture the load transfer effect,
i.e., the normal tire loads depend upon the front and rear
longitudinal tire slips, which relate to thrust/brake inputs.

Following the work of Peters et al [10], we consider as
a candidate flat output the position pco of the front CO [8],
which is a point defined by

pco =

[
pco,x
pco,y

]
:= pcg +R(ψ)

[
`co
0

]
, (10)
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Fig. 1. The half-car dynamical model: position vectors are in blue, velocity
vectors are in green, and forces are in red color.

where `co := Iz/m`r and R(ψ) is the rotation matrix. It may
be shown (cf. [10]) that

p̈co = R(ψ)

[
v̇x − vyψ̇ − `coψ̇2

v̇y + vxψ̇ + `coψ̈

]
. (11)

We designate as an augmented input u := p̈co the inertial
acceleration p̈co of the CO, and we denote by (ut, un) the
body-axis coordinates of the augmented input. To map the
augmented input to the vehicle control inputs (sfx, srx, δ),
note that, by (1)-(3) and (11),[
ut
un

]
=

1

m

[
Ffx cos δ − Ffy sin δ + Frx −m`coψ̇2

(`f + `r) (Ffx sin δ + Ffy cos δ) /`r

]
. (12)

Firstly, observe that (12) is an under-determined system
of equations, which implies that the three vehicle control
inputs (sfx, srx, δ) cannot be determined uniquely from the
trajectory t 7→ pco(t) of CO. (Note that the forces Fαβ , α ∈
{f, r}, β ∈ {x, y} depend on sfx, srx via (4)-(9).) However,
we may treat one of the three inputs as an “exogenous” input,
and subsequently determine the other two inputs.

Secondly, observe that the computation of ψ and ψ̇
involves the solution of the ODE (3). Consequently, the
mapping from pco and its derivatives to the vehicle control
inputs is a system of coupled algebraic-differential equations,
and pco may thus be considered a “pseudo-flat” output. In
what follows, we outline an analytic solution, if one exists,
of (12), without recourse to numerical means of solution.

To this end, we first non-dimensionalize the physical quan-
tities involved by dividing all lengths by `f+`r, all velocities
by
√
g(`f + `r), all angular velocities by

√
g/(`f + `r), all

accelerations by g, and all forces by mg. In a minor abuse of
notation, all symbols in the remainder of the paper represent
non-dimensionalized quantities. For analytical simplicity, we
assume as an exogenous input the rear tire longitudinal
slip srx, which may be manipulated independently of pco(t).
To compute the other two control inputs – the steering angle
δ and the front tire longitudinal slip sfx – after selecting srx,
we perform the following computations.

Equations (5)–(8) may be manipulated to show that

Ffz = −h
(
ut − (`r/h) + `coψ̇

2
)
/(`f + `r), (13)

and that R(δ)
[
sfx
sfy

]
µf

sf
= −

[
σ1(ξ, srx)
σ2(ξ)

]
, (14)

where (ξ, srx) 7→ σ1(ξ, srx) and ξ 7→ σ2(ξ) are maps whose
detailed expressions are provided in the Appendix. We may
compute the friction coefficient µf of the front tire by (14) as

µf =
√
σ2
1(ξ, srx) + σ2

2(ξ), (15)

and the total slip sf of the front tire may then be computed
from (9). After further algebraic manipulations, we arrive at
the following equation in δ:

− vxsfσ2(ξ) cos2 δ + (vy + `f ψ̇)sfσ1(ξ, srx) sin
2 δ

+ (vxσ1(ξ, srx)− (vy + `f ψ̇)σ2(ξ))sf sin δ cos δ

− (vy + `f ψ̇)µf cos δ + vxµf sin δ = 0. (16)

Following an appropriate transformation of variables, (16)
may be transformed to a quartic polynomial equation, which
may be solved analytically for δ. Finally, the longitudinal
slip sfx of the front tire may be computed using (4).

Fact 1: There exists at least one real root to (16) when-
ever ut and un satisfy (18).

Proof: Omitted for the sake of brevity.
Informally, Fact 1 states that whenever the commanded
acceleration of the front CO satisfies the constraints (to be
discussed in Section III) imposed by the ground-tire friction
force characteristics, there exists at least one solution to
the system of nonlinear equations in (12). We reiterate that
all computations involved in computing the vehicle control
inputs (sfx, srx, δ) from the acceleration u of the CO (i.e.,
the second derivatives of the flat output) are simple, and
that none of these computations involve any computationally
expensive numerical optimization or root-finding.

III. LOCAL STEERING FOR THE HALF-CAR MODEL

Informally, the problem of optimal motion planning in-
volves the determination of admissible control inputs for a
nonlinear dynamical system such that (a) the state of the
system is transferred from a pre-specified initial state ξ0 to
a pre-specified final state ξf , (b) the resultant state trajectory
does not intersect with a pre-specified subset of the state
space, called the obstacle space, and (c) a pre-specified
integral cost is minimized along the resultant state trajectory.

The RRT∗ algorithm solves the optimal motion planning
problem (see [4] for details) by constructing a tree of state
trajectories of the system. Each vertex of this tree is associ-
ated with a state of the nonlinear dynamical system, and each
edge is associated with an admissible control input. Initially
the aforesaid tree contains only one vertex associated with
the initial state ξ0. At each subsequent iteration, the RRT∗

algorithm samples a new state, extends the tree towards this
state, and attempts to reassign the parent of each nearby
vertex. The edge construction between vertices is achieved
by a local steering algorithm (which we denote by STEER).

We note the following key issues [4]: (a) the number
of times that RRT∗ invokes STEER is O(n log n); and (b)
the state trajectory that corresponds to the control input
found by STEER is subject to a further collision check to
be included in the collision-free tree. It follows that a fast
STEER is crucial to the speed of the overall motion planner;



furthermore, the computation time expended for instances
of STEER that fail the subsequent collision check may be
counted as “wasted” time, because these execution instances
do not further advance the motion planner.

To design a fast STEER, we leverage the “pseudo-flat”
nature of the system to transform the steering problem for the
half-car model to a steering problem for the simpler particle
model p̈co = u that describes the motion of the CO. To
this end, we map the constraints on the tire friction forces
to equivalent constraints on the augmented input u. These
constraints on u impose bounds on the lateral acceleration
of the CO, which in turn correspond to speed-dependent
curvature bounds on paths that the CO can feasibly traverse.
Next, we approximate a time-optimal trajectory for the CO by
first constructing a curvature-bounded geometric path and
then by imposing a minimum-time speed profile on this
path. Finally, we determine the acceleration u of the CO for
tracking this trajectory, and we map u to the vehicle inputs
using the computational procedure outlined in Section II.

As we will discuss in Section IV, the proposed approach
for STEER is faster than a numerical optimal control-based
approach. Furthermore, it also enables significant savings of
the aforementioned “wasted” computation time by allowing
collision checks to be performed after the (fast) geometric
path planning step and before the (relatively slow) optimal
time parametrization step.

A. Constraints on Pseudo-Flat Output Trajectories
The magnitude Fα, α ∈ {f, r}, of the total friction force

at each tire depends on the friction coefficient and the
normal load on that tire: Fα = µαFαz . It follows that
Fα =

√
F 2
αx + F 2

αy 6 µ∗αFαz, where µ∗α is the maximum
value of the tire friction coefficient. In what follows, we show
that the acceleration u of the CO is constrained to lie within
an ellipse, the dimensions of which depend on the vehicle
state (in particular, the sideslip βcg := tan−1 (vy/vx), and
the yaw rate ψ̇), the maximum value µ∗f of the front tire
friction coefficient, and the rear tire longitudinal slip srx,
which was chosen in Section II as an “exogenous” input.

To this end, let k1 := −h/(`f + `r), k2 := (`f + `r)/`r,
and define the map σ3(ξ) := k1(`coψ̇

2 − `r/h). Note
that, by (13), Ffz = k1ut + σ3(ξ). Following algebraic
manipulations of (5), (8), and (12), we may then arrive at(

ut + σ4(ξ, srx, µf)

σ5(ξ, srx, µf)

)2

+

(
un

σ6(ξ, srx, µf)

)2

= 1, (17)

where σ4, σ5, and σ6 are maps whose detailed expressions
are provided in the Appendix. Note that the values of these
maps define the location of the center and the dimensions
of an ellipse in the ut − un plane. The constraints on the
individual tire friction forces may now be mapped to the
following elliptical constraint2 on the acceleration of the CO:(

ut + σ4(ξ, srx, µ
∗
f )

σ5(ξ, srx, µ∗f )

)2

+

(
un

σ6(ξ, srx, µ∗f )

)2

6 1. (18)

2It is straightforward to show that for any µf1 , µf2 with µf1 6 µf2 , the
ellipse defined by (17) with µf = µf1 is completely contained within the
ellipse defined by (17) with µf = µf2 .
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Fig. 2. Calculation of acceleration constraints on the CO from (18).

Let βco denote the sideslip of the CO, i.e., the angle
between ṗco and the body x-axis. It can be shown that
βco = tan−1

(
(vy + `coψ̇)/vx

)
. Then, the intersections of

the line of inclination βco passing through the origin of the
ut − un plane with the boundary of the elliptical region
described by (18) provide the upper and lower bounds on
the pure tangential acceleration of the CO. Similarly, the
intersections of the line of inclination βco+π

2 passing through
the origin of the ut − un plane with the boundary of the
elliptical region described by (18) provide bounds on the
pure lateral acceleration of the CO (see Fig. 2).

Geometric paths traversed by a particle with bounded
lateral acceleration have bounded curvature. Specifically, the
curvature bounds for left and right turns, respectively, are
v2/umax

⊥ and v2/|umin
⊥ |, assuming umax

⊥ > 0 and umin
⊥ < 0.

The construction of the shortest curvature-bounded path with
asymmetric (about the origin) bounds on the curvature is
straightforward: it has been shown in [20] that the shortest
path is contained within the Dubins family of paths. The Du-
bins family of paths consists of continuously differentiable
paths that are obtained by concatenating at most three sub-
paths, each of which is either a straight line segment or a
circular arc of radius of equal to the minimum radius of turn.

Similarly, the minimum-time speed profile on a prescribed
curve for a particle with an elliptical acceleration constraint
has been discussed in, for instance, [21]. Briefly, the ap-
proach in [21] involves determining switching points along
the prescribed curve, such that, between two consecutive
switches, the particle either travels with maximum possible
tangential acceleration, or travels with maximum possible
tangential deceleration, or travels at the critical speed. This
critical speed is defined, pointwise along the prescribed
curve, as the speed at which the centripetal acceleration
required for the particle to change its direction of travel at
the rate prescribed by the instantaneous curvature equals the
maximum lateral acceleration of the particle.

IV. SIMULATION RESULTS AND DISCUSSION

The proposed motion planner is fast, and its speed of
execution makes it suitable for real-time implementations.
To corroborate this claim, we present sample numerical
simulation results for the proposed motion planner, including
simulations with hard upper bounds on the execution time.

A preliminary implementation of RRT∗ for the half-car
dynamical model was discussed in [18], where numerical
methods were used in a reduced dimensional state space
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Fig. 3. Trajectories obtained within a specified computation time when
RRT∗ uses two different implementations of STEER for the half-car model.
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Fig. 4. Execution speed and resultant trajectory costs of the RRT∗ motion
planner with the proposed STEER (blue) compared to that in [18] (red).

to implement STEER. Fig. 3 illustrates a sample simulation
result comparing the coverage of the state space achieved
by the RRT∗ algorithm implemented using the local steering
method of [18] against that using the proposed method. Both
of these algorithms were executed for a fixed period of time.
As expected, the proposed implementation of RRT∗ achieved
significantly better coverage than that discussed in [18].

The data in Fig. 4 was obtained over 20 trials for the
problem of planning the 180-degree turn in Fig. 3. In
particular, Fig. 4(a) shows that, within an execution time of
1s, no feasible trajectory was found in any of the trials of the
implementation of [18], whereas feasible trajectories were
found in all but two trials of the proposed implementation.
In these simulations, the ratio of the average time required
to find a first feasible solution with the implementation
of [18] to that with the proposed implementation was 21.23.
However, the ratio of the maximum time required to find a
first feasible solution with the implementation of [18] to the
minimum time required with the proposed implementation
was 226.3. Fig. 4(b) shows the statistics for the costs of
best trajectories achieved by the two implementations within
specified execution times.

As discussed in Section II, we chose the rear tire lon-
gitudinal slip srx as an “exogenous” input, and we set
it to a constant value srx,0. Consequently, the proposed
implementation of RRT∗ converges asymptotically to an
optimal control input within the class of admissible control
inputs with srx = srx,0. In comparison, the implementation
of RRT∗ in [18] converges asymptotically to a globally
optimal control input (at the cost of slower execution).

The speed of execution of the proposed motion planner
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Fig. 5. Motion planning with the half-car model over a closed circuit.

enabled the solution of problems that were found to be
impractically slow with the approach in [18]. For example,
Fig. 5 illustrates the application of the proposed approach
to motion planning on a closed circuit, similar to a race
track. Fig. 5(a) illustrates the geometric path corresponding
to a sample resultant trajectory, along with the vehicle’s
orientation (to indicate sideslip). Fig. 5(b) shows the speed
profile over the sample resultant trajectory, and Fig. 5(c)
shows the decreases in resultant trajectory cost with the
progress of the algorithm, for three different trials.

As previously mentioned, the proposed STEER allows for
a primary collision check (for the position of the front CO) to
be performed immediately after the geometric path planning
step. A secondary collision check (considering the finite size
of the half-car and the heading angle) can be performed after
the time-parametrization step. The computational advantage
of this two-step collision check is that a large number poten-
tial collisions can be detected before the relatively slow time-
parametrization computations. For the particular case of 180-
degree turn illustrated in Fig. 3 over 20 trials, 98.76±0.05%
of the detected collisions were found immediately after the
geometric path planning step. For the closed circuit case
in Fig. 5, the ratio is higher as 99.02 ± 0.08% due to the
challenging geometry of the obstacle-free space.

To anticipate future real-time implementations with hard
bounds on the execution time, we implemented the solu-
tion of the closed circuit motion planning problem using
a receding-horizon approach. In this approach, the motion
planner first computes, within a pre-specified computation
time tcomp, a trajectory over a pre-specified horizon of length
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Fig. 6. Total trajectory costs using a receding-horizon approach to motion
planning over the closed circuit shown in Fig. 5(a).

along the circuit. Next, the vehicle’s motion is simulated for
a pre-specified execution time and the process is repeated.
Figure 6 shows the total trajectory cost obtained by the
aforesaid receding-horizon planner, over a range of values of
tcomp. The total trajectory costs thus obtained are comparable
to the trajectory costs shown in Fig. 5. A similar planner
using the implementation of [18] was unable to find feasible
trajectories for any of these values of tcomp. The value tcomp

implies tcomp seconds of computation on a Intelr CoreTM2
Extreme Q9300, 2.53GHz processor with 4GB RAM.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed a fast motion planner that
incorporates the half-car dynamical model for wheeled vehi-
cles. The proposed motion planner is based on the RRT∗ op-
timal motion planning algorithm, and the key to an efficient
implementation of RRT∗ for the half-car model is a fast local
steering algorithm that we introduced here. The constituent
algorithms involved in the proposed local steering method—
namely, the computation of a curvature-bounded geometric
path, the imposition of a minimum-time speed profile, and
the mapping of u to (sfx, srx, δ)—are all fast. Crucially, the
proposed method for local steering, by construction, results
in trajectories that are dynamically feasible and satisfy input
constraints. Finally, the proposed approach enables motion
planning in the space of the coordinates of pco and ṗco,
instead of the full state space. Future work includes selection
of the “exogenous” control input to better approximate the
globally optimal control input.
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APPENDIX

The expressions for the maps σ1, . . . , σ6 in Sections II
and III-A are as follows:

σ1(ξ, srx) :=
1

h

(
`r − hµrx

Ffz
− (`f + `r)

)
+ µrx,

σ2(ξ) := `run/(`f + `r)/Ffz,

σ3(ξ) := k1(`coψ̇
2 − `r/h),

σ4(ξ, srx, µf) :=(
(µrxk1 + 1)(`coψ̇

2 + µrx(σ3 − 1))− µ2
f k1σ3

)
/σ2

7 ,

σ5(ξ, srx, µf) := σ6/(k2σ7),

σ6(ξ, srx, µf) :=

k2

√
µ2
f σ

2
3 − (`coψ̇2 + µrx(σ3 − 1))2 + (σ4σ7)2,

where σ7(ξ, srx, µf) :=
√

(µrxk1 + 1)2 − µ2
f k

2
1.

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.
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