
Credible Autocoding of Fault Detection Observers

Timothy E. Wang1, Alireza Esna Ashari1, Romain J. Jobredeaux1, and Eric M. Feron1

Abstract— We present a domain specific process to enable
the verification of observer-based fault detection software.
Observer-based fault detection systems, like control systems,
yield invariant properties of quadratic types. These quadratic
invariants express both safety properties of the software, such
as the boundedness of the states, and correctness properties,
such as the absence of false alarms from the fault detector. We
seek to leverage these quadratic invariants, in an automated
way, for the formal verification of the fault detection software.
The approach, named the credible autocoding framework,
can be characterized as autocoding with proofs. The process
starts with the fault detector model, along with its safety and
correctness properties, all expressed formally in a synchronous
modeling environment such as Simulink. The model is then
transformed by a prototype credible autocoder into both code
and analyzable annotations for the code. We demonstrate the
credible autocoding process on a running example of an output
observer fault detector for a 3 degree-of-freedom helicopter
control system.

Keywords: Fault Detection, Software Verification, Credible
Autocoding, Aerospace Systems, Formal Methods.

I. INTRODUCTION

Safety-critical systems of a cyber-physical nature are in-
creasingly present in a number of industries. Whether it is the
flight control system of an aircraft, or the digital controller of
a pacemaker, a failure in such systems can have significant
costs, both monetary and in terms of human lives. For this
reason, the field of fault detection has naturally turned its
attention to these systems [1], [2], [3], [4], [5]. Most of the
current body of work develops observer-based fault detection
methods, which are suitable for online fault detection in the
case of abrupt faults. The observer provides analytic redun-
dancy for the dynamics of the system. Comparing the input-
output data with the nominal data obtained from the model
of the system, we conclude whether or not the system is in
nominal mode. Possible faults are modeled as additive inputs
to the system. Such an additive fault changes the nominal
relations between inputs and outputs. An overview of the
recent developments in this domain can be found in [6],
[7], [8]. Observer-based fault detection methods are usually
implemented as software on digital computers. However,
there is a semantic gap between fault detection theory and
the software implementation of these methods. Computation

*This article was prepared under support from NSF Grant CNS - 1135955
“CPS: Medium: Collaborative Research: Credible Autocoding and Verifica-
tion of Embedded Software (CrAVES)”, NASA Grant NNX12AM52A “Val-
idation Elements For Loss-of-Control Recovery Operations (VELCRO)”, the
Army Research Office under MURI Award W911NF-11-1-0046, and ANR
ASTRID project VORACE.

1 Department of Aerospace Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA 30332, USA {timothy.wang,esna ashari,
jobredeaux,feron}@gatech.edu

errors may cause incorrect results, and engineers with little
or no background in control may need to test and modify the
software, hence the need to express fault detection semantics
at the level of the code. Additionally, such an endeavor can
help verify systematically that the software behaves correctly
based on theory and initial design.

In this paper, we present an automated process where
control-theoretic techniques are applied towards the verifi-
cation of observer-based fault detection software. We extend
our previous works [9], [10], [11], [12] on controller systems
to fault detection systems. The application of system and
control theory to control software verification can be traced
back to [13], [14]. In these papers, the authors presented an
example where a controller program was documented with
a quadratic invariant set derived from a stability analysis of
the state-space representation of the controller. Since then,
progress has been made towards the creation of an auto-
mated framework that can rapidly obtain and transform high-
level functional properties of the control system into logic
statements that are embedded into the generated code in the
form of comments. The usefulness of these comments comes
from their potential usage in the automatic verification of the
code. We will refer to the logic statements as “annotations”
and the generated code with those comments as “annotated
code”. We named the framework credible autocoding [12],
as it is a process to rapidly generate the software as well as
the annotations that guarantee some functional properties of
the system. The realization of the framework is a prototype
tool that we have built and applied to control systems
such as a controller for the 3 degree of freedom Quanser
helicopter [15]. For this paper, we have further refined the
prototype to handle the addition of a fault detection system
running along with the Quanser controller.

II. CREDIBLE AUTOCODING

Credible autocoding is an automatic or semi-automatic
process that transforms a system that is initially expressed in
a language of high-level of abstraction, along with the mathe-
matical proofs of its good behavior, into code, annotated with
said mathematical proof. The initial level of abstraction is the
differential equation of the system and the final level could
be the software binary. For the prototype implementation of
our framework, we chose Simulink as the input language and
C code as the output language. Regardless of the input and
output languages, the main contribution from this prototype
is the automatic translation of fault-detection properties into
axiomatic semantics for the output code.

Axiomatic semantics are an approach to reason about
the correctness of program that trace back to the work of

2014 American Control Conference (ACC)
June 4-6, 2014. Portland, Oregon, USA

978-1-4799-3274-0/$31.00 ©2014 AACC 672

1 /*
2 @ requires x<=0;
3 @ ensures x>=0;
4 */
5 {
6 x=x*x;
7 }

Fig. 1. C code with ACSL

Hoare [16]. In this approach, the semantics or mathematical
meaning of a piece of code are defined through how the piece
of code modifies certain logic predicates on the variable(s)
of the code.

The basics of axiomatic semantics are demonstrated here
using two examples. The piece of C code in figure II
computes the square of x and assigns the answer to the
variable x. Two logic predicates, x <= 0 and x >= 0,
preceded by the symbols “@ requires” and “@ ensures”
appear in the comments or annotations that precede the
code. They represent properties of x that we claim to be
true, respectively before and after the execution of the line
of code. The keyword requires denotes a pre-condition and
the keyword ensures keyword denotes a post-condition. The
pre and post-conditions, together with the statement they
surround, form a Hoare triple, which is a contract expressing
that during any execution of the program, if the pre-condition
is true before the statement is executed, then the post-
condition will be true after its execution. In this example,
it is trivial to see that if the variable x is non-positive
before the execution of x := x ∗ x then it will be non-
negative afterwards. However we stress here that any such
Hoare triples inserted as annotations in the code needs to be
formally proven before it is said to be valid.

Consider the C implementation of a 1-dimensional linear
state-space system in figure II. The state-transition matrix A
is 0.98 and the input matrix B is 0.02. Unlike the previous
example, this piece of code contains a loop. When annotating
a loop with a Hoare triple, properties of interest need to
hold before, throughout and after the execution of the loop.
This type of properties are referred to as inductive invariants.
They represent both a pre and post condition for the body
of the loop.

Often, verifying the correctness of even trivial inductive
invariants can be a non-trivial task. However, comparatively,
it is a much more tractable task to automatically verify the
correctness of relevant inductive invariants than to discover
them in the first place. Domain specific knowledge is key to
finding these invariants. Indeed, for even simple examples, it
can be impossible for general automatic decision procedures
to compute them. In addition to inductive invariants, we can
also express assumptions, such as input ∗ input < 1, using
the keyword assumes, Unlike the inductive invariant x∗x <=
1, the assertion input ∗ input < 1 cannot be checked for its
correctness using solely the code.

For this example or any other linear state-space sys-
tems, we can apply domain specific knowledge, namely,

1 /*
2 @ assumes input*input<1;
3 @ loop invariant x*x<=1;
4 */
5 {
6 while (1) {
7 x=0.98*x+0.02*input;
8 }
9 }

Fig. 2. C code with ACSL

Lyapunov-based theories, to compute an ellipsoid invariant
set E (x, P) =

{
x|xTPx ≤ 1

}
. A collection of this type

of quadratic stability results with an efficient computational
solutions can be found in [17]. Here, E (x, 1) forms a valid
invariant set. Using the credible autocoding framework, this
invariant property can be rapidly transformed into Hoare
triples for the code, and thus, in theory, makes the process of
automatic verification of the generated code more feasible.

The code annotations in the two examples are expressed
in the ANSI C Specification Language (ACSL)1. In the latter
sections, the autocoded fault detection semantics are also
expressed in ACSL. For more details, see [18].

III. FAULT DETECTION PROBLEM FORMULATION

We focus on observer-based fault detection of dynamic
systems. Such methods need the system to be modeled
by differential equations. We designed the fault detection
observer for a three-degree-of-freedom laboratory helicopter.
The system is modeled by nonlinear equations. Such a model
can be linearized around the operating point of the system
as follows

ẋ(t) = Ax(t) +Bu(t) + Ef(t), (1)
y(t) = Cx(t), (2)

where x(t) ∈ R6 and u(k) ∈ R2 are the state vector and the
known input vector at time t, respectively. Also, y(t) ∈ R3

is the output vector. A, B and C are state transition, input
and output matrices, as in [15]. f(t) ∈ Rnf in equation
(1) represents an additive fault to the system that should be
detected. No prior knowledge on this input signal is available.
The value of f(t) is zero for nominal (fault-free) system. The
aim of the fault detection is to raise an alarm whenever this
value differs significantly from zero (faulty system).

We consider an actuator degradation fault for this system.
Such a fault changes the behavior and the steady state of
the system, and can be modeled as an additive fault. The
effect of the degradation can be modeled by replacing u(t)
in equation (1) with ū(t), where

ū(t) = Xu(t). (3)

Thus, we obtain the fault matrix below, defined in equation
(1)

E = B(I −X). (4)

1The prototype credible autocoder also produces annotations in ACSL

673

A. Output observer design for fault detection

To describe the autocoding process, we select the simplest
observer-based method [6], [8]. The detector observes the
system, receives input and output data and compares it with
the nominal response of the system.

Consider the full-order state observer below

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)), (5)
ŷ(t) = Cx̂(t). (6)

Using this observer, we generate a residual signal, comparing
the estimated output in equation (6) with the measured one

r(t) = y(t)− ŷ(t). (7)

We compare the residual signal r(t) against a predefined
threshold. If the threshold is reached, a fault alarm is raised.
In order to explain how the method works and how the
observer should be designed, we introduce the estimation
error e(t) = x(t)− x̂(t) and compute the error dynamics

ė(t) = (A− LC)e(t) + Ef(t), (8)
r(t) = Ce(t). (9)

From equations (8)–(9), r(t) goes to zero if f(t) is zero and
the observer matrix L is chosen so that A − LC is stable.
Note that L is the only design parameter for this observer. In
practice, no fault alarm is raised if f(t) is too small. Thus,
we suppose ‖f(t)‖ > σ is a fault that must be detected.
Consequently ‖r(t)‖ > rth raises a fault alarm, where rth
is the threshold corresponding to σ.

IV. A FORMAL METHOD TO VERIFY FAULT DETECTION

The theory behind fault detection methods is presented
in Section III-A. However, there always exists a semantic
gap between theory and real implementation. The methods in
Section III-A should be implemented in the form of software,
either in a graphical environment such as Simulink or as
computer code in a programming language such as Matlab
or C. Due to computation errors and the use of floating
point numbers in digital computers, there exists a difference
between the implemented method and the ideal results of
theory. We aim at annotating the software so that an expert
or a machine can track its operation and verify that the
design criteria are satisfied at the level of the code. The
idea developed in [19] to formally document the stability
of closed-loop systems is now extended to fault detection
methods.

In order to certify the fault detection software, we need to
certify particular properties of the observer:

1) Stability: the error dynamics are stable, i.e. e(t) in
equation (8) is around the origin when the system is
in the nominal case and remains bounded in the faulty
case.

2) Fault detection: the residual r(t) correctly detects the
fault. In other words r(t) does not reach a predefined
threshold if f(t) is sufficiently small.

To verify these properties, we use Lyapunov theory, which
was shown to be a good mechanism to generate easy-to-
use, formal code annotations (see [19]). Note that Lyapunov
functions are used here as opposed to a more classic ap-
proach based on the location of the observer poles. This is
because the former yield invariant sets that translate well
into loop invariants at the code level. This makes it easier to
bridge the gap between control theory and computer science.
Frequency-domain based analyses on the oher hand, and how
they relate to the stability of the system, are not so obviously
connected to invariants pertaining to the program variables.
We start from the informal specifications in Section III-A and
translate them into formal specifications as follows. These
properties show how the software variables can change so
that the pre-defined filter specifications are verified.

Suppose the system is in nominal mode. Considering a
Lyapunov function V (t) = eT (t)Pe(t), where P is a positive
definite matrix. We can show that the e(t) remains in a
predefined invariant ellipsoid

En = {e(t) ∈ Rn|eT (t)Pe(t) ≤ ζ}, (10)

for all t ∈ R if the observer is stable. Here, ζ ≥ 0 is a scalar.
For the faulty mode we can introduce a similar ellipsoid

around the new equilibrium point. However, we do not
know the new equilibrium point, as the fault is supposed
to be completely unknown. But in practice, f(t) is bounded.
Suppose that ‖f(t)‖ < σ. We introduce

Ef = {e(t) ∈ Rn|eT (t)Pe(t) ≤ ζ̄}. (11)

In equation (11) ζ̄ is

ζ̄(t) = max
e
eT (t)Pe(t)

s.t. ė(t) = (A− LC)e(t) + Ef(t)

and ‖f(t)‖ < σ. (12)

Thus, we have two ellipsoids to which the value of the
Lyapunov function may belong. As far as ∀t, V (t) ∈ En,
the system is in nominal mode and the observer is stable.
On the other hand if ∀t, V (t) ∈ Ef , the system is in faulty
mode and the observer is stable. If ∃t, V (t) 6∈ Ef the detector
is unstable.

V. AUTOCODING OF FAULT DETECTION SEMANTICS

In this section, we describe the autocoding of the fault
detection semantics of a running example. The running
example is a fault detection system as specified in section III-
A combined with a LQR controller that has two integrators.
We first point out that on the abstraction level of a com-
puter program, the notion of a continuous-time differential
equation like in (6) no longer applies. The running example,
including the plant, needs to be in discrete-time. In fact,
for analysis purposes, the plant can be treated as another
C program. We have the following discrete-time linear state-
space systems

xc(k + 1) = Acxc(k) +Bcy(k),
u(k) = Ccxk +Dcy(k),

(13)

674

Fig. 3. Simulink Model Input For Credible Autocoding

x̂(k + 1) = Âx̂(k) +Bu+ Ly,
r(k) = y(k)− ŷ(k),

(14)

and
x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(15)

representing the controller, the detector, and the plant respec-
tively. After discretization, system matrices change. How-
ever, with an abuse of notation, we use the same symbols
for the discrete-time model of the system and the observer
in equations (14)–(15). We also have a discretized version
of the error dynamics from equation (6),

e(k + 1) = Âe(k) + Ef(k) (16)

where f(k) represent sampled fault signal and Â = A−LC.
The Simulink model of the controller and the fault detec-

tion system is displayed in Figure 3. The inserted fault de-
tection semantics are expressed using the annotation blocks,
which are in red in Figure 3. The annotation blocks are
converted into ACSL annotations for the output code. The
four Ellipsoid blocks represent four ellipsoid invariants. Two
are for the closed loop plant and controller state x̃ and two
other for the detector states x̂. The semantics of the plants
(faulty and nominal) are expressed using the Plant annotation
blocks in Figure 3. We do not express the ellipsoid sets for
the error states from equations (10) and (11) on the input
Simulink model. The reason for this is explained in section
(V-A). However, we point out that the credible autocoding
process will generate two ellipsoid sets on the error states
e = x − x̂, one for the nominal plant and the other for
the faulty. They are just expressed in the annotations of the
generated code output. Not shown in Figure 3 is the ellipsoid
observer block expressing a bound on the input signal yc.

This bound is an assumption that gets transformed into an
ACSL assertion.

A. Ellipsoid sets on the error states e

In this section, we discuss the choice of ellipsoid sets that
are annotated on the Simulink model. Instead of using the
ellipsoids from equations (10) and (11), which are on the
error e, we use two different sets of ellipsoids. One is on
the observer states and the other is on the controller states.
From those two sets of ellipsoid invariants, the autocoder
can generate the desired ellipsoid invariants on the error. The
reason for this selection is mainly due to the current technical
limitation of the autocoder prototype as the error e does not
explicitly appear in either the controller, the observer or the
plant. Consider the observer dynamic

x̂(k + 1) = Âx̂(k) +Bu(k) + LCx(k). (17)

Note that equations (17), and (14) are equivalent. During
the credible autocoding process, any ellipsoid invariant that
is inserted onto the input model is propagated forward
through the generated C code using ellipsoid calculus [20].
Methods such as computing the affine transformation of an
ellipsoid are used often, since semantically speaking, most
of the generated C code is consisted of assigning affine
expressions to variables. For example, if an ellipsoid set
E (x, P) is the pre-condition, and the ensuing block of code
is semantically x := Ax, then the autocoder generates the
post-condition E

(
x,

(
AP−1AT)−1

)
. On the actual C code,

the propagation steps are much smaller so there are a se-
quence of intermediate ellipsoid invariants between E (x, P)

and E
(
x,

(
AP−1AT)−1

)
. Let x̃ =

[
x
xc

]
be the closed-

loop system states, and assume that closed-loop stability
analysis yields an ellipsoid invariant set E (x̃, P0). Given
E (x̃, Px̃), the prototype autocoder can generate Pu, Px such
that E (u, Pu) and E (x, Px). Given E (u, Pu), E (x, Px), and
the dynamics in equation (17), one can compute an ellipsoid
invariant E (x̂, Px̂) for the detector states x̂ by solving a
linear matrix inequality (LMI). Solving the LMI also yields
the relaxation multipliers α > 0 and γ > 0 for the quadratic
inequalities in E (u, Pu) and E (x, Px). These multipliers are
used to generate an ellipsoid invariant on e in the following
way. Given the ellipsoid invariants E (x̂, Px̂), E (x, Px), and

the error states e =
[
I −I

] [x
x̂

]
, a correct ellipsoid

invariant on e is E (e, Pe), where

Pe =
([

I −I
]
P−1
x,x̂

[
I −I

]T
)−1

(18)

with Px,x̂ =

[
γPx 0

0 (1− α− γ)Px̂

]
. Hence given the

two invariants E (x̂, Px̂), E (x̃, Px̃), which are explicitly in-
serted into the Simulink model, and the prototype autocoder
can automatically produce the ellipsoid invariants on the
error e.

The annotations generated by the credible autocoding
process can guarantee both the safety property (the ellipsoid

675

bounds on the variables correspond to xc and x̂) and the
liveness property of the fault detection system i.e. the two
ellipsoids on the error states.

B. Ellipsoid sets in the Simulink model

To generate the ellipsoid invariants for the credible au-
tocoding, we have

x̂(k + 1) = Âx̂(k) + B̂û(k) (19)

with B̃ = LC, Â = A − LC, û =

[
u
x

]
, and B̂ =[

B B̃
]
. Given that the closed-loop ellipsoid set E (x̃, Px̃)

implies E (u, Pu) and E (x, Px) for some matrices Pu, Px

by the affine transformation of ellipsoid set. With E (u, Pu),
E (x, Px), and the detector dynamics in equation (17), we
have the following results for computing an ellipsoid invari-
ant on x̂.

Lemma V.1 Let û =

[
u
x

]
and assume that û belongs to

the set
{
û|ûTP1û ≤ 1

}
. If there exist a symmetric positive-

definite matrix P and a positive scalar α that satisfies the
following linear matrix inequality[

ÂTPÂ− P + αP ÂTPB̂

B̂TPÂ B̂TPB̂ − αP1

]
≺ 0 (20)

then the set
{
x̂|x̂TPx̂ ≤ 1

}
is invariant with respect to

equation (19).

First we manually compute the invariant sets for the
closed-loop system. Once for the faulty plant and once
more for the nominal plant.For the closed-loop analysis, we
assume the command input yc is bounded. From the obtained
closed-loop invariant sets, the autocoder can generate two
ellipsoid invariants on û, E (ûi, Pûi

, i = N,F), where N,F
denote respectively nominal or faulty. Now we apply lemma
V.1 twice to obtain the two ellipsoid sets E (x̂i, Px̂i) , i =
N,F on x̂. As discussed before, we insert the obtained el-
lipsoid invariants E (x̃n, Px̃i

) , i = N,F and E (x̂i, Px̂i
) , i =

N,F on the detector states x̂ into the Simulink model. The
ellipsoid invariants on e are automatically computed by the
credible autocoder using equation (18), thus do not need to
be expressed on the Simulink model.

C. Prototype Refinements and the Annotations

To automatically transform the semantics of the fault
detection and controller system in Figure 3 into useful ACSL
annotations, we have further refined the prototype autocoder
to be able handle the following issues:

1) Generate different sets of closed-loop semantics based
on different assumptions of the plant.

2) Formally expressing the faults to be able to reason about
them in the invariant propagation process.

The main change made to the prototype is a new capability
to generate multiple different sets of closed-loop semantics
based on the assumptions of the different plant semantics. For
example, in the generated ACSL annotated code in listing

1, there are two ellipsoid sets parameterized by the the
ACSL matrix variables QMat 1 and QMat 2. They express
the closed-loop ellipsoid invariant sets E (x̂i, Px̂i) , i = N,F .
The matrix variables are assigned values using the ACSL
functions mat of nxn scalar, which takes in n2 number of
real-valued arguments and returns an array of size n×n. For
brevity’s sake, the input arguments to the ACSL functions
in listing 1 are truncated. The ellipsoid sets are grouped
into two different sets of semantics using the ACSL key-
word behavior. One set of semantics assumes a nominal
plant and the other assumes the faulty one. Each set of
semantics are linked to their respective plant models by the
behavior name. The pre-conditions, displayed in listing 1 as
requires statements, are the ellipsoid invariant sets on the
observer states x̂. The ellipsoid invariants are defined by
the function in ellipsoidQ. The post-conditions, which are
expressed using the ensures keyword, are generated using the
invariant propagation process as described in section V-A.
The annotation statement PROOF TACTIC is a non-ACSL
element that the prototype autocoder generates to assist the
automatic verification of the invariants. For example, to
formally prove that the post-conditions in listing 1 is true
given the pre-conditions, the automatic analyzer knows to
apply the affine transformation strategy.

1 /*@ logic matrix QMat_1 = mat_of_8x8_scalar(...);
2 ...
3 logic matrix QMat_3 = mat_of_6x6_scalar(...);
4 /*@
5 behavior nominal_ellipsoid:
6 requires in_ellipsoidQ(QMat_3,
7 vect_of_6_scalar(observer_states[0],
8 observer_states[1],observer_states[2],
9 observer_states[3],observer_states[4],

10 observer_states[5]));
11 ensures in_ellipsoidQ(QMat_41,
12 vect_of_12_scalar(observer_states[0]...,
13 _io_->xhat[0]...));
14 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));
15
16 behavior faulty_ellipsoid:
17 requires in_ellipsoidQ(QMat_4,
18 vect_of_6_scalar(observer_states[0],
19 observer_states[1],observer_states[2],
20 observer_states[3],observer_states[4],
21 observer_states[5]));
22 ensures in_ellipsoidQ(QMat_42,
23 vect_of_12_scalar(observer_states[0]..._io_->xhat

[0]..));
24 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));
25 */
26 {
27 for (i1 = 0; i1 < 6; i1++) {
28 _io_->xhat[i1] = observer_states[i1];
29 }
30 }

Listing 1. ACSL Expressing Multiple Sets of Closed-loop Semantics

The semantics of the plant models are expressed using pre-
defined C functions faulty plant and nominal plant wrapped
in the ghost code statements, which are denoted by the
ghost keyword. Ghost code statements are ACSL statements
that are similar to the actual C code in every aspect except
they are not executed and they are restricted from changing

676

the state of any variable in the code. The semantics of
the plant model are connected with their respective set
of ellipsoid invariants through the use of assertions. For
example, in listing 2, we have the plant states faulty state and
nominal state, which are declared in the ghost code. They
are linked to the same variable io ->xp from the code in
both ACSL behaviors using the equal relation symbol ==.

1 /*@ ghost double faulty_state[6]; */
2 /*@ ghost double nominal_state[6];*/
3 /*@
4 behavior nominal_ellipsoid:
5 assumes _io_->xp==nominal_state
6 requires in_ellipsoidQ(...);
7 ensures in_ellipsoidQ(...);
8 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));*/
9 /*@

10 behavior faulty_ellipsoid:
11 assumes _io_->xp==faulty_state
12 requires in_ellipsoidQ(...);
13 ensures in_ellipsoidQ(...);
14 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));*/
15 { for (i1 = 0; i1 < 6; i1++) {
16 xp[i1] = _io_->xp[i1]; }}
17 ...
18 /*@ ghost faulty_plant(_io_->u,faulty_plant_state);
19 ghost nominal_plant(_io_->u,faulty_plant_state);

*/

Listing 2. ACSL Expressing the Semantics of the Plants with C code

Lastly, the autocoder produces the inductive ellipsoid
invariants on the error e = x− x̂ by first creating the ghost
variable array error states, which corresponds to the error
e = x− x̂, and then inserting the ellipsoid invariants as pre
and post-conditions for the ghost code. As shown in listing
3, the autocoder defines the error e using the ghost for-loop
statement. The ellipsoid invariants, as in the code listings
before, are expressed as require and ensure statements sepa-
rated into two sets of behaviors that correspond to either the
nominal or faulty plant.

1 /*@
2 behavior ellipsoid_nominal:
3 requires in_ellipsoidQ(...);
4 ensures in_elilpsoid(...);
5 behavior ellipsoid_faulty:
6 requires in_ellipsoidQ(...);
7 ensures in_ellipsoidQ(...); */
8 {
9 /*@ ghost for (i1=0; i1<6; i1++) {

10 error_states[i1]=x[i1]-observer_states[i1];
11 }*/
12 }

Listing 3. ACSL Expressing Invariant Sets on the Error

VI. CONCLUSION

In this paper, we have presented a framework that can
rapidly generate fault detection code with a formal assurance
of high-level fault detection semantics such as stability and
correct fault detection. The properties are formally expressed
using ellipsoid invariants. The framework, named the cred-
ible autocoding, can generate the fault detection code as
well as the invariant properties for the code. Moreover, the

generated invariant properties can be be verified in using
semi-automatic theorem prover. We have demonstrated that
the credible autocoding prototype that was previously applied
to control systems can be extended to fault detection systems
with some additions. We applied the prototype tool to an
example of observer-based fault detection system running
with a LQR controller of a 3 degrees-of-freedom helicopter.
The prototype was able to autocode the fault detection
semantics successfully. In this paper we only consider a
simple output observer for fault detection to demonstrate the
autocoding steps. However, the idea can be extended to more
complicated fault detection methods.

REFERENCES

[1] R. Isermann, “Supervision, fault-detection and fault-diagnosis meth-
ods—an introduction,” Control engineering practice, vol. 5, no. 5, pp.
639–652, 1997.

[2] A. Esna Ashari, R. Nikoukhah, and S. L. Campbell, “Auxiliary signal
design for robust active fault detection of linear discrete-time systems,”
Automatica, vol. 47, no. 9, pp. 1887–1895, 2011.

[3] H. Niemann and J. Stoustrup, “Design of fault detectors using H∞
optimization,” in Decision and Control, 2000. Proceedings of the 39th
IEEE Conference on, vol. 5. IEEE, 2000, pp. 4327–4328.

[4] H. H. Niemann and J. Stoustrup, “Robust fault detection in open loop
vs. closed loop,” in Decision and Control, 1997., Proceedings of the
36th IEEE Conference on, vol. 5. IEEE, 1997, pp. 4496–4497.

[5] A. Esna Ashari, R. Nikoukhah, and S. Campbell, “Active robust fault
detection in closed-loop systems: quadratic optimization approach,”
IEEE Transactions on Automatic Control, 2012.

[6] S. Ding, Model-based fault diagnosis techniques: design schemes,
algorithms, and tools. Springer, 2008.

[7] R. Patton and J. Chen, “Robust model-based fault diagnosis for
dynamic systems,” 1999.

[8] R. Isermann, Fault-diagnosis systems: an introduction from fault
detection to fault tolerance. Springer, 2005.

[9] T. Wang, R. Jobredeaux, and E. Feron, “A graphical environment to
express the semantics of control systems,” 2011, arXiv:1108.4048.

[10] E. Feron, R. Jobredeaux, and T. Wang, “Autocoding control software
with proofs i: Annotation translation,” in Digital Avionics Systems
Conference (DASC), 2011 IEEE/AIAA 30th, oct. 2011, pp. 1 –19.

[11] H. Herencia-Zapana, R. Jobredeaux, S. Owre, P.-L. Garoche, E. Feron,
G. Perez, and P. Ascariz, “Pvs linear algebra libraries for verification
of control software algorithms in c/acsl,” in NASA Formal Methods,
2012, pp. 147–161.

[12] T. Wang, R. Jobredeaux, H. Herencia, P.-L. Garoche, A. Dieumegard,
E. Feron, and M. Pantel, “From design to implementation: an
automated, credible autocoding chain for control systems,” 2013,
arXiv:1307.2641.

[13] E. Feron, “From control systems to control software,” Control Systems,
IEEE, vol. 30, no. 6, pp. 50 –71, dec. 2010.

[14] J. Feret, “Static analysis of digital filters,” in European Symposium
on Programming (ESOP’04), ser. LNCS, no. 2986. Springer-Verlag,
2004.

[15] Q. Quanser Manual, Quanser 3-DOF Helicopte, user manual.
Quanser Inc, 2011.

[16] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, pp. 576–580, October 1969. [Online].
Available: http://doi.acm.org/10.1145/363235.363259

[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, ser. Studies in Applied
Mathematics. Philadelphia, PA: SIAM, June 1994, vol. 15.

[18] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and
V. Prevosto, ACSL: ANSI/ISO C Specification Language, 2008,
http://frama-c.cea.fr/acsl.html. [Online]. Available: http://frama-c.cea.
fr/acsl.html

[19] E. Feron, “From control systems to control software,” Control Systems,
IEEE, vol. 30, no. 6, pp. 50–71, 2010.

[20] A. B. Kurzhanski and I. Valyi, Ellipsoidal calculus for estimation and
control, ser. Systems & control. Laxenburg, Austria: IIASA Boston,
1997. [Online]. Available: http://opac.inria.fr/record=b1131065

677

