
 

 
 
 

Constraint-Based Navigation  
for Safe, Shared Control of Ground Vehicles 

 

by 

Sterling J Anderson 

Bachelor of Science in Mechanical Engineering 
Brigham Young University, 2007 

 
Master of Science in Mechanical Engineering 
Massachusetts Institute of Technology, 2009 

 
Submitted to the  

Department of Mechanical Engineering 
in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy in Mechanical Engineering 

at the 

Massachusetts Institute of Technology 

February, 2013 
 

© 2013 Massachusetts Institute of Technology 
All rights reserved 

 

 

Signature of Author 
Department of Mechanical Engineering 

December 31, 2012 
Certified By 

Karl Iagnemma 
Principal Research Scientist 

Thesis Supervisor 
Accepted By 

Professor David Hardt 
Chairman, Committee on Graduate Studies



 2 

Constraint-Based Navigation  
for Safe, Shared Control of Ground Vehicles 

by 
Sterling J Anderson 

Submitted to the Department of Mechanical Engineering 
on December 31, 2012, in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy in Mechanical Engineering 
 

Abstract 
 

Human error in machine operation is common and costly. This thesis introduces, 
develops, and experimentally demonstrates a new paradigm for shared-adaptive control 
of human-machine systems that mitigates the effects of human error without removing 
humans from the control loop. Motivated by observed human proclivity toward 
navigation in fields of safe travel rather than along specific trajectories, the planning and 
control framework developed in this thesis is rooted in the design and enforcement of 
constraints rather than the more traditional use of reference paths.  

Two constraint-planning methods are introduced. The first uses a constrained 
Delaunay triangulation of the environment to identify, cumulatively evaluate, and 
succinctly circumscribe the paths belonging to a particular homotopy with a set of semi-
autonomously enforceable constraints on the vehicle’s position. The second identifies a 
desired homotopy by planning – and then laterally expanding – the optimal path that 
traverses it. Simulated results show both of these constraint-planning methods capable of 
improving the performance of one or multiple agents traversing an environment with 
obstacles. 

A method for predicting the threat posed to the vehicle given the current driver 
action, present state of the environment, and modeled vehicle dynamics is also presented. 
This threat assessment method, and the shared control approach it facilitates, are shown 
in simulation to prevent constraint violation or vehicular loss of control with minimal 
control intervention. Visual and haptic driver feedback mechanisms facilitated by this 
constraint-based control and threat-based intervention are also introduced.  

Finally, a large-scale, repeated measures study is presented to evaluate this 
control framework’s effect on the performance, confidence, and cognitive workload of 20 
drivers teleoperating an unmanned ground vehicle through an outdoor obstacle course. In 
1,200 trials, the constraint-based framework developed in this thesis is shown to increase 
vehicle velocity by 26% while reducing the occurrence of collisions by 78%, improving 
driver reaction time to a secondary task by 8.7%, and increasing overall user confidence 
and sense of control by 44% and 12%, respectively. These performance improvements 
were realized with the autonomous controller usurping less than 43% of available vehicle 
control authority, on average. 

 
Thesis Supervisor: Karl Iagnemma 
Title: Principal Research Scientist 
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1 CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Humans make mistakes.  When humans control dynamic systems, the rate and 

ramifications of those mistakes increase. Whether it occurs while driving a car, flying an 

airplane, teleoperating an unmanned vehicle, controlling industrial machinery, or 

manipulating medical devices, human error can lead to costly and often deadly 

consequences. In 2010, over 32,000 people were killed and another 2.2 million injured in 

motor vehicle accidents in the United States alone [1]. During Operation Iraqi Freedom 

(2003 – 2011), vehicle crashes killed more than twice as many service members as the 

next leading cause of non-combat fatalities [2]. Even the manufacturing sector is 

susceptible to human error; forklift operation alone is estimated to claim 100 lives and 

cause 94,500 injuries each year in the United States [3].  

Perhaps nowhere is the effect of human error more evident than in teleoperated 

systems. Operators of Unmanned Ground Vehicles (UGVs) and Unmanned Aerial 

Vehicles (UAVs) must not only cope with the challenges inherent to manned navigation, 

but must also perform many of its same functions with a restricted field of view, limited 

depth perception, potentially disorienting camera viewpoints, and significant time delays 

[4]. Remotely operating a vehicle under these conditions while monitoring the vehicle’s 

health status, its task completion, and the condition of the environment is challenging and 

prone to high failure rates – even for trained operators. In studies conducted to date, the 

average mean time between UGV failure ranges from six to twenty hours – implying that 

in their present state, many of today’s UGVs cannot complete even one standard (12-20 
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hour) shift without experiencing a mechanical failure or human/controller-caused 

accident [5]. In UAVs, the mishap rate is estimated at 12-100 times greater than that of 

their manned counterparts, with 71% of collisions attributed to human error [6], [7]. 

Roughly categorized, human error is caused by deficiencies in recognition, 

decision, or performance [8]. Recognition errors result from a human’s inability to 

properly perceive or comprehend a situation. Common causes of recognition errors 

include inattention, inadequate surveillance, and internal or external distractions, among 

others. Decision errors arise when a human takes an improper course of action or fails to 

act when action is necessary. In ground vehicle applications, these errors are typically 

made when the human drives the vehicle faster or more aggressively than the 

circumstances (vehicle, environment, etc.) allow. Finally, performance errors refer to 

miscalculations in low-level control functions, often due to insufficient reaction time. 

Drivers of ground vehicles often make these errors by overcompensating or applying 

improper directional control. In a nationally representative sample of 5,471 crashes 

conducted from 2005 to 2007, the United States National Highway Traffic Safety 

Administration (NHTSA) attributed roughly 41 percent of vehicle crashes to recognition 

errors, 34 percent to decision errors, and 10 percent to performance errors [9]. While 

insufficient training and challenging scenarios or environments can exacerbate each of 

these error types, the human-machine control allocation and methods can also 

significantly affect the combined system’s ability to respond quickly and appropriately to 

safety imperatives [10].  

In this thesis, we address the challenge of reducing the frequency and effects of 

human error via shared-adaptive control. While the implementation presented in this 

thesis is designed specifically for manned and unmanned ground vehicles, the framework 

that results is also relevant, and can be adapted to, human-machine systems generally. 

1.2 PREVIOUS WORK 

In recent years, improvements in sensing, control, and computation capabilities 

have facilitated the development of driver assistance, autonomous, and shared-adaptive 

control systems designed to aid, replace, or correct human operator and thereby reduce or 

eliminate the effect of human error [11]–[13]. While distinct in their intended outcomes, 
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the inability of these systems to effectively share control with a human driver or 

capitalize on human-machine synergies has its root in a common, basic building block: 

each assumes the presence of a single path that the vehicle should follow. Regardless of 

the planning method used to obtain it (sampling, graph searches, potential fields, etc.) 

[14]–[16] or the control method employed to track it (PID schemes, linear-quadratic 

regulators, nonlinear fuzzy controllers, model predictive controllers, etc.) [17]–[20], this 

path identifies, evaluates, and seeks to limit the vehicle to just one of the many trajectory 

options available to the human operator. The subsections that follow describe how three 

broad categories of modern vehicle control architectures use these paths and how this 

usage affects their ability to effectively aid the human driver. 

1.2.1 DRIVER ASSISTANCE SYSTEMS 

In recent years, the focus of vehicle safety has shifted from measures designed to 

reduce the effects of collisions on vehicle occupants (eg. seat belts, air bags, roll cages, 

and crumple zones) to driver assistance systems designed to prevent those collisions from 

happening altogether. Driver assistance systems generally fall into one of two categories: 

reactive safety systems such as antilock brakes, traction controllers, electronic stability 

controllers, and lane-assist systems monitor the current state of the vehicle and apply 

low-level control actions to meet some safety-critical criteria. For example, stability 

controllers monitor the lateral acceleration, yaw, and wheel rotational speeds, and apply 

asymmetric torques to the wheels when estimated lateral or longitudinal tire slip exceeds 

a prespecified threshold. In order to avoid collisions, these systems rely on the human’s 

ability to 1) foresee, 2) judge, and 3) respond appropriately to impending hazards to 

trigger intervention. This reliance on driver actions renders reactive safety systems 

vulnerable to human recognition and decision errors; for drivers who do not recognize 

and correctly respond to hazards, these systems can do very little. As estimated in 

NHTSA’s study these errors make up a sizable portion (~75%) of vehicle accidents [9], 

[21].  

Predictive safety systems, on the other hand, consider not only the current state of 

the ego vehicle, but also the predicted state evolution of the vehicle and environmental 

hazards through a finite preview horizon. These systems then preemptively assist the 
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driver in identifying, assessing the threat posed by, and in some cases avoiding an 

impending hazard. Recent work in predictive safety has resulted in systems that use 

audible warnings [22], haptic alerts [23], [24] and steering torque overlays [25] to help 

the driver avoid collisions [26]–[28], instability [29], or lane departure [12], [30].  

In contrast to the strategic planning of a human driver that inherently considers 

multiple hazards, active safety systems take a more tactical approach, seeking only to 

avoid the most imminent threat. To estimate which of many possible scenarios (i.e. 

lane/road departure, frontal collision, loss of control, etc.) is most imminent and 

determine the appropriate type and degree of driver assistance, active safety systems use 

various threat assessment metrics. Threat metrics described in the literature 

predominantly use time-, distance-, and acceleration-based measures [31]–[38]. Time-

based threat measures project time to collision (TTC) based on current speeds, positions, 

trajectories, and (in some formulations) other vehicle states [32]–[34]. Distance-based 

metrics are generally calculated using prevailing range and vehicle speeds and employ 

constant velocity/acceleration assumptions and simple hazard geometry [36], [37].  

Acceleration-based metrics assess the threat of a given maneuver based on the minimum 

(and often assumed constant) lateral or longitudinal acceleration that a simple avoidance 

maneuver would require, given the current position, velocity, and acceleration of both 

host and hazard [31], [35]. Figure 1.1 illustrates the threat that might be assessed by time- 

and acceleration-based measures in a scenario with moving hazards. 



Chapter 1: Introduction 14 

 

Figure 1.1. Illustration of time- and acceleration-based threat assessment metrics 

While these threat metrics have been shown to provide useful estimates of the 

danger posed by a simple maneuver, they are not well suited to consider multiple hazards, 

complex vehicle dynamics, or complicated environmental geometry with its attendant 

constraints.  The geometrically-simple (straight-line or constant-radius-curve) avoidance 

maneuvers they assume may also misestimate the true threat posed by scenarios in which 

the physically-achievable vehicle trajectory would require a curve of varying radii or 

non-constant velocity/acceleration, such as cases in which a lane boundary requires that 

the trajectory straighten out after passing an obstacle.  

The threat-assessment method presented in [31] illustrates common deficiencies 

in existing approaches. This method estimates the lateral acceleration required to avoid a 

single obstacle via a constant radius evasive maneuver given the host vehicle’s current 

position, velocity, and heading, and compares this value to the longitudinal acceleration 

required to avoid the obstacle by braking. When either of these threat metrics reaches a 

predefined threshold, corresponding countermeasures may be implemented to assist the 

human driver. As Figure 1.2 illustrates, this approach’s failure to consider 1) the driver’s 

intended maneuver, and 2) the effect of present evasive actions on future threat scenarios 

can make its threat assessment inaccurate. For example, a driver assistance system 

seeking to prevent a rear-end collision with obstacle C might assess threat based on a 

leftward passing maneuver while the human or a more strategic controller might instead 
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choose to stop or pass on the right.  In addition to this threat assessment ambiguity, the 

simplified geometry of the assumed lateral avoidance maneuver (blue dashed arc of 

Figure 1.2) fails to consider both the lateral acceleration required to straighten out in the 

opposing lane as well as the vehicle’s ability to successfully complete the passing 

maneuver before colliding with Obstacle B (illustrated by black solid line).  

 

Figure 1.2. Illustration of steering (blue dashed), and braking (green solid) 

maneuvers commonly assumed by threat assessment methods and the more realistic 

(black) maneuver required to avoid Obstacles C and B. 

The local focus of existing active safety systems, together with the inherent 

difficulty of assimilating distinct sources of threat into a single, actionable metric has led 

to solutions that operate purely or primarily in one dimension. Whether governing 

longitudinal dynamics (traction controllers, anti-lock braking systems, or adaptive cruise 

controllers), monitoring lateral dynamics (lane-assist systems), or assisting in stability 

control (yaw/roll stability controllers), these systems largely fail to consider threats from 

a holistic or integrated perspective.  Consequently, when placed on the same vehicle, 

their warnings and/or control inputs can be suboptimal at best or contradictory at worst. 
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1.2.2 AUTONOMOUS SYSTEMS 

Made possible in recent years by developments in onboard sensing, lane 

detection, obstacle recognition, and drive-by-wire capabilities, and promoted by 

competitions such as the DARPA grand challenge, autonomous planning and control 

frameworks for ground vehicle navigation seek to control a vehicle without requiring – or 

generally accepting – inputs from the human operator. The typical architecture for these 

systems consists of a perception layer, a strategic motion planning layer, and a tactical 

execution layer [39]. The perception layer commonly uses a combination of onboard 

sensors, such as radar, LIDAR, and camera-based feedback to identify, localize, and 

predict the motion of environmental hazards such as road edges and collision threats [40]. 

Within the workspace thus mapped by the perception layer, the motion planner designs a 

hazard-free trajectory to a desired goal or waypoint using any of several motion planning 

techniques configured to satisfy vehicular task requirements. Common methods used to 

design these paths include sampling, graph search, and potential fields [14]–[16]. The 

paths that result from the motion planning layer are often geometric in nature, and do not 

consider the dynamic or kinematic constraints of the vehicle. As such, tactical re-

planning is typically performed at a lower, execution layer to locally “smooth” or convert 

the path plan into a control reference compatible with the vehicle’s kinematic and 

dynamic constraints [11], [41]–[43]. This control reference is then tracked using any of a 

number of low-level controllers [17]–[19]. When model-based methods such as Model 

Predictive Control (MPC) or closed-loop RRT are used, replanning and control are 

performed in the same calculation [44]–[47]. In [48], for example, the authors use a 

model-based, finite-horizon constrained optimal controller to simultaneously generate 

and track an optimal trajectory that satisfies lane constraints and control limitations.  

MIT’s DARPA Urban Challenge vehicle illustrates the path-based hierarchy 

many of today’s autonomous systems [11]. As shown in Figure 1.3, its RRT-based 

motion planner samples potential branches from feasible regions of the drivability map 

generated from onboard sensing. The motion planner then generates kinodynamically 

feasible trajectories to each of this tree’s nodes by forward-simulating the vehicle’s 

dynamics assuming pure-pursuit steering and proportional-integral (PI) speed control. 
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Finally, it checks the resulting path against the drivability map and uses these same 

controllers to track the trajectory generated in simulation. 

 

Figure 1.3. Illustration of the closed-loop RRT motion planner showing motion 

control points (blue), infeasible paths (red), and feasible paths (green) 

 

While many variations of path-based planning and control have proven effective 

in autonomous implementation, their inability to account for the planning preferences and 

control inputs of a human operator in either stage of the navigation task make them ill-

suited for human-in-the-loop or “semi-autonomous” control. Incorporating a human into 

the control loop, particularly when the vehicle command was designed to track a specific 

reference trajectory, is non-trivial. Without contingencies in the trajectory plan 

specifically accounting for the alternative goals implied by the human driver, the control 

inputs s/he provides, or the threat those inputs pose to the vehicle, path-based planning 

and control methods designed for autonomous implementation are not suitable for semi-

autonomous operation. 

1.2.3 SHARED CONTROL AND THE CASE AGAINST FULL AUTOMATION 

Despite the frequent occurrence and significant socioeconomic costs of human 

error, and the promise of fully autonomous systems, humans will continue to control 
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dynamic systems for the foreseeable future. Their superior judgment and robust reasoning 

capabilities, together with high automation costs and powerful social pressures create a 

compelling need for humans to remain “in the loop”. Complete automation often requires 

expensive and coordinated infrastructural changes such as the re-tooling of production 

facilities, the re-working of highways and traffic management systems, and redrafting of 

legislation to accommodate a fundamentally new definition of liability. While these 

changes are in some cases feasible, the social acceptance hurdles that must be 

surmounted to achieve complete automation may not be quite so tractable. Automating 

traditionally human-controlled tasks eliminates jobs. On this premise alone, labor unions 

such as the National Air Traffic Controllers Association have fiercely opposed the 

introduction of even low-level automation [49], with other groups such as transportation 

and manufacturing unions sure to follow suit in the advent of a credible automation 

threat. 

Perhaps more compelling than practical arguments against full automation of 

traditionally human-controlled machines is the prospect of improved semi-autonomous 

performance through the exploitation of human-automation synergies. As originally 

published in 1951 [50] and widely discussed since [51], humans and automation are 

uniquely well suited to specific types of tasks [52], [53]. Whereas automation excels at 

responding quickly and precisely to well-defined or repetitive control objectives, humans 

tend to make more mistakes as the frequency and complexity of the control task increase. 

Conversely, humans have the unique ability to detect and contextualize patterns and new 

information, reason inductively, and adapt to new modes of operation, whereas 

automation typically struggles at these tasks. The goal of semi-autonomy or “shared-

adaptive” control is to exploit these synergies in the abilities of both humans and 

automation to improve planning and control performance of the combined system and – 

where possible – the actors therein [54]. To be effective, shared-adaptive systems should 

provide intuitive, intention-preserving assistance without increasing the human’s mental 

workload, over-restricting the human’s control freedom, reducing vigilance, or inducing a 

false sense of security [52], [55], [56]. 

Figure 1.4 illustrates the autonomy chasm that exists between the minimal level of 

decision-making and control required by today’s driver assistance systems (described in 
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Section 1.2.1) and the complete control required by fully autonomous systems (detailed 

in Section 1.2.2). Shared-adaptive, or “adaptively autonomous” control systems have the 

potential to bridge this gap, replacing active driver assistance, passive driver assistance, 

and autonomous vehicular control with a single assistance strategy that adapts its level of 

autonomy (and corresponding safety contribution) as circumstances require.  

 

Figure 1.4. Illustration of the level of autonomy and safety contribution of today’s 

driver assistance systems (red), proposed autonomous systems (blue), existing 

shared control systems (dark gray) and the unrealized potential of adaptively 

autonomous systems (light gray) 

 

Similar to autonomous control systems, shared control methods proposed in the 

literature today also rely on specific paths and must therefore choose, infer, or accept 

(typically from a human operator) a specific goal or end point. In supervisory control, 

these waypoints are often explicitly designated prior to, or during the navigation task. 

Other methods infer them from the operator’s control actions.  

In [57], the authors introduce a hierarchical control strategy that considers human 

inputs at various levels of the wheelchair navigation task. At the “deliberative”, or motion 
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planning layer, users designate a desired goal, which the controller sets as the target of a 

potential field. The controller then navigates toward the target via gradient descent on the 

potential field, modifying the user’s command only when that command deviates by 

more than 90° from the field gradient or comes within a pre-configured proximity of an 

obstacle. When the latter occurs, a reactive controller modifies the direction of the human 

input to satisfy the constraint. Urdiales et al. [58] use a similar, potential-field-based 

approach to assist a human user while accommodating some human input at both the 

motion planning and execution levels. In their embodiment, control authority is allocated 

between the human and the PFA controller based on assessments of the “smoothness” 

(angle between robot’s current direction and that of the provided motion vector), 

“directiveness” (angle between the current wheelchair heading and the vector to the 

goal), and “safety” (distance to the closest obstacle with respect to the wheelchair 

heading) of the human’s input. Besides being subject to the local minima common to 

potential-fields-based approaches, the ad hoc assistance modulation employed by both of 

these strategies requires considerable tuning and does not guarantee 100% obstacle 

avoidance. 

In contrast to supervisory or reactive control strategies that require a priori 

knowledge of the user’s target, other control strategies have been proposed that infer the 

user intention from the operator’s control actions. This approach is used in [59], for 

example, where the authors interpret the human user’s desired goal with inverse 

reinforcement learning and adjust the level of autonomy based on the certainty of this 

goal estimation. When prediction certainty is high, the robot is allocated a greater degree 

of control. When certainty is low, the user retains more autonomy. Other approaches 

which rely similarly on a specific goal estimate to control the vehicle have also been 

proposed [60], [61]. The reliance of these systems on prediction accuracy in order to 

determine appropriate control allocation makes them ill-suited to assist the human in 

unplanned or emergency scenarios where the actual human intent is either 1) predictable 

but not safe (as in cases where the human fails to identify a hazard and continues to 

operate as before), or 2) difficult to ascertain or predict. In such scenarios, rather than 

take more control, systems whose intervention and control actions rely on the certainty of 

a path prediction can actually take less. Further, in low-threat scenarios, where direct 
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control by the human operator would be sufficient to keep the vehicle safe, these 

approaches effectively reduce the human’s role to a supervisory one – not following 

his/her commands directly, but using the control inputs s/he provides to infer a desired 

goal. 

1.3 PROPOSED APPROACH 

The work presented in this thesis builds on the premise that adaptive autonomy 

based on constraints, rather than inferred goals and associated motion paths, is better 

suited to share control with humans whose planning and control strategy is better 

represented by operating constraints and fields of safe travel than by specific paths [62]. 

Such fields contain an infinite number of continuously deformable trajectory candidates, 

or path homotopies of similar perceived “goodness”, as illustrated in Figure 1.5. 

Identifying and circumscribing these homotopies by constraints, then allocating control 

authority as necessary to satisfy them neither over restricts the human operator in safe 

scenarios nor fails in risky ones, but instead ensures that the driver retains as much direct 

control freedom as possible without allowing the vehicle to lose control or collide with 

obstacles. 
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Figure 1.5. Illustration of prominent homotopies as they might be perceived by the 

human driver 

Figure 1.6 illustrates how three prominent homotopies in a cluttered environment 

might be perceived by a human operator. In off-road environments, the desired homotopy 

may not be as clearly delineated, though vehicle dynamic constraints require that it 

exclude any region through which the vehicle cannot travel without colliding with 

obstacle(s). 
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Figure 1.6. Visualization of prominent homotopies available to a human operator 

(image best viewed in color) 

In addition to homotopy-imposed position constraints, the approach proposed in 

this thesis enforces stability-imposed state constraints and actuator-imposed input 

constraints on the vehicle. Together, these constraints bound an n-dimensional tube 

through the vehicle state space. The threat-based intervention system focuses its planning 

and control strategy on disallowing dangerous maneuvers or departure from the safe or 

controllable state envelope (which can be objectively defined given knowledge of vehicle 

dynamics and estimates of the environmental topology and conditions) rather than 

imposing a non-unique and potentially unsafe avoidance maneuver. Instead of telling the 

system what to do, the constraint-based system determines what not to do, given the 

current state of the vehicle, driver, and environment. Rather than forcing the driver to 

track a specific path, which is in many cases arbitrary from the human perspective, the 

constraint-based approach allows the driver to take any of an infinite number of safe 

(collision-free and dynamically-stable) paths through the environment. Figure 1.7 shows 

the basic architecture of a constraint-based, shared control system. 
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Figure 1.7. Block diagram of a constraint-based, shared control system 

 

While potentially better suited for shared, human-in-the-loop control, constraint-

based semi-autonomy also presents significant challenges. Similar to its path-based 

counterpart, planning in constraint or “homotopy space” requires the identification of 

homotopies and an evaluation of their goodness. However, because the constraints 

bounding a path homotopy admit an infinite number of paths, identifying these 

constraints and assessing their goodness requires a new set of evaluation criterion from 

those commonly used in path planning. For example, whereas the goodness or optimality 

of a specific path is well defined using metrics such as length, curvature, and dynamic 

feasibility, corresponding measures lose their traditional meaning when applied to a set of 

constraints and the many paths they admit. Further, planning methods typically used to 

design paths, such as grid-based search, potential fields, and sampling-based algorithms, 

will not necessarily work to plan constraints since the latter must be designed to 

circumscribe – rather than simply remain within – a safe operating region.  

1.4 OUTLINE AND CONTRIBUTIONS OF THIS THESIS 

This thesis develops, simulates, and experimentally evaluates a constraint-based 

approach to shared human-machine control. Chapter 2 describes two methods for 

identifying, evaluating, and circumscribing path homotopies with semi-autonomously 

enforceable constraints and illustrates these method in single- and multi-agent target 

tracking and obstacle avoidance. Chapter 3 then describes a method for assessing the 
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threat, or likelihood of violating position and stability constraints and using that threat 

assessment to allocate control authority between the human and an onboard controller. 

This chapter also illustrates a threat-based control allocation method in shared control of 

a simulated ground vehicle. Chapter 4 then presents the setup and results of a 1,200-trial 

study conducted to assesses the effect of constraint-based navigation and associated 

driver feedback on the teleoperation performance of twenty drivers navigating an 

unmanned ground vehicle through an outdoor obstacle course. Finally, Chapter 5 closes 

the thesis with general conclusions and a proposal for future work. 
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2 
2 CHAPTER 2: HOMOTOPY-BASED CONSTRAINT PLANNING  

In 1938, James Gibson, and Laurence Crooks postulated that rather than plan and 

track a specific path, human drivers identify and seek to remain within a field of safe 

travel comprised of “…all possible paths which the car may take unimpeded” [62]. As 

envisioned by Gibson and Crooks, this field extended “[like a] sort of tongue protruding 

forward along the road” (see Figure 2.1). This thesis extends their conception of human 

planning behavior to incorporate consideration of the many possible collision-free fields 

and their associated path homotopies existing within an environment with obstacles. If 

path homotopies can be identified, and their goodness evaluated, vehicle position 

constraints can be designed at the edges of a desired or optimal homotopy to circumscribe 

the set of paths it contains and ensure that the vehicle remains safely within it.  

 

Figure 2.1. Illustration of a “field of safe travel” as envisioned by [62] 

This chapter defines path homotopies, explains their significance to the vehicle 

navigation problem and notes how they have been used in traditional, path-based 

approaches to vehicle control. It then describes two new methods for identifying and 

evaluating the desirability of these homotopies, given the vehicle dynamics and control 
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constraints, and demonstrates each method in simulated studies of one or more ground 

vehicles.  

The methods introduced in this chapter assume that the location, velocity, and size 

of obstacles in the environment are known over a finite preview horizon. In practice, 

obstacle information provided by onboard sensing is uncertain and range-limited. 

Improving the accuracy and coverage of these predominantly radar-, LIDAR-, infrared-, 

and camera-based sensing techniques is an active research area with significant 

implications for planning and control techniques that rely on these sensors [63], [64]. As 

demonstrated in several autonomous vehicle initiatives in recent years, these sensing 

systems have reached an acceptable level of accuracy for use in vehicular collision 

avoidance applications [11], [40], [65], [66]. As inter-vehicle communication techniques 

and protocols are implemented in the coming years, the accuracy, range, and robustness 

of environmental data is anticipated to improve further [67], [68].  

The homotopic path planning techniques presented in this chapter also assume 

that the vehicle operates on a two-dimensional plane unless otherwise specified. This 

assumption is relaxed in Section 2.3.2. 

2.1 PATH HOMOTOPIES 

A path homotopy is a topological equivalence relation comprising multiple 

obstacle-avoiding paths that can be continuously deformed into one another without 

encroaching on obstacles [69]. More formally, a path homotopy in topological space X 

consists of a family of paths ht : I  X, indexed by t such that: 1) ht(0) = xv and ht(1) = x1 

are fixed, and 2) the map H : I x I  X given by H(s, t) = ht(s) is continuous [70].  

In the context of vehicle control, all paths spanning from the vehicle’s current 

position Xs to a goal location Xg are said to be homotopic if they pass through the 

obstacles in the same manner. Visualized another way, a path homotopy spanning XS to 

XG is a subset of the field of safe travel that does not contain any holes. Thus, the on-road 

environment illustrated in Figure 1.5 contains at least four path homotopies; one passes to 

the right of both Obstacle C and Obstacle B, while another passes both obstacles to the 
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left. Yet another homotopy passes to the left of Obstacle C and to the right of Obstacle B, 

and the final passes to the right of Obstacle C and to the left of Obstacle B. 

2.1.1 TRADITIONAL USES OF HOMOTOPY RELATIONS IN PATH PLANNING 

In robotic applications, homotopies have traditionally been employed as a 

topological guide to the path planning step of hierarchal motion planners [71]–[73]. In 

[74], Jenkins uses homotopy classes to simplify the shortest path problem (which in the 

presence of obstacles does not lend itself to exhaustive search) by partitioning the 

workspace into a set of mutually exclusive and collectively exhaustive classes, within 

each of which a shortest path solution may be found. Hernandez [75] extends Jenkin’s 

method by introducing a Homotopic RRT to search within each homotopy class for a 

desired path. This use of homotopy classes to partition the planning calculation or reduce 

the search space of probabilistic path planners is not uncommon; various methods have 

been proposed using homotopy classes to reduce the size of probabilistic roadmaps while 

ensuring that they capture the multiple-connectedness of a robot’s configuration space 

[76]–[78].  

Still other path planning approaches use visibility graphs, Voronoi diagrams, or 

Delaunay triangles to identify homotopies and thereby facilitate sample-based or optimal 

path planning [12], [15], [79]–[82]. In [83], the authors present a method for quickly 

assessing the homotopy to which any path belongs, independent of the method used to 

derive it, by defining a complex function that is analytical everywhere in the two-

dimensional vehicle plane except for at distinct points placed at obstacle locations. This 

approach then allows one to verify the homotopy to which any path belongs by simply 

integrating this function along it and verifying the value of the result. This allows for 

relatively simple integration with existing sampling or graph search methods, since path 

plans derived from any of a variety of methods can be retained or discarded according to 

their homotopy equivalence. 
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2.1.2 PROPOSED USE OF PATH HOMOTOPIES IN CONSTRAINT-BASED 

VEHICLE CONTROL 

In contrast to existing approaches, the constraint-based navigation framework 

proposed in this thesis plans and evaluates path homotopies as a proxy for the myriad of 

trajectory options each homotopy presents to the human driver. Rather than use 

topological equivalence to facilitate the planning of a single path, the proposed solution 

identifies and characterizes path homotopies in order to design and evaluate a set of 

position constraints bounding a heuristically-optimal, or driver-preferred set of collision-

free paths. To this end, two approaches to homotopy-based constraint design are 

presented here. In the first, the environment is discretized into constrained Delaunay 

triangles, with path homotopies represented by sequences of adjacent triangles, across 

whose unconstrained edges every possible vehicle trajectory belonging to that homotopy 

must pass. Geometric and reachability heuristics are presented as a means of evaluating 

the “goodness” and dynamic feasibility of competing homotopies and establishing 

position constraints to bound the optimal class. The second uses a rectangular cell 

decomposition to discretize a reduced vehicle state space and facilitate calculation of a 

reachable and optimal homotopy by dynamic programming.  

2.2 CONSTRAINT DESIGN WITH DELAUNAY TRIANGULATION 

One particularly useful tool for revealing the topological structure of the 

workspace is the Voronoi Diagram [84]. As illustrated in Figure 2.2, the Voronoi diagram 

for a set of points, P, partitions configuration space C into a set of cells R, such that every 

point within cell Ri is closer to Pi than to any other point in P. The line segments at the 

boundaries of these cells trace out the topological skeleton, or medial axes of the free 

workspace; points along these axes are equidistant from the nearest obstacles [85].  
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Figure 2.2. Voronoi diagram for a set of points, P, with cells Ri shaded 

Besides providing an effective means of planning paths that meet specific 

clearance requirements [86], the Voronoi diagram also provides a provably complete 

method for capturing the connectedness of a workspace or designing a roadmap that 

traverses it [87], [88]. As a result, the lateral expansion of each medial axis in a Voronoi 

diagram describes a unique homotopy class with that axis’s start and end points. For 

example, in the workspace illustrated in Figure 2.3, all paths connecting the start position, 

S, with a particular goal position G

 will belong to one of two possible homotopies: the 

first passing to the left of Obstacle A, and the second passing to its right. The Voronoi 

segment existing within each represents the path of maximal clearance belonging to the 

homotopy. 
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Figure 2.3. Generalized Voronoi diagram in an environment with obstacles 

Various methods have been proposed for calculating Voronoi diagrams in worst-

case O(nlogn) time and with O(n) complexity [89], [90] and for using the result to plan 

collision-free paths [86], [91], [92]. While well suited for identifying homotopies and 

calculating maximal-clearance paths through obstacles, Voronoi diagrams do not encode 

the aggregate properties of the homotopies they delineate [80], [91]–[94]. In the 

paragraphs that follow, we introduce the Voronoi diagram’s geometric dual – the 

Delaunay triangulation – as a more succinct representation of the paths existing within 

each homotopy that retains the connectedness information embedded in the Voronoi 

diagram. 

The Delaunay triangulation for a set of points in a plane is a triangulation (or 

homogenous simplicial 2-complex) in which no point lies within the circumcircle of any 

triangle [95]. Its dual relationship with the Voronoi diagram captures the homotopy 

classes identified by the Voronoi; when connected by straight lines, the centers of the 

Delaunay triangulation’s circumcircles form the medial axis of the Voronoi diagram.  
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Figure 2.4. Delaunay triangulation for a set of points, P, with Delaunay triangles 

shaded 

The Constrained Delaunay Triangulation (CDT) of a planar, straight-line graph G 

is a triangulation of the vertices, P, of G that includes the edges, ε, of G (such as those 

existing along obstacle boundaries) as part of the triangulation but otherwise remains as 

close as possible to the Delaunay triangulation [96] (see Figure 2.5). Introduced in 1934, 

the CDT has been used in various path planning algorithms [97]. In [81], the authors 

construct a channel from a sequence of triangles. Within this channel, a modified version 

of Hershberger and Snoeyink’s funnel algorithm plans a minimum length path with 

requisite clearance from the channel’s vertices [72]. Others have similarly used the 

constrained Delaunay triangulation to design a convex polygon or dual graph within 

which a minimum length or dynamically feasible path may be calculated using potential 

fields [98], model predictive control [79], or graph search algorithms [99]. These 

methods are similar in technique, though very different in purpose and execution from the 

usage proposed in this thesis. 
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Figure 2.5. Generalized Voronoi diagram (thin black lines) and corresponding 

constrained Delaunay triangulation (blue) of an environment with obstacles (black 

rectangles) 

The constraint-based planning and control approach presented here uses the exact 

discretization and topological information provided by the constrained Delaunay 

triangulation to: 1) identify the edges across which paths belonging to specific 

homotopies must pass, the constraints they must satisfy, and the “control freedom” they 

provide, 2) evaluate the dynamic feasibility of transitions between those edges, and 3) 

design vehicle position constraints to circumscribe a desired homotopy. Each of these 

considerations is discussed below. 

2.2.1 HOMOTOPY IDENTIFICATION 

In this work, we identify homotopies by decomposing a two-dimensional 

configuration space  into a homogenous simplicial 2-complex of constrained 

Delaunay triangles. Because the CDT provides an exact decomposition of C2, each 

sequence of adjacent triangles existing within it uniquely describes a single path 

homotopy connecting any point lying within the first triangle of that sequence with any 
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point lying within the last. Paths traversing each of these homotopies, while not 

necessarily remaining within the unconstrained boundaries of the triangulated channel, 

must cross each of the adjacent edges shared by its triangles. In this section, we present a 

method of simplifying this triangle connectedness to create a dual graph with nodes Ni 

corresponding to triangles Ti and edges εi representing adjacent and unconstrained 

triangle edges Ei. 

The constrained Delaunay triangulation of an environment with polygonal 

obstacles O consists of three types of triangles, each of which can be classified by the 

number of vertices, Pi, it shares with obstacles in the workspace. Triangles with three 

vertices corresponding to the same obstacle, Oj, do not contain any free space and thus do 

no admit collision-free paths. For the present purpose, we label these triangles “Type 3” 

and exclude them from subsequent consideration in homotopy evaluation and constraint 

planning decisions.  

Those with only two vertices per obstacle contain both free space and a 

constrained edge; simple paths that traverse them via their unconstrained edges are 

homotopic with respect to those edges. That is, any path through Ti that begins on edge 

Ei,1, ends on Ei,2, and does not violate the constrained edge Ei,3 or encroach on the vertex 

opposite this edge may be continuously deformed into any other such path. For the sake 

of convenience, this thesis labels these triangles “Type 2”.  

Finally, triangles whose vertices span three different obstacles contain free space 

but do not describe a single homotopy by their unconstrained edges. With respect to 

starting and ending edges, these “Type 1” cells describe a bifurcation in the two 

homotopies that begin at any of their three free edges. Table 2.1 summarizes and 

illustrates this classification. 
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Table 2.1. Triangle classification method and implications for planning 

Type/Illustration Characteristic Utility/Implications 

3 

 

Shares three vertices with 

a single obstacle 

Prohibited region (excluded from 

search) 

2 

 

Shares two vertices with a 

single polygonal obstacle 

(one constrained edge) 

Simple paths that traverse it via its 

unconstrained edges are homotopic 

with respect to those edges 

1 

 

Vertices lie on three 

different obstacles (zero 

constrained edges) 

Describes a bifurcation in the 

homotopy search space 

 

With triangle types defined, we construct the dual graph of the CDT to delineate 

each homotopy existing in the workspace. Triangles in the CDT are represented by nodes 

in the dual graph, while edges in the graph represent the connectivity of those triangles 

across their adjacent edges, Ei. Any feasible homotopy containing the vehicle’s current 

position X0, and the position of the goal location, XG, may be defined as a sequence Hn of 

adjacent triangles T0…Tn extending from the triangle circumscribing the vehicle’s current 

position (T0 in Figure 2.6) to any of the triangles containing the goal location(s). This 

goal may be described by a single point or by a given region of R2, such as the distal edge 

of the local sensing window illustrated in red in Figure 2.6. 
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Figure 2.6. Illustration of triangulated environment highlighting one of its 

homotopies 

2.2.2 HOMOTOPY EVALUATION 

In order to plan a set of constraints circumscribing a desired homotopy, metrics 

describing homotopy goodness must be defined and ascribed to individual triangles (node 

costs) and transitions between them (edge costs) to enable graph search over the dual 

graph. This thesis proposes three distinct heuristics for evaluating homotopy goodness: an 

estimate of the average “distance” traveled by paths belonging to the homotopy, an 

estimate of the control freedom available to an operator while navigating within the 

homotopy, and the dynamic reachability of the homotopy’s paths from the vehicle’s 

current state. We note that because the human driver’s eventual path through any given 

homotopy is not known, evaluations of that homotopy’s goodness necessarily require 

some assumption of the general shape and direction of the driver’s path, as well as 

generalizations about the control freedom it provides and the dynamic feasibility it 

allows.  
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I) LENGTH HEURISTIC 

Assuming that all obstacles in the environment are or can be represented by 

convex regions*, any path starting at a point X0 in triangle T0, ending in a goal region 

, and belonging to a particular homotopy , will pass through 

each triangle Ti in Hn, entering Ti through the edge it shares with Ti-1 (Ei-1, i) and exiting 

through Ei, i+1 into Ti+1. The average “distance” Li-1,i+1 traveled by all simple (non-self-

intersecting) paths as they cross Ti may therefore be heuristically described as the 

distance from the midpoint of Ei-1,i to that of Ei,i+1. Figure 2.7 illustrates the dual graph 

embodying this heuristic and the resemblance it shares with the generalized Voronoi 

diagram.  

 

Figure 2.7. Triangulated environment illustrating the relationship between the 

medial path heuristic used to estimate homotopy length and the Voronoi Diagram 

                                                 

* Several methods have been proposed for convexifying non-convex polygons [100], [101]. One of the simplest and most 

conservative methods circumscribes obstacles by a convex buffer shell and regards this shell as the obstacle in subsequent 

computations. 
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II) CONSTRAINT FEASIBILITY HEURISTIC 

Various measures have been devised for planning a robust path or describing its 

disturbance invariance and dynamic feasibility [102]–[104]. In the presence of an 

unbounded and equally likely (given the human’s unknown future inputs) set of 

homotopic paths, these measures loose their traditional meaning and utility. To 

accommodate this ambiguity in the evaluation of a set of homotopy constraints, the 

feasibility metric heuristically describes the control freedom or range of motion these 

constraints allow and the dynamic demands they present by evaluating the pass-through 

clearance and required “curvature” of the triangles comprising the homotopy. We 

motivate this choice of heuristics with the following observations: 

1. The dynamic feasibility of any path followed by a vehicle with Dubins 

constraints and friction-limited tires may be characterized by the 

lateral acceleration that path requires. This lateral acceleration directly 

relates to tire friction utilization, which is limited by tire-road 

interactions and vehicle weight. 

2. This lateral acceleration is directly proportional to the square of 

vehicle velocity and inversely proportional to the radius of curvature 

of the path it traverses. 

3. In any homotopy Hn, the maximum radius of curvature of any of the 

constant-velocity paths belonging to Hn is limited by the “width” wi, or 

minimum pass-through clearance of the Delaunay Triangles 

comprising the homotopy and the relative orientation, ϕi, of the 

constraint edges it must satisfy. The blue dashed line in Figure 2.8 

illustrates the maximal radius path belonging to one particular 

homotopy. 

4. In a constrained Delaunay triangulation, the medial “pass-through” 

line spanning from the midpoint of the entry edge to the midpoint of 

the exit edge is parallel to the constrained edge. Thus, changes in the 

orientation of this line – segments of which derive from dual graph for 

the length heuristic – reflect changing orientations of the constraint 

boundaries that must be satisfied by paths traversing the homotopy. 
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Figure 2.8. Illustration of a triangulated homotopy and the heuristics used to 

describe its constraint restrictiveness and dynamic feasibility 

III) CONSTRAINT REACHABILITY HEURISTIC 

In [105], Bertsekas and Rhodes introduce a backstepping approach to estimating 

the reachability of a target set by recursively estimating the size of the “effective target 

sets” that the system must traverse in order to reach it. Broadly stated, for the discrete 

dynamical system  

 (2.1) 

in configuration space , with input constraints , initial state x0, and 

target set , this approach reduces the problem of driving the system from x0 to 

XN to one of driving it to intermediate, or “effective” target sets Xk<N that satisfy the 

constraint  
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. (2.2) 

Applying this concept to a constrained Delaunay triangulation and defining sets

 as (n-1)-dimensional slices of n-dimensional configuration space Cn 

coinciding with adjacent triangle edges , we make a similar observation: 

dynamically feasible paths spanning from the vehicle’s current position, x0, to a goal 

region, XN, must also traverse only the reachable subset of :  

. (2.3) 

Figure 2.9 illustrates how the effective target sets comprising one homotopy 

spanning from x0 to XN might appear. 

 

Figure 2.9. Illustration of effective target sets as edges of constrained Delaunay 

triangulation 

The “size” or volume of effective target sets or the effective target tube can be 

used to assess the dynamic reachability and current constraint “restrictiveness” of the 

homotopy itself from the vehicle’s current state. In what follows, we develop this 

reachability heuristic using an adaptation of the dynamic window approach originally 
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presented in [106]. In their work, Fox, Burgard, and Thrun map the location of obstacles 

in the robot’s environment to inadmissible translational and rotational robot velocities; 

those from which the synchro-drive robot’s actuators could not prevent collision with an 

obstacle. The authors then search within a “dynamic window,” or velocity space that can 

be reached within the next time interval, and calculate optimal translational and rotational 

velocities that allow the robot to progress toward a goal without colliding with obstacles. 

The adaptation of the dynamic window approach presented here similarly 

considers the vehicle’s actuator limitations, but uses those limitations, together with 

“avoidance accelerations” – the acceleration required to avoid collisions with obstacles – 

to approximate the margin of control freedom afforded by the available homotopies. 

Rather than map obstacles onto a 2-dimensional velocity space, this approach instead 

maps the total vehicle acceleration required to avoid obstacles onto the one-dimensional 

steering space of the vehicle. It then calculates the surplus tire friction available to the 

human driver if s/he were to steer into one homotopy or the other. Steering angles from 

which the vehicle cannot avoid a collision with an impending obstacle are excluded from 

this area calculation. Figure 2.10b illustrates one such region (labeled “Collision 

Imminent”) corresponding to a range of steering angles from within which the vehicle 

cannot avoid the black obstacle at its current speed. 
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(a) 

 

(b) 
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Figure 2.10. Illustration showing a) triangularized environment with obstacles (gray 

and black), and b) avoidance acceleration mapped to steering commands (with gray 

and black blocks corresponding to obstacles in (a).  

 

Assuming constant velocity V, wheelbase length L, tire friction coefficient μ, 

gravity g, stationary obstacles (see 2.3.2 for treatment of moving obstacles), and no-slip 

conditions (turns of constant radius), the turning radius required to avoid an obstacle by 

passing it to the left (RL) or to the right (RR) by steering is given by Table 2.2 and Table 

2.3. 

Table 2.2. Avoidance radii calculation for polygonal obstacles 
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Table 2.3. Avoidance steer special cases 

 

The lateral acceleration required to avoid an obstacle to the left or to the right by 

steering alone is then given by  

, (2.4) 

which for a front-wheel-steered vehicle with Dubins constraints, wheelbase L, and 

steering angle δ, can be approximated by 

. (2.5) 

As a function of vehicle steering angle, the longitudinal acceleration required to 

avoid the vehicle-facing edge of an obstacle at a distance x is then approximated by 

. (2.6) 
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while the longitudinal acceleration required to avoid the heading-tangent edge of an 

obstacle at a lateral distance y from the vehicle is approximated as 

. 
(2.7) 

Thus, the total acceleration required to avoid collision with obstacle ●, with 

extremal steering commands δ
,1 and δ

,2 passing to its left and right, respectively, as a 

function of vehicle steer angle is given by 

, (2.8) 

where 

, (2.9) 

,
 (2.10) 

and  

.
 (2.11) 

Summed over all steering angles corresponding to each homotopy choice, the 

surplus tire friction for homotopy i is then given by 
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 (2.12) 

 

(2.13) 

where δE1, ● (1) and δE1, ● (2) are the extremal steering angles from which the two edges of 

set E1,● can be reached. δ●
actuator refers to physical steering limits, and δ●

kinematic represents 

the maximum non-slip steering angle allowed by the tire friction and current vehicle 

velocity as given by  

.
 (2.14) 

With heuristics Lk, wk, ϕk, and asurplus thus calculated, a graph search (Dijkstra’s 

algorithm is used here) may be performed to calculate the optimal path homotopy and its 

associated constraints. In the results shown below, the objective function is defined as 

 (2.15) 

 

(2.16) 

This objective function incorporates an estimate of average homotopy “length” 

(from L) with an approximation of the control freedom it provides (from w), the dynamic 

stability it affords (from ϕ), and the present reachability it allows to the vehicle (from 

asurplus). 

2.2.3 CONSTRAINT-BASED NAVIGATION WITH MULTIPLE AGENTS 

Once an optimal homotopy has been identified, the orientation of its centerline or 

the physical position of its edges can be enforced as constraints on the heading or 
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position of the vehicle by a lower level controller. While the constraint-based framework 

presented in this thesis is specifically designed for, and provides distinct advantages 

when combined with, shared-adaptive control strategies, the lower-level controller need 

not be semi-autonomous. In what follows, we demonstrate one example of a 

decentralized, autonomous controller taking advantage of the constraint-based 

framework’s homotopy identification to improve efficiency of transport for multiple 

agents.  

This demonstration adapts the control law presented by Chang et al. in [107] to 

navigate a group of vehicles through an obstacle course toward a goal. As presented by 

Chang et al., this control law uses scalar potentials to drive an agent toward the goal and 

gyroscopic forces and damping forces to avoid collisions with obstacles and other 

vehicles. In what follows, we compare this controller’s performance and navigational 

efficiency with the performance and efficiency of a slightly modified version which 

makes use of CDT-derived homotopy constraints.  

I) CONTROLLER SETUP 

Given a point mass with mass m, state q, control input u, and second-order 

translational dynamics 

  (2.17) 

Chang et al. apply a control law u consisting of potential (Fp), dissipative (Fd), and 

gyroscopic (Fg) forces described by equations (2.18) – (2.21) 

 (2.18) 

 
(2.19) 

 
(2.20) 

 
(2.21) 
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As given in [107], the potential force Fp, is calculated as  

. (2.22) 

The damping force Fd consists of a positive definite dissipative damping constant 

Ddc, and a positive definite braking component Db for avoiding frontal collisions with 

obstacles. With the vector  representing the distance and direction to the nearest 

detected obstacle, Db is given by 

( ) ( ) 21 exp CnCnDb −−=  . (2.23) 

Finally, the gyroscopic force Fg is calculated as 

, (2.24) 

where 

( ) ( ) 43 expsign CnqnCSg −−⋅×⋅= 



 , (2.25) 

Figure 2.11 illustrates the forces applied by this control law. 

 

Figure 2.11. Diagram of a vehicle with detection shell Rs, normal vector to nearest 

obstacle (n) and corresponding control forces 
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II) SIMULATION SETUP 

Two embodiments of this control strategy were simulated to demonstrate the 

utility of triangulation-derived constraints in a distributed, multi-agent target acquisition 

and obstacle avoidance scenario. In the first test configuration, the gyroscopic controller 

was implemented as described in [107] – with the attractive potential force Fg directed 

toward the target from each vehicle’s current position.  

The second configuration replaced the target attractive force with a proportional 

control on the vehicle’s heading. At each time step in this approach, each vehicle 

triangulated the known environment, planned an optimal sequence of triangles through it, 

and proportionally controlled the vehicle heading to the orientation, ϕk of the resulting 

channel. In both cases, vehicle velocities were taken as constant (Fd = 0). Table 2.4 

summarizes the control law used by each vehicle in the corridor-tracking case. Note that 

with the exception of lines 3 and 4, the control simulation (without corridors) was 

identical (replacing the reference heading in line 5 with the reference heading from the 

vehicle toward the goal). 
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Table 2.4. Pseudocode for control law used in corridor-based controller 

1   FOR each vehicle v 

 2 Identify all obstacles within sensing radius Rs  

 3 Decompose known/static environment (from map) into a contiguous set of 

Delaunay Triangles (note that this decomposition does not account for 

unanticipated or previously-unmapped obstacles. 

 4 Plan an optimal sequence of adjacent triangles from triangle containing the 

current vehicle position to the goal using graph search. Dijkstra’s algorithm was 

used here, though others can also be used.   

 5 Compute turning force Fp (align vehicle heading with reference heading of 

current triangle) 

 6 Identify nearest (frontal) hazard and construct normal vector to that hazard 

 7 Compute gyroscopic avoidance force Fg (avoid nearest frontal hazard) 

 8 Execute control action  

 

Thirty vehicles, each performing decentralized constraint planning and control, 

start at X=0, -6<Y<6 and travel toward a goal region at X=200, -10<Y<10. Rectangular 

obstacles (shown in gray in Figure 2.12 and Figure 2.13) are assumed to be known 

globally (as though from a map or road database), while the circular obstacles shown in 

red are only knowable locally via each vehicle’s local sensing. 

III) SIMULATION RESULTS 

Figure 2.12 shows the vehicle paths resulting from navigation without a 

homotopy-guided controller. While all thirty vehicles eventually arrive collision-free at 

the target, their routes are inefficient and involve significant maneuvering to avoid 
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vehicle-vehicle and vehicle-obstacle collisions. In light of the reactive collision 

avoidance strategy being employed by each vehicle, these results are not surprising; 

traveling blindly toward the goal causes each vehicle to spend a significant amount of 

time maneuvering along the face of intermediate obstacles and directly into the path of 

oncoming vehicles. 

 

Figure 2.12. Simulation results showing traces of the paths taken by 30 vehicles 

without corridor planning capability 

When homotopy constraints are incorporated into the goal seeking behavior of 

each vehicle, the common orientation shared by the triangles comprising these 

homotopies (as seen from each vehicle’s homotopy planner) provides order to an 

otherwise decentralized control strategy. That is, within each Type 2 triangle, vehicles 

share the same orientation reference. While navigating through Type 1 triangles, these 

orientation references can differ by up to 180°, though while traversing these triangles, 

vehicles are free to violate any of the unconstrained edges if necessary to avoid a 

collision. This alignment of vehicle references does not require vehicle-to-vehicle 

communication and leads to more efficient vehicle paths that require less collision 

avoidance maneuvering compared to decentralized strategies that rely solely on potential 

fields and local collision avoidance. 
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As Figure 2.13 shows, when using this approach, all thirty vehicles again 

successfully navigate the course without collisions, though with significantly better 

efficiency. Note that when traversing narrow corridors with unconstrained edges, the 

reactive collision avoidance controller (2.18) causes the vehicles to fan out, with some 

crossing into unrestricted regions of the environment. This increases vehicle-to-vehicle 

clearance and eases congestion without significantly affecting completion time. Note that 

in this particular scenario, all thirty vehicles happened to choose the same homotopy. 

While constraint plans starting from different locations may and often will be unique, 

their construction from a common workspace and identical homotopy evaluation criterion 

ensures that all vehicles passing through a triangle Ti share a similar orientation reference 

and direction of travel. 

 

Figure 2.13. Simulation results showing traces of the paths taken by 30 vehicles with 

corridor planning capability 

Figure 2.14 plots a distribution of the time that vehicles employing each controller 

configuration required to complete the course. Note that due to their shorter, more 

efficient paths, vehicles navigating with homotopy constraints reduced average course 

completion time by 25% relative to vehicles navigating without these constraints. this 
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decrease was statistically significant: without constraints, vehicles required an average 61 

seconds to complete the course. With them, the average dropped to 46 seconds (F(1,58) = 

166.9, p < 1e-18). Uniformity provided by a similar set of constraints also significantly 

decreased variation in course completion time, from a 5.8 second standard deviation for 

the controller that did not consider homotopies, to 1.6 seconds for the homotopy-

following controller. 

 

Figure 2.14. Course completion time for controllers with and without a homotopy 

reference 

The time each vehicle spent actively avoiding imminent collisions also decreased 

significantly as a proportion of total travel time with the homotopy-following controller 

enabled. Since all vehicles shared a common velocity, we estimate collision risk by the 

time it spends avoiding all “head-on” collisions with the nearest obstacle within its 

detection radius. More specifically, we define a head-on collision incident for vehicle i as 

one in which  when  where . Figure 

2.15 illustrates one such incident. 

0<⋅ ji qq 






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As shown in Figure 2.16, the average percentage of course navigation time each 

vehicle spent avoiding head-on collisions with other vehicles was reduced by 83% when 

homotopy constraints are enforced (from M = 10%, SD = 3% to M = 1.7%, SD = 1%). 

This reduction was also statistically significant given a 95% confidence interval (F(1,58) 

= 221, p < 1e-20). This result follows simply from the observation made above; 

homotopy constraints in a given obstacle field provide a common reference and direction 

to vehicles traveling within them. Enforcing those constraints allows vehicles to avoid 

much of the uncertainty and conflicting trajectories inherent to purely local navigation. 

 

Figure 2.15. Illustration of a “head-on” collision incident 
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Figure 2.16. Percent of total course time spent avoiding head-on collision for 

controllers with and without a homotopy reference 

 

2.3 CONSTRAINT DESIGN WITH PATHS 

While the method described in Section 2.2 provides a particularly convenient 

means of identifying and evaluating constraints from the environment’s homotopies and 

effective target sets, it is not the only approach to homotopy-based constraint design. 

Given that the function of the constraint planner is to identify an optimal homotopy and 

design constraints to keep the vehicle safely inside it (with or without a human in the 

loop), the method it uses need only be fast, dynamically aware (to ensure that constraints 

admit dynamically feasible trajectories), and predictive (in order to provide sufficient 

preview for predicting threat and engaging control intervention). This section 

demonstrates a, path-based alternative to the triangulation-based approach that uses 

dynamic programming to calculate a dynamically optimal, zero-width path and expands 

that path into a set of position constraints bounding the homotopy that contains it. 

Reachable set constraints, transition symmetry, and maneuver primitives are also 

introduced as a means of reducing the computational burden.  

2.3.1 STATE REDUCTION VIA ACKERMANN POINT TRANSFORMATION 

Representing its steering and acceleration inputs in the body-fixed frame, a 

vehicle with negligible roll dynamics can be modeled by 
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where Fxf, Fyf, Fxr, and Fyr represent the longitudinal and lateral (in a body-fixed frame) 

tire forces at the front and rear wheels respectively, as illustrated in Figure 2.17. 
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Figure 2.17. Illustration of vehicle model used in constraint planning 

In order to reduce the computational complexity of the dynamic programming 

algorithm, we simplify these dynamics by assuming a constant forward velocity, V, and 

applying a state transformation originally described by Ackermann in [108]. This 

transformation effectively decouples the effect of front and rear lateral forces on the 

vehicle lateral dynamics and allows for the approximation of steering maneuvers as 

constant radius turns decoupling point, P. Transforming (2.26) using the method 

described by Ackermann yields 

,

 (2.27) 

which decouples the lateral acceleration at a point distanced rzzp mxIx =  ahead of the 

vehicle’s center of gravity (labeled P in Figure 2.17) from the vehicle yaw dynamic. The 

lateral acceleration of this point may then be written as  

yf
r

rf
yp F

mx
xx

a
+

=
,
 (2.28) 

where the lateral force at the front wheels is a nonlinear function of the tire stiffness 

curve, Cf, and the lateral sideslip at the front wheels, αf : 



57 Chapter 2: Homotopy-Based Constraint Planning 

.

 
(2.29) 

In a strict implementation of the path computed by the dynamic program, a low 

level controller might be used to manipulate vy, vx, and δ and thereby track the desired Fyf.  

In the constraint-planning implementation presented here, however, only the (physically-

realizable) lateral acceleration ayp required to avoid obstacles is of interest as it provides 

an objective (friction-constrained) gauge by which to penalize maneuver aggressiveness 

or nearness to instability. Ignoring friction circle effects (assuming constant velocity and 

no longitudinal acceleration), this friction limit on achievable lateral acceleration is 

described by 

gayp µ≤  (2.30) 

Considering piecewise-constant lateral acceleration of the Ackerman point 

(constant-radius turns) as the input action, discretizing x, y, and ψ over a preview horizon, 

and considering continual forward progression between fixed Δx intervals, the state 

transitions are given by: 

xxx kk ∆+=+1  (2.31) 

( )
yp

kypypkk
kk a

VxaxaVV
yy

2
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1

ψψψ +∆∆−−
+=+  (2.32) 

 (2.33) 

where curvature κk is given by 
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2
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=∆  (2.35) 

2.3.2 CONSIDERATION OF DRIVING OBJECTIVES AND ENVIRONMENTAL 

DISTURBANCES 

In its simplest form, a cost function penalizing lateral acceleration and distance 

traveled is used in the finite horizon DP problem. This penalty on lateral acceleration is 

consistent with the objective of finding the most stable/controllable (and comfortable) 

path through the constraint space. Penalizing distance traveled provides the necessary 

incentive for the vehicle (assumed to be moving at a constant speed) to progress along the 

road. Equations (2.36)-(2.38) illustrate this cost function. 
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[ ]( ) 0=Nhbase x  (2.38) 

Consideration of rules of the road, moving obstacles, and terrain effects may be 

incorporated into the constraint planning problem via various modifications of this cost 

function. For example, assuming that lane directions are known, the constraint planner 

can be biased to drive in the appropriate lane (or, more specifically, to avoid the 

oncoming lane where possible) by augmenting (2.37) as 
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Constraint planning objectives may be further extended to consider hazard motion 

by predicting the anticipated intersection of the host vehicle with dynamic hazards and 

shifting the regions of high cost corresponding to predicted collision states accordingly. 

Many methods for deterministic and probabilistic collision state prediction have been 

proposed in the literature[37], [109]–[111]. In this work, perfect sensing or vehicle-to-

vehicle communication is assumed, and collision states are predicted by estimating time 

to collision as follows. 

Given a (constant) host velocity hostx  and obtaining the current velocity of 

roadway hazards hazx  from tracking sensors or vehicle-to-vehicle communication, where 

( )txhost  and ( )txhaz  represent the current position of the host and hazard, respectively at 

time t, the estimated time to collision ct∆  evaluated at time t0 was evaluated by 

 (2.40) 

to first order where 

( ) ( ) hosthaz xtxtx 

 −=~ , (2.41) 

and 

( ) ( ) ( )txtxtx hosthaz −=~ , (2.42) 

or 
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 (2.43) 

to second-order (requiring that ( ) 0~
0 ≥tx  in (2.43)). 

Given 
0tct∆ , the x position of each road hazard at tc is then estimated as 

( ) ( ) ( )
00

00 tchazhaztchaz ttxtxtx ∆⋅+=   (2.44) 

or 
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to first- and second-order, respectively. Assuming some knowledge of true hazard depth 

Δxhaz (which may in practice be difficult to gain from onboard sensors alone), the depth 

of the predicted collision state from the host vehicle’s perspective may be estimated by 

( ) ( ) ( ) ( ) ( )( )0000
~

0
txtxtxtxtx hazhazhaztchaz


 ∆⋅−∆≈∆
. (2.46) 

For a vehicle with negligible roll dynamics, terrain effects (such as sloped 

shoulders) change the magnitude and direction of the accelerations it experiences during 

turning maneuvers. More specifically, a sloped roadway decreases the magnitude of 

friction-critical normal forces at the tires while simultaneously applying an additional 

lateral acceleration on the vehicle’s center of gravity. Sloped road shoulders were 

considered in the constraint planner by modifying (2.37) to read 
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where in this formulation, 

ϕθ cossingabase =  (2.48) 

represents the lateral acceleration caused by gravity (independent of steering or Fyf 

command). Acceleration constraints imposed on the tires in this formulation are reduced 

to 

θµ cosmax ga ≤ . (2.49) 

Figure 2.18 illustrates θ and φ on a common road shoulder. 

 

 

Figure 2.18. Illustration of sloped road shoulder and associated parameters 

2.3.3 SIMULATED TRAVERSAL OF AN OPTIMAL HOMOTOPY 

The simulations that follow demonstrate constraint-based navigation using 

dynamic programming to guide homotopy constraint planning. 

I) SETUP 

These simulations assume that road lane data is available and that the 

instantaneous position, velocity, and acceleration of road hazards have been measured or 
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estimated by on-board sensors or vehicle-to-vehicle communication devices. At each 

timestep, a dynamic programming problem using one of the cost functions described 

above and the state discretization described in Appendix D, is solved to obtain an optimal 

vehicle path from the vehicle’s current position to the limits of onboard sensing (~80 m). 

A y-convex corridor bounding this path’s homotopy is then calculated and enforced by a 

Model Predictive (MPC) Controller as a constraint on vehicle’s lateral position. Subject 

to these constraints, this MPC controller plans and tracks a stability-optimal trajectory 

that keeps the vehicle within the desired homotopy through a 40-sample (~40m at 0.5 

sec/sample and V = 20 m/s) prediction horizon. Section 3.2 describes this controller in 

greater detail. Note that the simulations presented below implemented the MPC control 

actions autonomously for the sake of demonstration. The dynamics of the vehicle were 

simulated using a nonlinear MSC Adams model of a generic light truck (described in 

Appendix A). Tire forces were approximated from a Pacejka tire model [112]. 

II) RESULTS 

Figure 2.19 illustrates a DP-generated cost function (sampled on the ψ=0 plane), 

together with its path plan and the resulting constraint corridor (red wall) enforced by the 

MPC controller.   



63 Chapter 2: Homotopy-Based Constraint Planning 

 

Figure 2.19. Illustration of DP-generated cost surface, path, and constraint plan 

Figure 2.20 illustrates how this cost varies within the three-dimensional state cube 

x, y, and ψ. Note that the long and relatively narrow road/shoulder surface causes yaw 

angles larger than ~30° to be heavily penalized as these require large (accumulated) 

accelerations to recover and remain inside the region of interest. Also note that regions of 

low to moderate cost existing on any given slice roughly correspond to “effective target 

sets” similar to those described by [105] and exploited in Section 2.2.2. 
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Figure 2.20. Illustration of objective function cost in the state cube 

Figure 2.21 shows a snapshot of an obstacle avoidance scenario in which the DP 

planner calculates a minimum-acceleration, minimum-time homotopy through a non-

convex obstacle field. Note that in this simulation, the symmetric hazard setup 

(translucent gray rectangles), together with the initial vehicle state at x=y=ψ=0, makes 

the choice of homotopies passing to the left or right of the first obstacle rather arbitrary. 

In a semi-autonomous implementation of the MPC control law (described in Chapter 3), 

this directional neutrality in homotopy selection would allow the human driver to bias the 

constraint plan by changing the initial conditions it uses in its goodness/feasibility 

estimate (where the control authority available to do so would be much greater in low 

threat scenarios such as before the vehicle reaches the first obstacle). 
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Figure 2.21. Snapshot of an obstacle avoidance simulation (obstacles stationary) 

Just as directional neutrality in the corridor plan can be beneficial in some 

scenarios (like the semi-autonomous application discussed above), not considering 

preferred regions of the roadway in the constraint plan may present a liability in others. 

One such scenario includes that experienced by a vehicle traveling on a bi-directional 

highway. In this scenario, a careless or inattentive driver input may cause the corridor 

planner to draw a path that deviates into an oncoming lane in spite of the fact that another 

corridor of similar expected “goodness” exists in the host lane. Consideration of lane 

directionality and overall “goodness” of different road regions motivates the use of cost 

incentives in the corridor plan that bias it toward selecting “desirable” regions of the road 

surface. The relative magnitude of these cost incentives (with respect to penalties on 

friction utilization, distance, etc.), however, requires careful tuning to avoid causing the 

planner to choose an overly-aggressive corridor in the host lane when a safer (and 

perhaps even obstacle-free) option exists in the opposite lane. Figure 2.22 shows how the 



Chapter 2: Homotopy-Based Constraint Planning 66 

DP cost function defined by (2.36) and (2.39) affects the corridor plan and subsequent 

vehicle trajectory through an obstacle field. Notice that in this simulation, the opposing 

lane was defined by y ≥ ycenterline = 0. 

 

Figure 2.22. Snapshot of a simulation with penalties applied for deviation into an 

oncoming lane 

Beyond highlighting the utility of lane/region penalties on the corridor plan, this 

simulation demonstrates how the DP algorithm’s additional lookahead (relative to that 

used by the MPC controller) can improve the locally-optimality MPC solution by 

providing an optimal corridor plan through a larger and non-convex configuration space. 

Note that at t = 3s, the MPC solution is as yet unaware of the large obstacle looming at x 

= 145m. Were a corridor to be planned around the MPC’s predicted solution, the vehicle 

might pass through the second column of obstacles at y=-5 or -3 ≤ y ≤ -2.5, resulting in a 
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“dead-end” scenario that would require a dangerous avoidance maneuver. With its added 

preview distance, the DP planner appropriately calculates a path and designs corridor 

constraints that ensure the MPC solution remains within the more dynamically feasible 

homotopy. Figure 2.23 shows the vehicle, corridor, and path plan(s) a few seconds later. 

Notice that although the DP solution seeks to avoid traveling in the opposing lane, 

the MPC solution applies no such penalty, causing it to travel freely in either lane when 

no obstacles are present. Were another hazard to appear (at, e.g., 210m), the MPC 

solution would be constrained to pass it on the DP-preferred side. This partial decoupling 

of corridor plan and MPC objectives is seen as a desirable characteristic where semi-

autonomous operation is concerned. That is, the goal of corridor constraints is to provide 

the driver with as much freedom as possible in the absence of road hazards. On a two-

lane highway, for example, the driver should be free to choose a preferred trajectory and 

lane of travel if the roadway is clear and lane markings allow. Only in the presence of 

obstacles (and corresponding homotopy bifurcations) does the lane convention restrict the 

driver’s freedom. 
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Figure 2.23. Snapshot of a simulation with penalties applied for deviation into an 

oncoming lane 

Figure 2.24 shows two clips of a simulation with moving obstacles. In this 

simulation, obstacle motion was predicted using a first-order hold (equations (2.40), 

(2.41), and (2.44)) on obstacle velocities (which were constant in this case). Notice that at 

t = 0.5s, obstacles 1 and 2 share the same x-position and the obstacle field is symmetric. 

Were the corridor planner to neglect obstacle velocity, this setup would lead to a corridor 

plan that causes the vehicle to pass under the third (stationary) obstacle. Accounting for 

obstacle velocities leads to a shifting in the high-cost (predicted collision state) regions 

and leads to a corridor plan that more appropriately passes above the third obstacle once 

obstacle 1 has passed. 
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(a) 
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(b) 

Figure 2.24. Snapshots of a simulation with moving obstacles 

As mentioned above, when load transfer is neglected, the effect of gravity on 

sloped terrain both scales and shifts the reachable set. This causes the DP solution 

described by (2.36) and (2.47)-(2.49)) to penalize slopes that push the vehicle toward 

unsafe regions (either on or off the road surface). Figure 2.25 illustrates a simulation in 

which the corridor planner constrains the MPC solution to pass above an obstacle rather 

than travel on a road shoulder sloped at a relatively high θ = 50°. This scenario highlights 

one additional effect of using distinct cost functions and vehicle models in the corridor 

planner and MPC controller. As mentioned above, in many semi-autonomous driving 

scenarios, the distinct corridor/path goals caused by this disparity can provide a desirable 

freedom to the human driver. This freedom, however, comes at the cost of the increased 
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lookahead that would be available to the MPC were the DP costmap used to extend the 

MPC preview via terminal penalties interpolated from the cost gradient of the DP map.  

 

Figure 2.25. Simulation of a vehicle traveling near a (50°) sloped shoulder 

2.4 CONCLUSIONS 

This chapter introduced two general methods for identifying, evaluating, and 

planning constraints to bound a path homotopy. While other evaluation heuristics and 

cost functions might also be used to plan constraints, the methods described in this 

chapter result in a set of minimally restrictive position constraints that is particularly well 

suited for semi-autonomous enforcement. Chapter 3 describes the means by which these 

homotopy constraints are combined with vehicle dynamic and control restrictions and 

enforced via a shared adaptive control policy.  
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3 
3 CHAPTER 3: THREAT-BASED CONSTRAINT ENFORCEMENT  

3.1 INTRODUCTION 

Once a desired homotopy has been identified, the position, state, and input 

constraints required to keep the vehicle within it must be converted into a semi-

autonomously enforceable control policy. This chapter describes a model-based threat 

assessment method and a shared-adaptive control law that are particularly well suited to 

this task. This threat assessment method and control law use constrained model predictive 

control to predict the feasibility of satisfying position constraints, stability limits, and 

control actuator restrictions within the desired homotopy and calculate an optimal control 

policy that satisfies them. This control policy is then enforced according to the threat, 

here defined as the nearness of the optimal predicted trajectory to the limits of vehicle 

stability. When threat is low, the human retains significant autonomy. As threat increases, 

control authority is increasingly allocated to an MPC controller to ensure that safety 

constraints are satisfied.  

The paragraphs that follow briefly describe the model and controller used to 

predict threat and the threat-based control policy employed to enforce constraints. 

3.2 MODEL-BASED THREAT ASSESSMENT 

This thesis uses Model Predictive (alt. “receding horizon optimal”) Control to 

predict the vehicle’s future state evolution and calculate an associated optimal control 

input. Model predictive control is a family of finite-horizon optimal control schemes that 

iteratively minimizes a performance objective defined for a forward-simulated plant 

model subject to state and input constraints [18], [113], [114]. As illustrated in Figure 
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3.1, MPC is particularly well suited for predicting a future state trajectory through the 

position constraints imposed by a particular environment and path homotopy. Within the 

convex constraints bounding this homotopy, the MPC calculation predicts a time-

parameterized state and control trajectory that is optimal with respect to a set of 

performance criteria outlined in an objective function. Given an objective function that 

emphasizes vehicle stability, this prediction then captures an objective measure of the 

need for intervention and a stability-optimal control policy that satisfies constraints if 

allocated sufficient control authority. 

 

Figure 3.1. Model predictive control illustration 

3.2.1 MODEL PREDICTIVE CONTROL 

When it was originally developed in the process control industry in the late 

1970’s, MPC’s intensive computational requirements restricted its application to 
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processes with low control update rates. Subsequent improvements in both computational 

hardware and algorithm efficiency have significantly expanded its range of opportunity to 

include diverse applications ranging from robot manipulators [115], [116] to vehicle 

navigation systems [47], [117]–[119], inventory management [120], and clinical 

anesthesia [121]. 

The MPC algorithm progresses as follows. At each time step, t, the current plant 

state is sampled and a cost-minimizing control sequence spanning from time t to the end 

of a control horizon of n sampling intervals, t+n∆t, is computed subject to inequality 

constraints. The first element in this input sequence is implemented at the current time 

and the process is repeated at subsequent time steps. The following development 

describes the specific MPC implementation employed in this work and is included for 

completeness. 

For a four-wheeled, front-steer vehicle with discrete-time state equations given by 

kvkukk vBuBAxx ++=+1  (3.1)  

kvkky vDCx +=  (3.2) 

with x, y, u, and v representing states, outputs, inputs, and disturbances of the system  

respectively, a quadratic objective function over a prediction horizon of p sampling 

intervals is defined as 
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where Ry, Ru, and R∆u represent diagonal weighting matrices penalizing deviations from 

yi = ri,  and ui = 0, ρε represents the penalty on constraint violations and ε represents the 

maximum constraint violation over the prediction horizon p. In this work, the elements of 

Ry corresponding to vehicle position states are zeroed to reflect the absence of a vehicle 

path reference. Inequality constraints on the states and inputs of the vehicle are defined 

as: 



75 Chapter 3: Threat-Based Constraint Enforcement 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0
1,...,0

|1
|1

|1

maxmin

maxmin

maxmaxminmin

≥
−=

∆≤++∆≤∆

≤++≤

+≤++≤−

ε

εε

pi
ikiki

ikiki
iikikii

jjj

jjj

jjjjj

uuu
uuu

VyyVy

 (3.4)  

where the vector ∆u represents the change in input from one sampling instant to the next, 

the superscript “(•)j ” represents the jth component of a vector, k represents the current 

time, and the notation (•)j(k+i|k) denotes the value predicted for time k+i based on the 

information available at time k. The vector V is used to variably soften constraints over 

the prediction horizon, p, by including ε in the objective function.  

Position constraints bounding the desired homotopy are sampled over the 

predicted vehicle trajectory as upper and lower limits on the vehicle lateral position as 

 (3.5) 

With n representing the number of free control moves, ∆Uk and Uk are calculated 

by choosing a blocking vector Jm such that  
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where z = [z0, …, zn-1]T represents the free optimization variables of the optimization 

problem. By augmenting the vectors y, U, ∆U, and V over the prediction horizon as 

 (3.8) 

and calculating weighting matrices Su, Su1, Sx, and Hx, the augmented plant outputs over 

p are given by 

 (3.9) 

Finally, representing the optimal control problem as a quadratic program in its 

augmented outputs, inputs, and disturbances by calculating Kx, Ku, Kut, Kv, and K∆u 

gives 

( ) 2
11 2

1 ερε+∆∆+∆+++= −− kkkvkutkukxk uxJ UHUUKVKUKK TTTTT
, (3.10) 

with constraints represented by 

ckc bUA ≤∆ . (3.11) 

Expressed as a quadratic program, the control problem is then solved using 

conventional optimization routines [18], [113]. 

3.2.2 VEHICLE MODEL 

The MPC prediction model used in this thesis considers the kinematics of a four-

wheeled vehicle, along with its lateral and yaw dynamics. Vehicle suspension dynamics 

and roll states were excluded from present consideration to simplify the computational 
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problem given the low center of gravity and high suspension stiffness of the experimental 

platforms. 

Figure 3.2 illustrates the vehicle model and its associated parameters. States 

considered in this model include the position of the vehicle’s center of gravity [x, y], its 

yaw angle ψ, yaw rate , and sideslip angle β, and velocity V (with direction defined by 

ψ+β). Steering input at the front wheels is denoted by δ. 

 

Figure 3.2. Illustration of vehicle model used in MPC controller 

Equations of motion describing this model’s state evolution include 

 (3.12) 

 (3.13) 

 (3.14) 

 (3.15) 

 (3.16) 
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where the sideslip angles at the front (αf) and rear (αr) are given by 

 (3.17) 

 (3.18) 

and the lateral force at the tires is approximated from the tire stiffness characteristics at 

the front (f) and rear (r) tires  and  as described in [112] 

and illustrated in Figure 3.3. 

 

 

Figure 3.3. Tire cornering stiffness definition and approximation 

 

Linearized about a constant speed and small slip angles, equations of motion for 

this model become 
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Vx =  (3.19) 

( )βψ +=Vy  (3.20) 
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with the tire stiffness characteristic linearized to Fyf ≈ Cf αf  and Fyr ≈ Cr αr .  

Table A.1 (of Appendix A) defines and quantifies this model’s parameters for the 

model used in these simulations. 

 

3.2.3 THREAT ASSESSMENT 

The controller’s projected path along a predefined trajectory or through a 

constraint-imposed tube is shaped by the performance objectives established in the MPC 

objective function.  We configure the MPC objective function to satisfy homotopy-

required position constraints and actuator-imposed input constraints while quadratically 

penalizing stability-critical states. As demonstrated in [122], several vehicle states are 

coupled with its stability and can be used to gauge the vehicle’s nearness to lateral, yaw, 

or roll instability. In this thesis, we use front wheel sideslip ( ( ) δβψα −+= Vx f ) as 

both the trajectory characteristic to minimize in the MPC objective function and the state 

prediction to consider in the threat calculation. This choice is motivated by a number of 

observations. Minimizing front wheel slip in the MPC objective function tends to lead to 

trajectories that also minimize the lateral acceleration and roll angle required by those 

trajectories. Additionally, front wheel sideslip strongly influences the controllability of 

front-wheel-steered vehicles, since cornering friction begins to decrease above critical 

slip angles (see Figure 3.3). These critical angles are well known and provide a direct 

mapping from environmental conditions such as weather or terrain properties, to vehicle 
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handling limitations; when predicted threat approaches this known limit, loss of stability 

is imminent. The linearized tire compliance model’s failure to account for this decrease 

further motivates the suppression of front wheel slip angles to reduce controller-plant 

model mismatch. Finally, trajectories that minimize wheel slip also tend to minimize 

lateral acceleration and yaw rates, leading to a safer and more comfortable ride. 

The hierarchy of objectives created by this position-constrained cost function 

causes the controller to predict (and calculate the control commands required to track) the 

trajectory of maximum stability existing within the safe homotopy. As such, the nearness 

of this prediction’s stability-critical states to their physical limits provides a useful 

indication of “threat” and an objective assessment of the need for intervention to arrest 

collisions or instability before they happen.  

Ref. [122] presents an analysis of various norms for reducing the time-sampled 

vector of predicted vehicle states  to a scalar threat metric , the instantaneous 

threat assessment at time k). In the simulations and experiments presented in this thesis, 

we set  to the maximum value of front wheel sideslip occurring within the MPC 

prediction horizon: 

. (3.23) 

This conservative estimate of threat is then used to determine the level of control 

authority required to prevent the most dangerous predicted vehicle state from leaving the 

stable performance envelope, as described below. 

3.3 THREAT-BASED SHARED AUTONOMY 

In the absence of plant-model mismatch and unanticipated constraint motion (e.g. 

due to the sudden appearance of unanticipated obstacles in near proximity to the vehicle), 

the MPC controller whose predicted control and state evolution do not exceed actuator or 

stability limits is capable of performing the avoidance maneuver that constraint 

satisfaction requires and the MPC controller (and therefore the threat assessment) 

predicts. Given this observation, we design a control strategy that allocates control 

authority between human and automation in accordance with predicted threat: when 
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threat is low and the predicted state trajectory relatively safe, the driver retains full 

control. As threat increases and the control inputs required to safely satisfy homotopy 

constraints become increasingly more challenging, control authority is shifted to the 

controller. In the limiting case – when the threat assessment reaches a critical value above 

which stable constraint satisfaction by the human operator is unlikely – the MPC 

controller is allocated full control authority and navigates the vehicle autonomously until 

threat has been reduced to an acceptable level. Figure 3.4 illustrates extremes in control 

allocation given different MPC state predictions and their corresponding threat 

assessments. 

 

Figure 3.4. Obstacle avoidance scenario illustrating low- (1) and high- (2) threat 

predictions required to remain within the safe homotopy (outlined by dashed lines) 

Denoting the current driver input by udr and the current controller input by uMPC, 

the input seen by the vehicle, uv, as a function of the intervention metric 

 is given by 

 (3.24) 

Various control authority allocation schemes,  satisfy the objectives 

outlined above without overburdening (with too much intervention) or startling (with 

intervention too abrupt) the human driver [123], [124]. This thesis uses intervention laws 

of the general form  

( ) ( )( ) drMPCv uKuKu Φ−+Φ= 1
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 (3.25) 

where the switch  is used to allow for hysteric control authority allocation as 

.
 (3.26) 

Note that in (3.25),  

 ,
 

(3.27) 

and generally, 

. (3.28) 

Note that (3.28) is typically enforced to ensure that the vehicle retains sufficient control 

authority following full intervention (K=1) to reduce the predicted threat to a safer level 

before transitioning control back to the human driver. 

As illustrated in Figure 3.5, the intervention function (3.25) is parameterized by 

the threat level at which the MPC controller begins to intervene (Φ
eng), and the level at 

which it is given full control authority and effectively acts as an autonomous controller 

(Φ
aut).  When predicted threat Φ is less than the low-threat threshold Φ

eng, K is set to 

zero, effectively passing all of the driver’s control input (and none of the controller’s) to 

the vehicle.  Above the high-threat threshold ΦA
aut, K is set to unity.  This allows the 

MPC controller full control authority to autonomously track the high-threat path.  Once 

the predicted threat has been reduced to a safer level (below ΦB
aut), the driver is again 
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given more control authority, eventually controlling the vehicle autonomously once threat 

has dropped below ΦB
eng. Note that, as described in [125], the parameters of this 

intervention law allow considerable adaptation of the controller’s intervention 

characteristic to the performance and/or preference of the human driver, and to the type 

or urgency of the navigation task.  

 

Figure 3.5. General form of control allocation schemes 

 

3.4 DRIVER FEEDBACK 

As mentioned in Chapter 1, remotely teleoperating an unmanned vehicle reduces 

a human operator’s situational awareness by limiting his or her perception of visible, 

inertial, and tactical cues. If not supplemented with appropriate visual and/or haptic 

feedback, we hypothesize that shared control can aggravate these effects by degrading the 

driver’s mental model when the vehicle response deviates from the driver’s expectations. 

In [126], the authors show a positive correlation between human performance at a remote 

“pick-and-place” task and his or her telepresence, or sense of being present at the remote 

site. In this work, we present two modes of feedback intended to similarly improve 
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telepresence in the remote vehicle operator, inform his or her high-level planning 

decisions, and communicate the controller’s planning intentions and control actions. 

3.4.1 VISUAL 

The first driver feedback modality communicates the controller’s intentions to the 

human operator via a visual overlay of its desired homotopy on the driver’s screen. 

Indicators at the bottom of the screen show the driver where the vehicle is currently 

steering (red line) and where the driver’s steering command lies with respect to the 

vehicle’s current input. In high threat scenarios where safe control inputs deviate from the 

driver’s current command, these indicators diverge. Figure 5 illustrates these overlays in 

a typical scenario. 

 

Figure 3.6. Illustration of the operator control interface showing the homotopy 

overlay (green) and steering indicators (red and cyan lines at bottom center) 

3.4.2 HAPTIC 

The second driver feedback modality applies a torque overlay to the steering 

wheel to indicate to the driver where the control constraints lie and how urgently they 
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must be satisfied to avoid a collision. This overlay is provided not as a means of pushing 

the operator in the right direction, per se, but of communicating to him/her what the 

vehicle is currently doing and thereby preserve his/her mental model and telepresence 

when control authority shifts. This sharply differs from the haptic feedback approaches 

used in traditional driver assistance systems. In traditional usage, torque feedback is often 

provided to motivate corrective action on the part of the driver [23], [24], [127]. In the 

approach presented here, feedback is provided not because safe vehicle operation 

depends on it (the controller will avoid collisions and losses of stability regardless of 

what the driver does), but because the driver’s situational awareness (and telepresence in 

teleoperation applications) may improve because of it. Stated another way, the torque 

feedback described here is designed to communicate predicted threat to the driver (with 

the magnitude of that torque proportional to the predicted threat), and inform him/her of 

action already being taken by the vehicle to reduce it (via this torque’s direction and 

magnitude). 

The resistance torque applied to the operator’s steering wheel is calculated as 

 (3.29) 

where kmax represents the maximum available steering wheel torque, and is used to re-

dimensionalize the  given by (3.25). 

Figure 6 illustrates the (hypothetical) response of the torque restoring function to 

increasingly threatening MPC predictions (assuming the driver fails to steer). Notice that 

as time progresses (denoted by ti labels on the host vehicle), the threat posed by the 

optimal escape maneuver increases. Additionally, the immediate steering command 

required to track this optimal trajectory (u*) begins to drift leftward. The combined effect 

of an increasingly-urgent, and progressively-leftward u* recommendation increases K 

and shifts the torque resistance “trough”. In the limiting case, for which only the optimal 

steering command can reasonably be expected to avoid both the hazard and loss of 

control (sometime shortly after t4), the controller exerts the maximum available torque on 

the operator’s steering wheel, ensuring that the steering wheel tracks that of the vehicle 
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(preserving the operator’s mental model) and communicating predicted threat and related 

controller actions to the driver. 

 

Figure 3.7. Scenario illustration showing the response of the restoring torque 

function as a vehicle successively approaches a hazard from behind 

 

3.5 SIMULATION STUDY 

This section illustrates 1) the effect of threat-based constraint enforcement on the 

performance of a simulated teleoperator operating under a 100-200 ms time delay, and 2) 

the effect of homotopy-based constraint planning and threat-based constraint enforcement 

on the simulated traversal of a static obstacle field by a semi-autonomous ground vehicle.  

3.5.1 SETUP 

These tests simulated the vehicle dynamics as those of a generic light truck with a 

double wishbone suspension, passive roll stabilizers, and rack and pinion steering. This 

vehicle was modeled in MSC Adams and approximated tire forces via a Pacejka tire 
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model [112]. Appendix A describes this model’s parameters. The MPC controller ran at 

20 Hz, with its prediction and control horizons calculated over 60 and 40 timesteps, 

respectively. Parameters in the MPC model (equations (3.19)-(3.22)) were linearized 

about the 20 m/s simulation velocity and configured to closely match those of the Adams 

plant.  

In delay simulations, a pure pursuit driver model was used to simulate the inputs 

of an operator seeking to track a predefined route through the center of a safe corridor. 

This model implements proportional feedback on the path tracking error. Its main tuning 

parameter is the lookahead distance, L. Driver steering inputs δ are calculated as 

( ) ( )( ) ( ) ( )Θ+
−= sin

 
2

2L
xx

tyty rf
desδ , (3.30) 

where Θ is illustrated in Figure 3.8. 

 

Figure 3.8. Illustration of pure pursuit driver model 

 

Two different driver inputs were tested. In the first, the driver failed to steer 

around a hazard. Such a scenario can occur when a drowsy, inattentive, or otherwise 

unresponsive driver fails to notice an impending hazard or when communications and 

controls are impaired. [128]. The second type of driver input was derived from a well-

tuned (L=30), pure-pursuit controller (3.30). In the first set of simulations, time delays of 

100 – 200 ms were introduced to simulate the effect of feedback and control delays on a 
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remote human operator. Note that because the semi-autonomous controller runs on the 

vehicle, its state feedback and control inputs are not directly affected by wireless 

communication delays. 

 

Figure 3.9. Block diagram of shared control system with a pure-pursuit driver 

model tracking a predefined reference, ydes 

3.5.2 RESULTS 

I) HOMOTOPY-BASED CONSTRAINT PLANNING 

Figure 3.11 shows the path homotopy and associated position constraints 

designed by the homotopy planner (green channel) as well as the degree of control (K) 

allocated to the MPC controller.  
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Figure 3.10. Simulation results demonstrating constraint-based shared autonomy 

through an obstacle field 

 

Note that the “ricochet” off the lower bound of the workspace occurs because the 

simulated input remains at zero for the entire maneuver. In practice, the significant 

control freedom offered by the relaxed constraints between x=40 and 80 meters allows 

the human operator to straighten out or steer clear of the walls if desired. Also note that 

given the vehicle’s initial position at (0,-2) [m], the optimal (shortest and most reachable) 

path homotopy passes under the obstacles.  

When an additional obstacle is placed under the second obstacle, the homotopy 

plan changes. Because the homotopy passing below the obstacles is more tortuous and 

offers less control freedom to the human operator, the objective function given by (2.15) 

instead chooses the wider and less dynamically-challenging homotopy passing above the 

obstacles. In this case, the controller must initially intervene strongly in order to avoid the 

impending hazard, but quickly relaxes intervention as the vehicle enters a less restricted 
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region of the homotopy above the obstacles, where the driver’s (δ=0) steering command 

incurs less risk.  

 

Figure 3.11. Simulation results demonstrating constraint-based shared autonomy 

through an obstacle field  

 

II) THREAT-BASED CONSTRAINT ENFORCEMENT WITH COMMUNICATION DELAYS 

Figure 3.12 compares the performance of 1) the driver model without time delays, 

2) the same driver model in the presence of a 200 ms communication (sensing and 

control) delay, and 3) the semi-autonomously-assisted driver model in the presence of a 

200 ms delay. Note that introducing this delay into the control and feedback loops of an 

otherwise-well-tuned (ie. stable in the absence of time delays) driver model (L = 14m) 

renders the unassisted driver unable to maintain control of the vehicle while negotiating a 

curve.  This instability observed in the presence of time delays as short as a few hundred 

milliseconds is consistent with experimental observations [128].  
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Figure 3.12. Simulation results comparing the performance of an unassisted driver 

(simulated by a pure-pursuit controller) with the performance of that same driver in 

the presence of communication latency and with the assistance of a constraint-based 

controller 

 

With the semi-autonomous controller in the loop (operating on the vehicle itself), 

the vehicle successfully negotiates the curve and prompts more moderate steering 

commands from the human driver. This in turn, allows the human to retain significant 

vehicle control and better track the driver-desired trajectory. Note that even though its 

assistance helps the driver model more closely track the reference, the constraint-based 
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controller in this simulation sought only to satisfy position and stability constraints and 

was not aware of this trajectory. These results are consistent with experimental 

observations from real human drivers discussed in detail in Chapter 4. 

That the shared controller exhibits similar performance improvements in the 

presence of time-delays as it does with inexperienced drivers or poorly-tuned driver 

models [124] is unsurprising considering the driver-agnostic nature of its threat-based 

intervention characteristic. Because the constraint-based control strategy and threat-based 

intervention method seek only to keep the vehicle within a constraint-bounded envelope 

of operation, this framework’s control actions treat any human error, regardless of its 

source, the same way; if driver actions put the vehicle at imminent risk of leaving the safe 

homotopy, it intervenes to prevent constraint violation and loss of stability. 

3.5.3 CONCLUSIONS 

This chapter has described a threat-based method for semi-autonomously 

enforcing the position, input, and state constraints designed and imposed by the constraint 

planners of Chapter 2. In simulated traversals of an obstacle field and a curved roadway, 

and in the presence of time delay, this control method has been shown to effectively 

avoid accidents and losses of stability while providing the human with significant control 

when his or her control inputs are safe. Note that this capability assumes knowledge of 

vehicle parameters, an accurate estimate of road friction coefficients, and perfect 

knowledge of the state, position, and size of obstacles in the environment. In the presence 

of uncertain sensing data, unknown surface friction coefficients, or model parameter 

mismatch, safe semi-autonomous operation requires the application of safety margins 

bounding the uncertain location of obstacles, conservatively estimating road friction 

coefficients, and adaptively modifying the parameters of the MPC model consistent with 

true vehicle parameters. The experimental testing performed in Chapter 4 implements 

many of these techniques in order to safely avoid obstacles in spite of imperfect sensing. 

This chapter has also introduced two new methods for communicating the 

controller’s chosen homotopy, predicted threat, and intervention actions to the human 

over visual and haptic channels. These feedback mechanisms, while not employed in the 

simulations presented in this chapter, are extensively studied in Chapter 4.
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4 
4 CHAPTER 4: EXPERIMENTAL USER STUDIES  

4.1 INTRODUCTION 

This chapter describes a large-scale, repeated measures study of the constraint-

based control architecture and driver feedback mechanisms developed in this thesis and 

its effect on the performance of twenty drivers remotely teleoperating a modified utility 

vehicle through an obstacle field. Specifically, this study was designed to investigate the 

architecture’s effect on three key aspects of the navigation and control task:  

1. The navigation and control performance of the combined, human-vehicle 

system, as indicated by objective measures of control performance 

2. The driver’s cognitive workload as indicated by that driver’s performance 

on a secondary task, and 

3. The driver’s confidence in the system and sense of control over its 

performance. 

Four configurations of the control framework were evaluated to independently 

examine the effects of its control sharing capabilities and the effect of its driver feedback 

mechanisms. The experiment was designed as a 2 (Feedback: off vs. on) x 2 (Control: 

unshared vs. shared) full factorial, between-subjects study and analyzed with a mixed 

measures analysis of variance (ANOVA) and a significance threshold p = 0.05. The four 

test configurations resulting from this design are named in Table 1. Note that because 

feedback was provided as a means of communicating controller intent and actions to the 

operator (see 3.4.2), feedback in the unshared control (“Feedback Only”) configuration 

was limited to visual overlays. For the shared, “Semi-Autonomy with Feedback” 
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configuration, torque was also provided to communicate the result of controller 

intervention. Finally, in “Transparent Semi-Autonomy,” control was shared but no visual 

or haptic feedback was provided to the human operator. 

Table 4.1. Experimental factors and levels 

Test Configurations 
Control 

Unshared Shared 

Feedback 

Off “Unassisted” “Transparent Semi-
Autonomy” 

On “Feedback Only” “Semi-Autonomy with 
Feedback” 

 

The following sections describe the setup and results of this study.   

4.2 SETUP 

In this section, we briefly describe the experimental platform, testing course, 

drivers, test schedule, and hypotheses. Section 4.3 then describes the results of these tests. 

4.2.1 VEHICLE 

Experimental testing was performed with a Kawasaki 4010 Mule – a four-

wheeled utility vehicle with 23x11-10 tires, an independent, MacPherson strut front 

suspension, a semi-independent rear suspension, Electric Power assisted rack-and-pinion 

Steering (EPS), four-wheel hydraulic drum brakes, a continuously-variable transmission, 

and a top speed of 25 miles per hour.  

Several modifications were made and components added to this vehicle to enable 

semi-autonomous teleoperation. Among other things, these modifications included the 

addition of a Roboteq AX3500 motor control board and a relay to transfer control of the 

EPS motor between the stock Electronic Control Unit (ECU) and the Roboteq controller. 
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This configuration was capable of a maximum 31°/s steering rate and actuation over the 

vehicle’s entire ±33° steering range. Braking and acceleration commands were remotely 

applied via servo-gearmotor-driven winches. Potentiometers, limit switches, and relative 

quadrature encoders were installed to provide real-time feedback of the steering angle 

and other control commands.  

 A Velodyne LIDAR, NavCom GPS, triaxial Inertial Measurement Unit (IMU), 

and 640x480-pixel, 84° (horizontal) x 64° (vertical) Field of View (FOV), progressive 

area scan color CCD camera were also installed to provide obstacle sensing, positioning, 

motion feedback, and camera feedback, respectively. Figure 4.1 shows the completed 

experimental platform. Appendix B lists its parameters as estimated and implemented in 

the MPC prediction model. 

 

 

Figure 4.1. Experimental platform 
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An on-board Linux PC running at 2.66 GHz processed sensing and positioning 

data, planned constraints, predicted threat, calculated control inputs, generated an 

operator feedback signal, and allocated control authority at 10 Hz. Obstacles detected in 

LIDAR scans were circumscribed by bounding boxes, dilated by the lateral and 

longitudinal half-widths of the vehicle to account for the vehicle body (given a c.g.-

centered position reference), and spatially shifted along the longitudinal vehicle axis, x, 

by , and along the lateral vehicle axis, y, by , 

where represents the ~300 ms control delay (measured empirically),  represents 

the 100 ms sensing delay, and Vx and Vy give the longitudinal and lateral velocities of the 

vehicle, respectively. Without filtering, the GPS position estimate had an accuracy of 

approximately 2 m. Processed through a Kalman filter, this signal combined with IMU 

data to give approximately 0.5 m positioning accuracy. Sideslip feedback, β, not available 

from the IMU, was estimated as  assuming zero slip at the rear wheels 

(βrear = 0). 

The location of obstacles in the vehicle-fixed frame were obtained from LIDAR 

scans, and were known to within approximately 0.1 m. The MPC control algorithm and 

its state prediction model ran at 20 Hz, with 40-step control and prediction horizons. 

Figure 4.2 illustrates the general architecture of the combined system. Note that all 

components except for the remote operator interface were physically located on the 

vehicle (and were thus not subject to communication delays or dropout). 

 

Figure 4.2. Sensing and control architecture 
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Constraint locations, current threat, and other driver feedback signals were 

transmitted to the remote operator control station over an 802.11g wireless link via an 

omnidirectional, high-gain antenna with a 2 Watt amplifier on both the vehicle and at the 

remote control station. In ideal conditions and operating line-of-sight, this setup provided 

4 Mb/s bandwidth at a maximum range of approximately 1 km. In practice, range was 

limited to approximately 100 m, and line-of-sight was not maintained. Figure 4.3 shows 

the LIDAR, GPS receiver, and antennae. 

 

Figure 4.3. LIDAR, GPS, and communication antennae 

 

4.2.2 OPERATOR CONTROL UNIT AND USER INTERFACE 

At the remote operator control station, a teleoperator received video and state 

feedback data on a computer monitor and issued steering commands through a Logitech 

G27 steering wheel. Torque feedback was applied to the operator’s steering wheel via a 

dual-motor force feedback mechanism. In order to simulate communication delays and 

periodic loss of vision caused by random occurrences such as camera obfuscation, sensor 

outages, and loss of communication, the camera feed seen by the teleoperator was 
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delayed by 500ms and frozen at random intervals for up to 2 seconds at a time. Figure 4.4 

shows the operator control unit setup. Note that in order to prevent drivers from looking 

directly at the vehicle during testing, this control unit was placed inside a nearby 

building.  

 

 

Figure 4.4. Operator control unit 

The Operator Control Unit (OCU) interface consisted of a (delayed) video feed 

from the onboard CCD camera and various overlays. A compass, speedometer, and 

secondary task button (described in Section 4.2.3) were overlaid on the screen regardless 

of the control configuration in use. In addition to these indicators, feedback-enabled 

configurations overlaid a wireframe representation of the selected homotopy, along with 

a steering indicator showing the current position of the driver’s current steering command 

and the actual command being implemented by the shared controller. This indicator was 

provided to give the driver a visual indication of the magnitude and difference between 

his/her current input and the vehicle’s response. Note that torque feedback on the steering 

wheel was designed to communicate the same information over a different sensory 

channel. 
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 a) b) 

Figure 4.5. Operator control unit interface with (a) and without (b) driver feedback  

 

4.2.3 COURSE SETUP & OPERATOR TASKS 

Testing was performed on a large (50 m x 30 m) and relatively flat grassy field. 

Thirty-five barrels were spaced throughout the field in a sequence of five rows, each of 

which contained one opening that was slightly larger than the others. As described in the 

test schedule below, this arrangement and the location of preferred openings was changed 

between rounds to prevent drivers from relying on worn paths or memorized patterns in 

navigating it. Drivers were instructed to cross this course as quickly as possible without 

hitting barrels. Each time the vehicle collided with (knocked over) or brushed (touched 

but did not knock over) a barrel, a referee logged the event in a synchronized log of 

vehicle state, threat assessment, and control inputs.  
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Figure 4.6. Picture of test environment 

In addition to the primary control task, operators were given a secondary 

monitoring and response task. This secondary task was administered during each trial to 

estimate the cognitive workload imposed by the various control configurations on the 

operator. The secondary task required the operators to press a button on the steering 

wheel every time a warning indicator box in the lower left side of their screen indicated 

the need. To make this task more challenging, the warning light assumed three states at 

random, approximately 2-second, intervals during the trial. These states used redundant 

text and color modalities and included: “Resting…” (white), “Don’t Act!” (blue), and 

“Press Headlights!” (red) as shown in Figure 4.7. Operators were instructed to press the 

button only when this indicator assumed its red, “Press Headlights!” state. True positives, 

false positives, and missed responses were logged along with the time that elapsed 

between the start of each state and the operator’s response. 
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Figure 4.7. Secondary monitoring task button states 

 

4.2.4 TEST DRIVERS AND INCENTIVE STRUCTURE 

Twenty operators ranging in age from 20 to 51 years with 0-35 years of driving 

experience, and 0-20+ years of video game experience (see Figure 4.8) were tasked with 

remotely (non-line-of-sight) teleoperating the vehicle across the obstacle course shown in 

Figure 4.6. These operators came from mostly technical backgrounds; programmers, 3d 

artists, technical writers, and mechanical, industrial, quality assurance engineers were all 

represented. 
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Figure 4.8. Test driver composition 

 

Operators were instructed to minimize the performance score, measured as 

Score = Time + 10*Collisions + 5*Brushes – Hits + Misses. (4.1) 

This score represents the total time it takes to navigate the course (in seconds), 

plus 10-second penalties for each collision, plus 5-second penalties for each brush, 2-

second penalties for incorrect responses to the secondary task and 2-second rewards for 

correct responses. As an incentive for good performance, $150, $100, and $50 gift 

certificates were promised to the top three finishers. 
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4.2.5 QUALITATIVE SURVEYS AND USER CONFIDENCE 

Each operator’s evolving comfort with, trust in, and preference for the various 

feedback and control configurations was assessed via an 18-question survey administered 

at the end of each day’s testing (three surveys total). Sixteen of this survey’s questions 

(four for each configuration) were configuration-specific, while the final two questions 

gauged the perceived helpfulness of the torque and visual feedback mechanisms for each 

driver. All questions were posed on a 5-point Likert scale to provide some room for 

subjective assessment without eliciting an unnecessarily granular level of detail. 

Response sets were aligned with positive or numerically-large values consistently on the 

right and negative or small values consistently on the left. Figure 4.9 shows the four 

questions posed for each control configuration (the “Unassisted” configuration in the 

example shown). 
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Figure 4.9. Subset of the post-trial questionnaire pertaining to “Unassisted” control 

configuration 

 

Each survey ended with a question about the visual and haptic (torque) feedback 

modalities specifically, and provided an opportunity for operators to comment on the 

day’s testing. 



105 Chapter 4: Experimental User Studies 

 

Figure 4.10. Feedback modality questions and optional, free-form feedback 

questions provided at the end of each day’s survey 

 

4.2.6 TRAINING AND TEST SCHEDULE 

Prior to the experiments, all operators were briefed regarding the test setup, 

control interface, and shared control details and provided with a detailed presentation of 

the control algorithm and test configurations. In the weeks prior to the start of testing, 

each operator manually drove the vehicle through a similar course several times to 

accustom them to the teleoperation environment. 

Each round of testing consisted of four unscored warm-up runs (one per 

configuration), followed by 16 scored rounds (four per configuration), with the 
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configuration order randomized to avoid ordering effects. Immediately following each 

round’s vehicle trials, drivers were administered the trust/preference survey. Operators 

were staggered over the course of each week (approximately five per day), and staggered 

such that each operator was provided approximately one week between rounds. The 

course setup and barrel spacing was slightly altered each week to prevent users from 

relying on worn paths or memorized control sequences to get through them. 

 

Figure 4.11. Experimental sequence and ordering 

 

Altogether, 1,200 trials were conducted, with 960 of those trials scored (240 

scored trials per test configuration), and 1,080 qualitative survey responses were 

collected. Vehicle states, sensor data, constraint calculations, controller predictions, threat 

assessments, driver inputs, collision events, and several other signals were recorded for 

each run. 

4.2.7 HYPOTHESES 

This study tests the following hypotheses: 
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1. Main effects: Control type and driver feedback both have a significant 

effect on operator performance, cognitive workload, and confidence in the 

teleoperation task. 

2. Interaction effects: None – feedback improves performance and 

confidence both with and without control assistance. 

4.3 RESULTS 

Figure 4.12 plots the results of a typical run with shared control and operator 

feedback enabled. Note that obstacle were sensed in the local (vehicle-fixed) frame. 

Corresponding bounding boxes were therefore subject to some positioning error when 

plotted in the global frame (seen by the apparent obstacle “motion” of Figure 4.12). 

Main and interaction effects were assessed using ten objective measures and four 

subjective measures. Objective measures of teleoperation performance were assessed 

from run data logged at 10 Hz. These include collision frequency (collisions/run), brush 

frequency (brushes/run), average velocity (m/s), course completion time (seconds), driver 

steer volatility (standard deviation of driver steer command, degrees), vehicle steer 

volatility (standard deviation of vehicle steer response, degrees), secondary task reaction 

accuracy and reaction time (s), average predicted threat, and overall performance score 

(seconds). Subjective measures of operator confidence include driver-reported ease of 

collision free navigation, perceived control over vehicle behavior, comfortable speed, and 

confidence that the vehicle would “do the right thing”. Appendix C tabulates key 

performance metrics and survey results by factor. The discussion below elucidates these 

and other results. 



Chapter 4: Experimental User Studies 108 

 

Figure 4.12. Plot of a typical run showing level of intervention and its effect on the 

steering angle seen by the vehicle 
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4.3.1 NAVIGATION PERFORMANCE 

Assessed over all drivers, courses, and dependent measures, the main effect of 

constraint-based semi-autonomy was improved performance.  

I) SHARED CONTROL 

Shared control reduced the occurrence of collisions from 0.41 collisions per run to 

0.11 collisions per run – an improvement of over 72% (F(1,956) = 65.54, p < 0.0001). 

Brush frequency also decreased, though by a smaller, 44% margin (F(1,956) = 12.39, p < 

0.001). We attribute this disparity between collision avoidance and brush prevention to 

sensor deficiencies and an insufficient dilation of the obstacle bounding boxes to account 

for them. When obstacles entered the LIDAR’s ~3m blind spot near the vehicle, their 

predicted location was estimated using a combination of vehicle position estimates 

(accurate to ~0.5 m) and visual odometry performed on obstacles that remain within the 

LIDAR’s view. Obstacle positioning errors arising from this tracking slightly reduced the 

shared controller’s obstacle avoidance efficacy. We hypothesize that with the addition of 

SICK LIDAR or other short-range sensing, most of the remaining brushes and many of 

the collisions can be avoided.  

Presumably emboldened by the vehicle’s obstacle avoidance capabilities when 

shared control was enabled, operators drove faster – increasing average speed by 26%, 

from 1.36 to 1.72 m/s (F(1,956) = 176.3, p < 0.0001) and reducing course completion 

time by 25% – from 47.0 to 35.4 seconds (F(1,956) = 172.1, p < 0.0001). Note that the 

distance traveled by the operators in their chosen routes was similar with and without 

control assistance. This is principally due to the alternating “gate” structure of each row 

of barrels and the slalom route users typically identified during their “warm-up” 

(unscored) runs prior to the start of each day’s trials. Figure 4.13 shows each of these 

performance metrics and its standard error by configuration. 
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Figure 4.13. Effect of shared control and driver feedback on the collision frequency, 

brush frequency, average velocity, and course completion time of study participants 

With the semi-autonomous control system in the loop, drivers not only drove 

faster and with fewer collisions, but were also significantly more moderate in their 

control inputs. With shared control enabled, driver steer volatility decreased by 41% 

(F(1,956) = 409.93, p < 0.0001). This reduction in driver steer volatility led to a 

corresponding reduction in the steering volatility experienced by the vehicle: with shared 

control, the standard deviation of the vehicle’s steering commands decreased from 15 to 

11 degrees (F(1,956) = 152.23, p < 0.0001). 
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Figure 4.14. Effect of shared control and driver feedback on the driver and vehicle 

steer volatility 

Figure 4.15 shows the Receiver Operating Characteristic (ROC) curve for the 

secondary task response. While control sharing did not significantly change the rate of 

True Positives (TP), it did increase the rate of False Positives (FP) from 0.03 FP/trial to 

0.05 FP/trial (F(1,956) = 6.15, p = 0.01). At the same time, reaction times to the 

secondary task significantly improved, from 0.78 seconds per response without shared 

control to 0.69 seconds with it (F(1,956) = 6.51, p = 0.01). Figure 4.16 shows the mean 

and standard errors for reaction times to the secondary task. 

We hypothesize that this willingness to respond more quickly – albeit at the cost 

of accuracy – was the result of operators paying more attention and allocating greater 

mental resources to the secondary task when shared control was enabled. While tenuous, 

this hypothesis may be supported by the steering volatility results, which show that with 

control enabled, operators made fewer and smaller adjustments to their steering 

commands. 
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Figure 4.15. Receiver operating characteristic for each system configuration 

 

Figure 4.16. Secondary task reaction time (mean and standard error) by 

configuration type 

In addition to improving collision and brush avoidance, shared control also 

reduced the average threat experienced by the vehicle by 62% (F(1,956) = 81.4, p < 

0.0001). Given the objectives of this shared control formulation – that of maintaining 

predicted vehicle threat below a specified maximum (Φaut), this result is not surprising. It 
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suggests that, on average, the shared controller provided safer trajectory options to the 

vehicle by maintaining its current state and orientation better aligned with the safe 

homotopy. 

 

Figure 4.17. Average predicted threat (mean and standard error) by configuration 

type 

Finally, constraint-based semi-autonomy improved driver performance scores by 

30% – from an average score of 47.2 seconds without assistance to an average of 33.3 

seconds with it (F(1,956) = 186.87, p < 0.0001). Figure 9 summarizes the effect of shared 

control and feedback on teleoperation performance. 
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Figure 4.18. Overall driver performance score (mean and standard error) by 

configuration type 

With enough control intervention, similar improvements in collision avoidance 

and average speed might be expected of any controller. What makes the constraint-based 

framework unique is the minimal degree of adjustments it requires to achieve the above 

results. Averaged across all drivers with shared control and feedback both enabled, the 

controller took only 43% of the available control authority (mean(K) = 0.43, SD = 0.13) 

to effect the above performance improvements. This minimal restriction on human 

commands afforded the operators significant freedom to maneuver as desired while 

simultaneously reducing the cognitive burden of high-speed, high-precision obstacle 

avoidance calculations (as evidenced by improved reaction times on the secondary task). 

II) OPERATOR FEEDBACK 

The main effect of feedback was less significant than that of control strategy, 

largely owing to greater variability in user response to it. The presence of feedback 

decreased collision rates by an insignificant 13% (F(1,956) = 0.93, p = 0.34), and made 

no significant difference for brush rates, average velocity, course completion time (see 

Figure 4.13).  
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The presence of visual and torque feedback did, however, significantly increase 

driver steer volatility by 8.9% (F(1,956) = 11.93, p < 0.001) (see Figure 4.14). This 

increase in driver steer volatility when presented with visual and/or torque feedback 

suggests that one effect of such feedback on a teleoperator navigating with delayed and 

intermittent visual cues is to prompt larger and more frequent control actions. We also 

note that when presented with torque feedback, many operators naturally cede some 

control (and corresponding placement) of the steering wheel to the torque feedback 

controller, whose commands are typically larger and more rapid than those of the driver 

when intervention is required. In most cases, including the run shown in Figure 8, this 

additional input was necessary to compensate for an otherwise insufficient operator 

command. As Figure 4.14 shows, the average steer volatility seen by the vehicle does not 

significantly change with feedback (F(1,956) = 1.58, p = 0.21), owing largely to the 

moderating effect of the shared controller. 

Neither the accuracy, nor the response times to the secondary task changed 

significantly when driver feedback was provided. Average performance scores were also 

largely unchanged, decreasing by a statistically insignificant 0.002% when driver 

feedback was provided (F(1,956) = 0.04, p = 0.85). 

As discussed in Section 3.4, the intention of feedback in the context of constraint-

based semi-autonomy is not to directly improve vehicle performance, but to inform the 

operator of actions the controller is taking (with shared control enabled) or would like to 

take (shared control disabled) to improve vehicle performance. Thus, we anticipated its 

effect on the comfort and confidence of the human operator to be more pronounced than 

it was on objective performance metrics. This impact on operator confidence is explored 

through qualitative user surveys (discussed in Section 4.3.2 below). 

III) INTERACTION EFFECTS 

As expected, interactions between control and feedback settings were minimal. 

The only exception to this trend was driver steer volatility, which increased 63% more 

(F(2,956) = 4.56, p = 0.03) when visual and haptic feedback was added to the shared 

control configuration than it did when visual feedback was provided for an otherwise-

unassisted operator. This result follows quite closely from the observation above 
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regarding operator propensity to yield to torque feedback. Since torque feedback was not 

present in the unshared control configurations, the effect was less pronounced. 

4.3.2 USER CONFIDENCE 

Post-trial survey responses were also analyzed using mixed-measures ANOVA 

with a significance threshold of p = 0.05 to evaluate the effect of control and feedback 

strategy on operator confidence. Main and interaction effects discovered in this analysis 

are discussed below. 

I) SHARED CONTROL 

Across all dependent measures, operators felt more confident in the system and 

comfortable in their performance when the shared controller was enabled. With 

assistance, operators reported a 43% increase in ease of navigation (F(1,236) = 85.8, p < 

0.0001), a 38% increase in comfortable speed (F(1,236) = 72.4, p < 0.0001), a 12% 

increase in perceived control (F(1,236) = 9.4, p < 0.01), and a 44% increase in 

confidence that the vehicle would do the right thing (F(1,236) = 79.38, p < 0.0001). 

Given the performance improvements noted in Section 4.3.1, many of these subjective 

measures of user confidence are not particularly surprising; operator sentiment may have 

simply been reflecting the performance improvements they observed.  

What is surprising, and bodes well for the merits of constraint-based semi-

autonomy, is that even with an autonomous agent acting in concert to limit or adjust their 

steering commands, operators still reported feeling like they had more control over the 

Mule’s behavior – not less. This result speaks to the minimally-restrictive nature of 

constraint-based intervention; rather than assume, and force the operator to follow a 

desired path, controllers based on constraints need only disallow unsafe regions that, 

presumably, the operator would not have intended to traverse anyway. This parity of 

objectives, together with the controller’s ability to forgo intervention whenever possible, 

instilled a greater sense of control in operators who, technically, had 43% less. 
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Figure 4.19. Mean and standard error of subjective measures of operator confidence 

II) OPERATOR FEEDBACK 

We also note that, as expected, communicating controller intentions and control 

actions to the operator via visual and haptic feedback improved most measures of driver 

confidence. Main effects of this feedback included a 12% increase in ease of navigation 

(F(1,236) = 11.59, p < 0.001), a 12% increase in comfortable speed (F(1,236) = 8.9, p < 

0.01), an 8% increase in perceived control (F(1,236) = 4.1, p = 0.04), and an insignificant 
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7% increase in confidence that the vehicle would do the right thing (F(1,236) = 2.77, p = 

0.10). We note that, in long-form survey responses, many operators expressed that the 

more familiar they became with the shared control framework and its capabilities, the less 

they depended on visual or haptic feedback to understand or trust what it was doing. This 

sentiment is borne out in survey responses – shared control strongly affected driver 

confidence that the Mule would “do the right thing”, while the effect of feedback was 

statistically insignificant. 

III) INTERACTION EFFECTS 

Interaction effects were more significant for subjective measures of performance 

than for the objective measures. Across nearly all subjective measures of operator 

confidence, operators felt more comfortable, confident, and in control of the unshared 

control system when provided with visual feedback. With shared control enabled, 

operator confidence remained largely unchanged by feedback, the notable exception 

being overall confidence in the system, which actually decreased by 3% when feedback 

was added to shared control (F(2,236) =  5.99, p = 0.02). Taken together with the main 

effects of shared control and feedback on collision rates and driver steer volatility, we 

posit that this decreased confidence comes more as a result of operators misunderstanding 

torque feedback (as a mandate rather than as a signal) rather than as the result of actual 

performance degradation. In post-trial surveys, operators rated both feedback modalities 

as helpful, but also consistently rated visual overlay as more so (M = 3.7, SD = 1.0 vs. M 

= 3.2, SD = 1.0) than torque feedback (t[56] = 6.5, p = 0.01). Figure 11 shows average 

responses and standard error. This result does not, however, necessarily require that user 

perception of relative helpfulness wasn’t shaped by configuration setup; where feedback 

was more needed (and impactful) with unshared control, only visual overlay was present. 

For shared control configurations, both visual and haptic modalities were used, and had 

less significant an effect on overall driver performance. 
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Figure 4.20. User impressions of the helpfulness of visual and haptic feedback 

modalities as reported in post-trial surveys 

 

4.3.3 LEARNING AND TRUST EFFECTS 

Sections 4.3.1 and 4.3.2 describe the main and interaction effects of this thesis’s 

shared control framework and teleoperator feedback mechanisms on objective measures 

of operator performance and subjective assessments of operator confidence. What this 

analysis does not capture is the effect of these control configurations on operator 

performance and preference over time, and the relative effect of perceived performance – 

regardless of the configuration used – on subjective configuration rankings. This section 

explores these elements of learning and trust.  

I) EFFECT OF EXPERIENCE ON PERFORMANCE AND OPERATOR CONFIDENCE 

Increasing operator experience tended to provide a similar improvement to most 

objective performance measures for each control configuration studied. Figure 4.21 

shows one such case in which operator performance increased as they became more 

accustomed to the vehicle, the course, and the control interface. Note that “Run Number” 

in this figure and those following refers to each run’s sequence within that control 

configuration’s tests. That is, Run Number 3 for the “Feedback Only” configuration 

could have happened before or after similarly numbered runs from other configurations in 

Round One due to randomization of the run order. Hard breaks at runs one, five, and nine 

represent the start of the first, second, and third rounds, respectively. 
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Figure 4.21. Effect of experience on average velocity for the four control/feedback 

configurations 

Other objective measures showed a greater influence of learning on performance. 

Operator steering volatility was particularly affected by experience; on average, operators 

controlling the “Transparent Semi-Autonomy” configuration (feedback off, shared 

control on) became more and more measured in their steering inputs as the experiment 

progressed. As shown in Figure 4.22, this trend persisted across all three rounds. Both 

configurations without shared control exhibited the opposite trend (though weakly so). As 

the number of runs progressed, operators of the “unassisted” or “feedback only” 

configurations actually became slightly more volatile in their steering commands. We 

note that, given the limited dataset, these trends are merely suggestive. We also observe 

that due to the random ordering of configurations, some of this increase in driver steer 

volatility without assistance may be caused by changing expectations as the operator 

switches mindsets from shared control configurations to unshared, and back again. A 
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more rigorous study of learning would sample a larger user base consistently controlling 

one configuration or another. 

 

Figure 4.22. Effect of experience on average driver steer volatility for the four 

control/feedback configurations 

As expected, course completion time roughly tracked average velocity, exhibiting 

a slight downward trend for all four control configurations as the runs progressed and 

operators became more accustomed to the vehicle, the control interface, and the course. 

Figure 4.23 illustrates this result. 
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Figure 4.23. Effect of experience on average course completion time for the four 

control/feedback configurations 

Collisions per run were significantly less correlated with run order. As Figure 

4.24 shows, collisions happened more often and with greater irregularity for the unshared 

control configurations than for the shared, but showed little trend, experiment-wide. 

Where weak trends were observed was within each round’s results, as operators appear to 

have improved their control strategies with shared control enabled as the round 

progressed. Round 2 showed a particularly strong trend toward fewer collisions per run 

when operators were assisted by the shared controller. The final round, however, proved 

an exception to this trend – particularly for the shared control configurations. While the 

underlying factors leading to this uptick in collisions are not completely understood, we 

note that these final few rounds do correlate with a similar uptick in driver steer volatility 

and a decrease in average velocity for all configurations, suggesting that either 1) the 

course setup for this round was particularly challenging, or 2) some operators assumed 

that they had not won the competition anyway, and were less careful in their control. 
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Figure 4.24. Effect of experience on average collision rate for the four 

control/feedback configurations 

 

We also note that in all three rounds, and for all but one configuration (Feedback-

Assisted Semi-Autonomy,” operators generally appear to have improved their collision 

avoidance on the second run of the round. Taken by itself, this result might suggest that 

one unscored warm-up round per configuration provided insufficient familiarity with 

each new course configuration. But considered in light of later increases in collision rate 

as the run progressed, as well as general variation that makes trends in the unshared runs 

statistically insignificant, we posit that the number of warm-up rounds was not 

insufficient. Finally, Figure 4.25 shows the general evolution in performance scores over 

time.  
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Figure 4.25. Effect of experience on average driver score for the four 

control/feedback configurations 

 

Figure 4.26 – Figure 4.29 illustrate how operator confidence measures evolved 

over time. Averaged across all drivers at the conclusion of each round, driver responses 

to the “[ease of collision-free navigation]” question was relatively static, but trends in the 

other three confidence measures were instructive and promising. In each post-trial 

survey, operators consistently indicated both shared control configurations as having 

made the collision-free navigation problem easier for them than the unshared control 

configurations. While this reported ease of navigation generally trended upward as the 

testing rounds progressed, its results were consistent with (and anticipated by) those 

shown in Figure 4.19. 
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Figure 4.26. Trends in operator sentiment about each control configuration as it 

affected the ease of the navigation task 

 

Figure 4.27 shows trends in the reported sense of control operators felt over the 

vehicle’s behavior as the testing rounds progressed. Here, we begin to see some of the 

underlying trends leading to the result discussed in Section 4.3.2 II). Specifically, while 

both shared control configurations gave users a greater sense of control on the whole, 

feedback became less and less significant as the rounds progressed and users became 

more familiar with the shared control system. In survey responses at the end of the first 

round, users reported feeling a greater sense of control for configurations with feedback, 

and less when that feedback was not present. By the end of the second round, most users 

reported feeling roughly the same amount of control for both shared control 

configurations regardless of feedback, and less with the unshared configurations. 
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Figure 4.27. Trends in operator sentiment about each control configuration as it 

affected their sense of control over the vehicle’s behavior 

 

Figure 4.28 shows how the speed at which the operator felt comfortable driving 

changed with experience. This sentiment correlated with the reported ease of collision-

free navigation (Figure 4.26); on average, users reported feeling increasingly comfortable 

traveling faster as they became more experienced. Perhaps not surprisingly when viewed 

in light of Figure 4.27, this reporting initially gave the edge to semi-autonomy with 

feedback before gradually shifting to favor transparent semi-autonomy. 
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Figure 4.28. Trends in operator sentiment about each control configuration as it 

affected the speed at which the operator felt comfortable traveling 

 

Finally, overall user confidence that the combined system would “do the right 

thing” followed a similar trend to users’ sense of control. As operator experience 

increased, feedback became less significant to user confidence and shared control became 

more so. We note that the apparent flat lining of this confidence around a Likert scale 

response of four may be the result of central tendency bias.  
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Figure 4.29. Trends in operator confidence that the combined system would “do the 

right thing” broken down by control configurations 

 

II) THE RELATIVE IMPORTANCE OF PERFORMANCE ON OPERATOR SENTIMENT 

Section 4.3.2 describes the relative importance of control configurations on 

operator confidence. As noted previously, this analysis does not explain whether and how 

much of these confidence measures could be explained by the performance 

improvements that operators directly observed (ie. causality between improved 

performance and operator confidence). Here, we seek to identify and explain some of 

these correlations.  

Correlations between actual operator performance and reported operator 

confidence were generally less significant than correlations comparing perception to 

control configuration. Nevertheless, a few weak ties did emerge. For instance, as operator 

confidence that the vehicle would “do the right thing” increased, objective performance 

metrics generally improved. In the second and third rounds, this correlation was 

particularly significant; once operators had become accustomed to the test procedure, 

user confidence that the system would do the right thing explained much of the decrease 

in operator steering volatility (R2 = 0.89), increase in average velocity (R2 = 0.94), 

decrease in average collisions per run (R2 = 0.71), and improvement in score (R2 = 0.86). 
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Figure 4.30 plots various performance metrics against operator responses to the survey 

question, “How confident were you that the [vehicle] would do the right thing?” 

 

Figure 4.30. Correlations between the operator’s confidence that the vehicle would 

“do the right thing” and measured performance (mean and standard error for 

rounds 2 & 3). Metrics plotted in red correspond to the secondary y-axis. 

Other survey responses explained less of the variation in driver performance. We 

hypothesize that some of this correlation error may be due to central tendency bias. As 

Figure 4.31 – Figure 4.33 illustrate, this bias appears to have been present in most survey 

responses as users were hesitant to use either extreme in the 5-point Likert scales 

provided. 
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Figure 4.31. Operator-reported ease of navigation vs. measured performance 

(means and standard errors for rounds 2 & 3). Metrics plotted in red correspond to 

the secondary y-axis 
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Figure 4.32. Operator-perceived sense of control vs. measured performance (means 

and standard errors for rounds 2 & 3). Metrics plotted in red correspond to the 

secondary y-axis 
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Figure 4.33. Operator-reported comfortable speed of travel vs. measured 

performance (means and standard errors for rounds 2 & 3). Metrics plotted in red 

correspond to the secondary y-axis 

Averaged across all three rounds, and plotted against the average sentiment 

expressed in the four survey questions, operator control, confidence, and comfort 

measures were only weakly correlated with performance metrics of interest. As Figure 

4.34 illustrates, user sentiment explains only some of the confidence that users placed in 

the system. 
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Figure 4.34. Average sentiment of operator survey responses vs. measured 

performance (means and standard errors for all rounds). Metrics plotted in red 

correspond to the secondary y-axis 

4.4 CONCLUSION 

This user study suggests that human performance and confidence in the vehicle 

teleoperation task can be significantly improved via constraint-based planning and threat-

based semi-autonomy. While this shared control approach is effective both with and 

without driver feedback, results indicate that providing visual and haptic feedback may 

only marginally improve some objective measures of performance while significantly 

improving subjective measures of driver confidence. In its complete configuration (full 

autonomy with feedback), and compared to unassisted teleoperation under the conditions 

of this study, this semi-autonomy framework eliminates 78% of all collisions while 

simultaneously increasing average speed by 26%. The 0.096 collisions that continued to 

occur per trial resulted largely from three sources. First, as mentioned previously, the 

large LIDAR blind spot required a method for tracking obstacles when they dropped out 

of view in close proximity to the vehicle. Given poor (~0.5 m) global positioning 

estimates for the vehicle, this tracking sometimes resulted in misplaced obstacles and 
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subsequently incorrect placement of MPC constraints. Improved positioning hardware, as 

well as advances in the accuracy of onboard sensing techniques will reduce the 

occurrence of collisions caused by sensing uncertainty. Secondly, the row spacing and 

gate offsets in this course were configured such that beyond a certain (operator-

commanded) trajectory and speed, it became impossible for the controller to turn the 

wheels fast enough to avoid collisions (giving steering rate constraints). The user study 

shown here did not incorporate the velocity constraints or speed intervention necessary to 

prevent this. Finally, while the MPC controller was configured to match the estimated 

parameters of the vehicle and its interactions with the environment (tire friction, etc.), it 

represents a linearized approximation of the true vehicle dynamics and is thus subject to 

some model mismatch. This mismatch may also have played a role in failing to avoid the 

occasional collision.
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5 
5 CHAPTER 5: CONCLUSIONS  

5.1 CONTRIBUTIONS OF THIS THESIS 

This thesis has investigated methods for improved performance of human-

controlled systems through the homotopy-based design, and threat-based enforcement of 

constraints. Shared-adaptive control presents a unique opportunity to reduce or eliminate 

the effects of human error without unduly sacrificing human autonomy. By exploiting the 

human’s perceptual, judgment, and context-based reasoning in low-threat scenarios and 

automation’s facility for fast, accurate, and repeatable control in high-threat scenarios, 

this approach ensures that the human operator retains as much control of the system as 

s/he can safely wield without causing a collision or loss of stability. 

Chapter 2 presented two methods for identifying, evaluating the goodness of, and 

planning constraints to bound a desired path homotopy through a field of obstacles. In the 

first, constrained Delaunay triangles are used to decompose the environment into a 

complete set of contiguous cells, through any sequence of which a different path 

homotopy may pass. A fundamentally new definition of “goodness” was derived to 

evaluate the desirability of a constraint plan based on the aggregate properties of the 

topologically equivalent paths it contains. The second constraint-planning method used a 

more conventional, rectangular grid, dynamic programming, and reachability constraints 

to identify homotopies and evaluate them based on the length and dynamic feasibility of 

the optimal path each contained. Both constraint design methods presented in this chapter 

were shown to improve various measures of the planning and control performance of one 

or multiple vehicles navigating in an environment with obstacles. 
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Chapter 3 described a model-based means of assessing the “threat” posed to a 

vehicle given the position, input, and stability constraints it must satisfy. This chapter 

also described a threat-based method for allocating control between a human operator and 

automation to ensure that the vehicle does not violate these constraints. Two new 

feedback mechanisms were designed specifically for this constraint-based framework to 

communicate the actions and assessments of the autonomous assistant to the human 

driver and thereby facilitate “co-situational awareness” through visual and haptic 

channels. This chapter also presented various simulations investigating the effect of this 

constraint enforcement technique on a simulated human driver in various environments 

and in the presence of communication delays. These simulations showed that, when 

assisted by the controller, the simulated driver is both more measured in its commands, 

and better able to traverse the obstacle course without hitting obstacles or leaving the safe 

road surface. 

Finally, Chapter 4 presented the results of an extensive, 1,200-trial study of the 

performance and control preference of 20 drivers teleoperating an unmanned ground 

vehicle through an outdoor obstacle course. These experiments showed that, across 

nearly all measures of performance, vehicle control performance and operator confidence 

improved with the assistance of the shared-adaptive controller and visual and haptic 

feedback. Additional improvement is expected with the addition of improved sensors and 

shared-adaptive velocity control. 

5.2 FUTURE WORK 

Although simulated and experimental results have shown the shared control 

framework presented in this thesis to be stable even in the presence of time delays and 

non-binary control allocation between the human and the MPC controller, no formal 

proof of stability has been presented. Developing such a proof will provide a useful set of 

conditions for the constraint planner, threat assessor, and intervention method.  

Anecdotally, we observe that allocating control authority based on the threat, or 

objective function tradeoffs made by the MPC controller in order to satisfy constraints, is 

qualitatively similar to including an input reference (placed at the current driver steering 

angle and assumed constant through the predicted time horizon) in the objective function 
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alongside the stability-maximizing term and implementing the control algorithm as a 

standard, provably-stable, model predictive control algorithm. The evolution of the driver 

reference assumed by this approach can be predicted using any of a number of 

approaches. Its likely deviation from the true future driver inputs over time can be 

considered by hyperbolically discounting penalties on deviations of the optimal predicted 

control input through time. 
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Figure A.1. Model of vehicle used in MSC Adams simulations 
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Table A.1. Plant model parameters for Adams vehicle model 

Parameter Value [units] 

Total mass 2450 [kg] 

Body mass 2210 [kg] 

Unsprung mass 240 [kg] 

Wheel mass 60 [kg] 

Body roll inertia 1240 [kg∙m2] 

Body gyroscopic inertia 0 [kg∙m2] 

Wheel gyroscopic inertia 0.2 [kg∙m2] 

Measurements  

Wheelbase 2.85 [m] 

Track width 1.62 [m] 

C.G. height 0.76 [m] 

C.G. longitudinal distance from front wheels 1.07 [m] 

Wheel diameter 0.79 [m] 

Tire full width 0.24 [m] 

Suspension and tire stiffness  

Suspension spring stiffness 40,000 [N/m] 

Suspension roll stiffness 3700 [N∙m/deg] 

Suspension damping 5,300 [N∙s/m] 

Tire vertical stiffness 250,000 N/m 

Tire cornering stiffness 1200 N/deg (Fz = 6000 N) 

Steering wheel ratio 35 deg/deg 

Max steer rate 30 [deg/s] 

Steering range ±30 [deg] 
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Figure B.1. Kawasaki 4010 Mule used in experimental user studies 
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Table B.1. Inertial, stiffness, and size parameters of the experimental platform 

Parameter Value [units] 

Total mass 2450 [kg] 

Body mass 842 [kg] 

Unsprung mass 160 [kg] 

Wheel mass 60 [kg] 

Body roll inertia 253 [kg∙m2] 

Measurements  

Wheelbase 1.87 [m] 

Track width F/R 1.16/1.18 [m] 

C.G. height 0.74 [m] 

C.G. longitudinal distance from front wheels 1.01 [m] 

C.G. longitudinal distance from rear wheels 0.86 [m] 

Wheel diameter 0.58 [m] 

Tire full width 0.28 [m] 

Suspension and tire stiffness  

Suspension spring stiffness 40,000 [N/m] 

Suspension roll stiffness 3700 [N∙m/deg] 

Suspension damping 5,300 [N∙s/m] 

Tire vertical stiffness 92,000 [N/m] 

Tire cornering stiffness (estimated) 200 [N/deg] 

Steering wheel ratio 14 deg/deg 

Max steer rate 31 [deg/s] 

Steering range ±33 [deg] 
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APPENDIX C: DETAILED USER STUDY RESULTS 

Table C.1. Main effects of control (unshared vs. shared) and feedback (off vs. on) on 

qualitative survey responses 

 Control Feedback 

 Unshared Shared % 
Change p Value Off On % 

Change p Value 

How easy was 
it to navigate 
the course 
without hitting 
barrels? 

2.8 4.0 43 <0.0001 3.2 3.6 12 <0.001 

How fast did 
you feel 
comfortable 
traveling? 

2.5 3.5 38 <0.0001 2.9 3.2 12 <0.01 

How much 
control did you 
feel you had 
over the 
vehicle’s 
behavior? 

3.0 3.4 12 <0.01 3.1 3.3 8.0 0.04 

How confident 
were you that 
the system 
would do the 
right thing? 

2.6 3.7 44 <0.0001 3.0 3.3 7.0 0.10 
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Table C.2. Main effects of control (unshared vs. shared) and feedback (off vs. on) on 

quantitative performance metrics 

 Control Feedback 

 Unshared Shared % 
Change p Value Off On % 

Change p Value 

Collisions/Run 0.41 0.11 -72 <0.0001 0.28 0.25 -13 0.34 

Brushes/Run 0.21 0.12 -44 <0.001 0.14 0.19 33 0.08 

Average 
Velocity [m/s] 1.36 1.72 26 <0.0001 1.54 1.54 -0.6 0.72 

Completion 
Time [s] 46.9 35.4 -25 <0.0001 41.1 41.2 0.2 0.89 

Driver Steer 
Volatility [°] 14.6 8.69 -41 <0.0001 11.2 12.2 8.9 <0.001 

Vehicle Steer 
Volatility [°] 14.6 11.4 -22 <0.0001 12.9 13.2 2.6 0.21 

True Positive 
Rate 0.78 0.80 2.6 0.38 0.78 0.79 1.0 0.67 

False Positive 
Rate 0.03 0.05 70 0.01 0.04 0.04 11 0.72 

Secondary 
Task Reaction 
Time [s] 

0.75 0.69 -8.7 0.01 0.70 0.74 5.8 0.12 

Performance 
Score [s] 47.2 33.3 -30 <0.0001 40.3 40.3 0.0 0.85 
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APPENDIX D: REACHABLE SETS AND DISCRETIZATION 

Many discretization and function approximation techniques have been presented 

in the literature to improve the computational efficiency of DP implementations [129], 

[130]. In this work, a discrete state, continuous action implementation was used to 

provide geometrically-uniform coverage of the road and shoulder surfaces and facilitate 

fast, closed-form solutions of the lateral acceleration inputs required to transition between 

states (via the constant-radius turns described above). Nonholonomic constraints require 

interpolation of the yaw state, which was rounded to the nearest Δψ = 1°.  

To further improve computational efficiency, state transitions are constrained in 

this work to remain within the friction-bounded reachable sets described by (2.30) and 

(2.35) on flat surfaces and (2.49) and (2.35) on sloped surfaces. Note that on sloped 

surfaces, acceleration due to gravity both scales (by cosθ) and shifts (by gsinθ cosφ) the 

reachable set. For a given discretization in Δx, the reachable set in Δy and ψ are given by 

(2.33) and (2.35), respectively. At lower velocities (V < ~7.5 m/s for the vehicle length, 

vehicle mass, and surface friction considered here), steering angle constraints (|δ| ≤ 30°) 

dictate available state transitions, since the turns they allow require less tire friction than 

what the road provides. At higher speeds like those considered here, tire friction becomes 

the acting constraint in reachable set calculations.  

Figure D.1 illustrates the set of states at x = 6m reachable from an initial condition 

x = y = 0 and ψ = π/6. 
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Figure D.1. Illustration of an acceleration-bounded reachable set for V=20 m/s and 

ψ0 = π/6 

As illustrated in Figure D.1, nonholonomic vehicle constraints, together with the 

limitations on feasible state transitions, limit the granularity with which the state space 

may be discretized in x for a given ψ0 before Δy(k+1),max = y(k+1),max - y(k+1),min is less than 

the Δy discretization (or Δy/2 if the reachable state is rounded to the nearest yk+1). This 

range of reachable y states becomes important in the continuous state implementation 

used here since acceleration inputs exceeding their friction-limited bounds are not 

considered. Overly-fine Δx discretization for a given Δy grid may thereby lead to states 

(such as those with a low initial yaw angle ψk) from whose y position the vehicle may not 

escape.  

Figure D.2 illustrates this effect on a (ψ=0) slice of the costmap. Notice that both 

simulations use the same discretization in y and different discretizations in x (one three 

times sparser than the other).  
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(a) 

 

(b) 

Figure D.2. Illustration of a ψ=0 slice of the DP costmap for a) small Δx / Δy and b) 

large Δx / Δy. 

Notice that when reachability constraints are imposed, small Δx/Δy causes the 

cost “shadow” cast by obstacles to be much longer, as paths satisfying vehicle dynamic 

constraints cannot complete a full step in y. The minimum discretization in x necessary to 

allow a vertical spread of at least Δy given an initial yaw angle ψ and acceleration 

constraint amax can be described by  
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Figure D.3 a) shows the range of reachable Δy (normalized by vehicle width Tw) 

given a discretized Δx (normalized by wheelbase length xf and xr) and initial ψ. Figure 

D.3 b) shows the minimum value of Δx for which the reachability set will allow lateral 

transitions of ¼ vehicle width. As these figures show, small initial yaw angles set the 

lower limit on Δx. 

 

(a) 
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(b) 

Figure D.3. Effect of rectangular discretization granularity on reachable states 

This result allows one to choose a desired grid resolution in y (based on vehicle 

width, obstacle density, etc.) and calculate (for a given velocity and acceleration 

constraint) a suitable grid resolution in x. In the simulation results shown in Section 2.3, 

Δx was set at or above the critical value. 
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