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Abstract Optimal control theory can be used to generate aggressive maneuvers for
vehicles under a variety of conditions using minimal assumptions. Although opti-
mal control provides a very powerful framework for generating aggressive maneu-
vers utilizing fully nonlinear vehicle and tire models, its use in practice is hindered
by the lack of guarantees of convergence and by the typically long time to generate
a solution, which makes this approach unsuitable for real-time implementation. In
this paper, we investigate the use of statistical interpolation (e.g., kriging) in order to
synthesize on-the-fly near-optimal feedback control laws from pre-computed opti-
mal solutions. We apply this methodology to the challenging scenario of generating
a minimum-time, yaw rotation maneuver of a speeding vehicle in order to change
its posture prior to a collision with another vehicle, in an effort to remedy the effects
of a head-on collision. It is shown that this approach offers a potentially appealing
option for real-time, near-optimal, robust trajectory generation.

1 Introduction
An enormous amount of work has been devoted during the past three decades to the
development of active safety systems for passenger automobiles. This effort has led
to the development of a plethora of active safety systems, such as ABS, TCS, ESP,
RCS, AFS and others [2, 11, 35, 36], many of which are now standard equipment in
production vehicles. The main goal of all these systems is to help the driver avoid
or prevent the so-called “abnormal” driving scenarios (skidding, sliding, excessive
under/oversteer, etc). In these conditions, nonlinear effects dominate the vehicle dy-
namics, and the tire friction is very close to (or exceeds) the adhesion limit(s). Driv-
ing at the boundary of the adhesion limits of the tires leads to a reduced operational
stability margin for the driver. One of the goals of the current active safety systems
is therefore to restrict the operational envelope of the vehicle and the tires inside
a linear, well-defined, stable regime. This is, however, an overly conservative ap-
proach. Enhanced stability comes at the cost of decreased maneuverability. There

Panagiotis Tsiotras
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, USA
e-mail: tsiotras@gatech.edu

Ricardo Sanz Diaz
Department of Aerospace Engineering, Universidad Politécnica de Valencia, Valencia, Spain e-
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are many cases where the occurrence (or the post-effects) of a collision can be alle-
viated by allowing (or even inducing) the vehicle to operate in its nonlinear regime
in a controlled manner.

The previous observations naturally lead one to investigate algorithms that ex-
ploit the increased vehicle maneuverability brought about by operating the vehicle
in nonlinear and/or unstable regimes. By extending the region of validity of the fu-
ture generation of active safety systems one expects to increase their performance.
In our previous work [8, 7, 31, 32, 33, 34] we have investigated the mathemati-
cal modeling of vehicles operating in nonlinear and/or unstable regimes, and have
demonstrated the potential benefits of such an approach to achieve collision avoid-
ance and mitigation beyond what is possible with current active safety systems.

This point of view represents a philosophical departure from current practice,
and differs significantly in scope from standard active safety system design for pas-
senger vehicles. As a result – and understandably so – it brings along with it a slew
of unanswered questions, among them, the key question is how to generate the nec-
essary control actions (at the short time scales required) that are needed to perform
such extreme maneuvers. Indeed, most drivers – except perhaps expert professional,
stunt and race drivers – would have great difficulty initiating such aggressive ma-
neuvers and controlling the vehicle throughout the whole maneuver duration.

Optimal control is a powerful framework that has been used successfully in many
engineering applications to generate feasible trajectories subject to constraints and
complicated system dynamics. The field of numerical optimal control has experi-
enced enormous advances during the recent years, to the point that we now have
reliable numerical algorithms to generate optimal trajectories for a variety of prac-
tical engineering problems [4]. Despite these advances, the current state-of-the-art
in numerical optimal control mainly focuses on generating only open-loop optimal
controllers. Furthermore, it does not allow the computation of optimal trajectories in
real-time, at least for applications similar to the one we have in mind in this paper,
where the time allotted to solve the problem is in the order of a few milliseconds.
Finally, optimal solutions are notoriously sensitive to the provided initial guesses
and, in the absence of timely re-planning, the robustness of these open-loop optimal
control laws is questionable. Consequently, several researchers have recently turned
their attention to the generation of optimal or near-optimal trajectories using alter-
native methods that bypass the exact on-line computations required for the solution
of complicated, nonlinear optimal control problems, opting instead for approximate
near-optimal solutions.

One such approach uses interpolation over pre-computed optimal solutions.
Naı̈ve interpolation however does not ensure feasibility – let alone optimality – of
the resulting interpolated trajectories. In [1], for instance, the authors used tradi-
tional interpolation over pre-computed optimal trajectories. However, this method
turns out to be inaccurate and time-consuming. Another, more promising approach,
is the one proposed in [12], where the optimal control problem is cast as one of meta-
modeling, in which the (unknown) map between control inputs/system response
pairs is generated implicitly via a series of computer experiments. Specifically, the
approach in [12] considers the solution to an optimal control problem obtained by
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numerical methods as the output of such a metamodel obtained by a series of off-
line simulations. A vast number of publications about metamodeling of computer
experiments can be found in the literature. Most of them are motivated by the low
time-consuming optimization process, derived from having a metamodel of a given
simulation.

In contrast to [1], the framework in [12] is based on rigorous interpolation be-
tween the off-line solutions (the “metamodel”) using ideas from statistical inter-
polation theory via Gaussian processes, which in geostatistics it is also known as
kriging [9, 30, 14, 19]. Kriging approximates a function observed at a set of dis-
crete points with a convex combination of the observations so as to reduce the least
mean-squared error (MSE) and is a special case of prediction using Gaussian pro-
cesses [14, 19]. Although classical interpolation focuses on low-order polynomial
regression, which is suitable for sensitivity analysis, kriging is an interpolation tech-
nique that provides better global predictions than classical methods [17, 30]. In this
work we use kriging to construct a (near-)optimal feedback controller from off-line
computed extremal trajectories. Prior use of kriging has been focused mainly on
simulation and metamodeling [28, 20, 16]. A brief overview of interpolation using
Gaussian processes and kriging is given in Section 3.

In this paper we use a technique similar to the one proposed in [12] to obtain
near-optimal “feedback” controllers for the problem of minimum-time aggressive
yaw maneuver generation for a high-speed vehicle impeding a collision with another
vehicle at an intersection (T-Bone collision). Our results show that kriging interpo-
lation is able to generate very accurate parameterized trajectories in real-time, and
hence it may be a potential option for real-time, near-optimal trajectory generation
under such extreme driving conditions, where the time constraints do not allow the
computation of an exact optimal trajectory in a timely manner using current state of
technology.

Prior similar work that uses parameterized trajectory generation includes [10],
which developed an algorithm to generate a whole set of trajectories between two
pre-computed solutions for two different initial conditions, and [29], where param-
eterized trajectories were generated using experimental demonstrations of the ma-
neuver. However, the control laws obtained in [10, 29] are open-loop and thus sus-
ceptible to uncertainties in the initial conditions and unknown model parameters.
The advantage of the method described in this paper is that the control is obtained
as a function of the actual state, hence is a “feedback” control.

The paper is structured as follows. In the next section the problem to be inves-
tigated is introduced, along with the dynamical model of the vehicle and the tire
friction dynamics. Next, the optimal control problem is formulated, which is solved
over a discrete grid of initial conditions. This series of generated solutions at several
discrete points is stored in memory, and is used in Section 4 to generate a feedback
control by interpolating between the stored solutions on-line using kriging. For the
benefit of the uninformed reader, a brief summary of kriging theory as used in this
paper is given in Section 3. In Section 4.2 we present numerical results from the
application of the proposed approach to the problem of T-Bone collision mitigation
at an intersection between two speeding vehicles, as a demonstration of the possi-
bilities enabled by the proposed approach for optimal on-line controller generation.
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2 Aggressive Yaw Maneuver of a Speeding Vehicle

2.1 Problem Statement
One of the most lethal collisions between two speeding vehicles is the so-called
“T-bone” collision (Figure 1), which occurs when one of the vehicles drives into
the side of the other vehicle [27]. The vehicle suffering the frontal impact is often
referred to as the “bullet” vehicle, while the one suffering the side impact is said to
have been “T-boned.” If there is inadequate side impact protection, the occupants of
a T-boned vehicle risk serious injury or even death.

In our previous work [7, 8] we investigated the possibility of mitigating the re-
sults from an unavoidable T-Bone collision by using an aggressive yaw maneuver
for the incoming bullet vehicle. The proposed collision mitigation maneuver in-
volves a rapid yaw rotation of the bullet vehicle at an approximately 90 deg angle
that brings the longitudinal axes of the two vehicles into a nearly parallel alignment,
in order to distribute the residual kinetic energy of the collision over a larger surface
area, thus mitigating its effects. This problem was posed in [7, 8] as a time-optimal
control problem, and it was solved using pseudospectral methods [23]. In the next
two sections we briefly summarize the problem definition and its numerical solution.

Fig. 1 T-Bone collision. Fig. 2 Schematic of bicycle model.

2.2 Vehicle and Tire Model
The model used in this paper is the so-called “bicycle model” [24], augmented with
wheel dynamics. The nomenclature and conventions regarding this model are shown
in Figure 2. The state is given by x = [u,v,r,ψ,ω f ,ωr]

T, where u and v are, respec-
tively, the body-fixed longitudinal and lateral velocities, r is the vehicle yaw rate, ψ

is the vehicle heading, and ω f ≥ 0 and ωr ≥ 0 are the angular speeds of the front
and rear wheels, respectively. The system is controlled by u = [δ ,Tb,Thb]

T, where δ

is the steering angle and Tb, Thb denote the torques generated by the footbrake and
handbrake, respectively.
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The equations of motion of the vehicle can be written as

u̇ =
1
m
(Fx f cosδ −Fy f sinδ +Fxr)+ vr, (1)

v̇ =
1
m
(Fx f sinδ +Fy f cosδ +Fyr)−ur, (2)

ṙ =
1
Iz

(
` f (Fx f sinδ +Fy f cosδ )− `rFyr

)
, (3)

ψ̇ = r, (4)

ω̇ f =
1
Iw
(Tb f −Fx f R), (5)

ω̇r =
1
Iw
(Tbr−FxrR), (6)

where m, Iz are, respectively, the mass and yaw moment of inertia of the vehicle, Iw
is the rotational inertia of each wheel about its axis, R is the effective tire radius,
and ` f , `r are, respectively, the distances of the front and rear axles from the vehicle
center of mass. In (1)-(6) Fi j (i=x,y; j= f ,r) denote the longitudinal and lateral force
components developed by the tires, defined in a tire-fixed reference frame. These
forces depend on the normal loads on the front and rear axles, Fz f and Fzr, given by

Fz f =
mg`r−hmgµxr

` f + `r +h(µx f cosδ −µy f sinδ −µxr)
, Fzr = mg−Fz f , (7)

where

µ j = Dsin(C arctan(Bs j)), µi j =−(si j/s j)µ j, i = x,y; j = f ,r, (8)

for some constants C,B and D. Expression (8) is a simplified version of the well-
known Pacejka “Magic Formula” (MF) [22] for the tire friction modeling. In (8) si j
denote the tire longitudinal and lateral slip ratios, given by

sx j =
Vx j−ω jR

ω jR
=

Vx j

ω jR
−1, sy j = (1+ sx j)

Vy j

Vx j
, j = f ,r, (9)

where the longitudinal and lateral velocity components, defined in the tire-fixed
reference frame, are given by

Vx f = ucosδ + vsinδ + r` f sinδ , Vy f =−usinδ + vcosδ + r` f cosδ , (10)
Vxr = u, Vyr = v− r`r, (11)

and s denotes the total slip, computed as s j = (s2
x j +s2

y j)
1
2 , ( j = f ,r). Finally, the tire

forces in (1)-(6) are computed by Fi j = Fz jµi j, (i = x,y; j = f ,r).
Following current vehicle technology, it will be assumed that the handbrake

torque is only applied on the rear axle and the footbrake torque is distributed to both
axles by a factor γb, according to Tb f /Tbr = (1− γb)/γb, so that Tb f = −(1− γb)Tb
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and Tbr = −γbTb−Thb. It is further assumed that the controls are bounded in mag-
nitude between upper and lower bounds as follows

δmin ≤ δ ≤ δmax, 0≤ Tb ≤ Tb,max, 0≤ Thb ≤ Thb,max, (12)

which define the allowable control constrain set, u ∈U ⊂ R3. For more details on
the vehicle and tire model used in this work, the reader is referred to [8, 31, 34].

2.3 Optimal Control Formulation
Assuming that the vehicle is initially moving on a straight line along the positive x
direction with velocity V0 = u(0), our main goal is to find the control input history
u(t) to bring the posture of the vehicle to ψ(t f ) = 90◦ deg as fast as possible. It
will be assumed that the angular velocity of the front and rear wheels is such that a
no-slip condition is satisfied, i.e., ω f (0) = ωr(0) =V0/R.

We therefore wish to solve the following optimal control problem

min
u∈U

J =
∫ t f

0
dt, (13)

s.t. ẋ = f (x,u), (14)

x(0) = [V0, 0, 0, 0,V0/R,V0/R]T, (15)
ψ(t f ) = π/2, (16)

where f (x,u) is given by the right-hand side of (1)-(6) and, besides ψ , the rest of
final states are free.

This problem can be solved using a variety of numerical methods [6, 5, 21, 26, 15,
3, 25]. In this work, we have the used a package based on pseudospectral methods
to solve the previous optimal control problem [23]. The problem was solved for a
variety of initial conditions and friction coefficients. A typical maneuver obtained by
the solution of the optimal control problem is shown in Figure 3. For more details,
the interested reader is referred to [8].

In the sequel we will focus on generating optimal solutions for different values of
initial conditions by interpolating between these pre-computed optimal trajectories.
The interpolation method we use is based on representing the input (initial condi-
tions) and output (control commands obtained from the numerical solution of the
optimal control problem (13)-(16)) as a realization of a (hidden) Gaussian process.
The goal is then to find the unknown parameters of this Gaussian process in order
to predict the optimal control inputs for different initial conditions.

3 Statistical Interpolation Using Gaussian Processes

3.1 Basic Theory
The basic idea behind statistical interpolation is that the actual values for all possible
observations are a realization from an underlying stochastic process [14]. It is es-
sentially an interpolation technique over random data fields and it provides accurate
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Fig. 3 Pre-computed solutions for different initial vehicle velocities.

interpolation even if there is no a priori trend. Kriging is a common term referred to
the case when the underlying statistical process is Gaussian. The basic idea that dif-
ferentiates kriging from the traditional Generalized Least Squares (GLS) approach
is the assumption that points closer to the new point to be predicted should have a
larger weight, i.e., they should have more influence on the prediction than points
that are further away. This implies that the interpolation weights are not constant,
but rather they must be specifically computed at each new location.

A kriging interpolation model has the following features:

a) It is unbiased, i.e., the expected value of the error is zero.
b) It is optimal, in the sense that minimizes the variance of the error.
c) It provides exact interpolation, i.e., the predicted output values at the already

observed points are equal to the observations.
d) It is computationally very efficient, hence on-line implementation is feasible.

Below we briefly summarize the basic ingredients of the approach. The discus-
sion in this section is taken mainly from [13]. In order to understand how statistical
prediction works, let us consider a set of given locations X= [x1 . . . xN ]∈Rn×N with
xi ∈ Rn, where an unknown function y : Rn → R is observed. A simple regression
model is to assume that

y(x) =
r

∑
k=1

βk fk(x)+ z = f (x)T
β + z, (17)

for some basis functions (regressors) f (x)= [ f1(x) . . . fr(x)]T, where β = [β1 . . . βr]
T ∈

Rr is the vector of regression coefficients, and z∈R is the observation error. Let now
y = [y(x1) . . .y(xN)]

T = [y1 . . .yN ]
T ∈ RN be the vector of observations. The gener-
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alized regression model given the data (y,x1, . . .xN) follows easily from (17)

y = F(X)β + z, (18)

where z = [z1 . . . zN ]
T ∈RN is the vector of observation errors, and F(X) ∈RN×r is

the matrix of regressors, given by

F(X) = [ f (x1)
T . . . f (xN)

T]T =


f1(x1) f2(x1) . . . fr(x1)
f1(x2) f2(x2) . . . fr(x2)

...
...

. . .
...

f1(xN) f2(xN) . . . fr(xN)

 . (19)

In statistical prediction the errors z in (18) are modeled as a stationary covariance
stochastic process1 having the properties

E[z] = 0, (20)

cov[z] = E[zzT] = C = σ
2R, (21)

where C,R ∈ RN×N are the covariance and correlation matrices, respectively, de-
fined by

E[ziz j] = Ci j = σ
2Ri j(xi,x j), i, j = 1, ...,N. (22)

where Ri j(xi,x j) are stationary correlation functions to be defined later.
Suppose now that we want to predict the value y(x0) at the new location x0 ∈

co(x1,x2, . . . ,xN), where co(·) denotes convex hull. From (17), the predicted value
of y(x0) is then given by

y(x0) = f (x0)
T
β + z0, (23)

where the scalar z0 represents the prediction error. Here is where kriging and GLS
differ. The later assumes that both the sample disturbances in (17) and the predictor
disturbance in (23) are independent, that is, cov[z,z0] = 0. However, in view of
the interdependence of disturbances in the samples (C has non-zero off-diagonal
elements), it seems more reasonable to assume that [13]

E[z0] = 0, (24)

cov[z0] = E[z2
0] = σ

2, (25)

cov[z,z0] = σ
2r(x0), (26)

where r(x0) ∈ RN is the vector of correlations between z and z0.
Assuming now that the optimal linear predictor of (23) can be written in terms of

the observed values, one obtains

1 A stationary covariance process has constant mean and variance and the covariance matrix de-
pends only on the distance between the corresponding inputs.
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ŷ(x0) =
N

∑
i=1

wiyi = wTy, (27)

where w = [w1 . . . wN ]
T ∈RN is the column vector of weights. The residual error of

the approximation is given by

ε(x0) = ŷ(x0)− y(x0) =
N

∑
i=1

wiyi− y(x0). (28)

In order to determine the optimal weights w kriging imposes the conditions [17, 13]

min
w

var[ε(x0)] s.t. E[ε(x0)] = 0, (29)

to obtain the Best Linear Unbiased Predictor (BLUP). In some texts [17, 18] the
criterion involves the minimization of the mean square error instead. It turns out
that both criteria are equivalent if the estimator is unbiased.

The minimization problem in (29) can be re-written as a quadratic programming
(QP) problem in the form

min
w

var[ε(x0)] = min
w

σ
2(1+wTRw−2wTr(x0)),

subject to F(X)Tw− f (x0) = 0,
(30)

whose solution is readily obtained as follows

w∗ = R−1(r(x0)−F(X)λ ∗), (31)

λ
∗ =

(
F(X)TR−1F(X)

)−1(F(X)TR−1r(x0)− f (x0)
)
. (32)

Using the previous expressions, one may finally express the best linear unbiased
predictor of (27) as

ŷ(x0) = R−1
[
r(x0)−F(X)

(
F(X)TR−1F(X)

)−1(F(X)TR−1r(x0)− f (x0))
]

y.
(33)

A deeper insight in the predictor can be obtained by expressing (33) as

ŷ(x0) = f (x0)
T
β
∗+ r(x0)γ

∗, (34)

where

β
∗ = (F(X)TR−1F(X))−1F(X)TR−1y, γ

∗ = R−1(y−F(X)β ∗). (35)

The term β ∗ is the GLS solution to the regression problem y ≈ F(X)β , also
known as Aitken’s GLS estimator [13]. From (34) it can be seen that, if indepen-
dence of the disturbances is considered,that is, r(x0) = 0, then the solution becomes
equivalent to GLS. Another important point is that β ∗ and γ∗ are fixed for a given set
of design data x1,x2, . . . ,xN and y. Thus the computational effort required to calcu-
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late the value of the interpolated function at one point involves only the computation
of two vectors (by evaluating the regression basis functions and the correlation func-
tion) and two simple products.

As mentioned previously, (34) is an exact interpolator, in the sense that it returns
the observed value at the design points. This can be easily shown from (34) by
choosing x0 = xi. Then r(xi) is the ith column of the correlation matrix R. Hence
R−1r(xi) = ei where ei is the ith column of the identity matrix. It follows that

ŷ(xi) = f (xi)
T
β
∗+ r(xi)R−1(y−F(X)β ∗

)
= f (xi)

T
β
∗+ ei(y−F(X)β ∗)

= f (xi)
T
β
∗+ yi− f (xi)

T
β
∗

= yi.

3.2 Choice of Correlation Functions
It is important to emphasize that the accuracy of the method is highly dependent on
the choice of correlation functions in (21), since they determine the influence of the
observed values in the surrounding locations. These are not known a priori, however,
and they have to be estimated from the data. In order to find a way to approximate
the correlation functions, it is customary to assume that they can be expressed as

Ri j(θ ,xi,x j) =
n

∏
k=1

ρ(θ ,x(k)i ,x(k)j ) =
n

∏
k=1

ρ(θ , |x(k)i −x(k)j |), (36)

for some parameter θ and xi,x j ∈ Rn with x(k) denoting the kth component of the
vector x. The expression (36) implies that multi-dimensional correlations are ex-
pressed as a product of n one-dimensional correlation functions. Spatial correlation
functions depend on both the parameter θ and the distance between the considered
points `= |x(k)i −x(k)j |. In order to result in proper correlation functions Ri j, the coor-
dinate correlation function ρ must satisfy 0≤ ρ(θ , `)≤ 1 for all `≥ 0. Furthermore,
it must satisfy ρ(θ ,0) = 1 and lim`→∞ ρ(θ , `) = 0, encoding the fact that far-away
points have weaker or no correlation, whereas coincident points yield maximum
correlation.

The parameter θ determines how fast the correlation function goes to zero. This
parameter can be obtained using Maximum Likelihood Estimation (MLE). The spa-
tial evolution according to the distance from the origin and the influence of the
parameter θ , for different correlation functions, is shown in Figure 4. As it is cus-
tomary in practice, the state variables are normalized so that have unit length. Con-
sequently, the normalized support (|d|= `) of ρ is this figure is 0≤ |d|. 2.
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Fig. 4 Different possible choices for correlation functions ρ(θ , |d|).

4 Application to On-Line Aggressive Vehicle Maneuver
Generation

4.1 Feedback Controller Synthesis
Using the method outlined in Section 2.3, a set of trajectories was computed of-
fline using five equidistant initial conditions corresponding to vehicle initial speeds
V0 = [40, 48, 56, 64, 72] km/h. We are interested in obtaining a controller able to
perform the maneuver described in Section 2.1 in a (near-)optimal manner for any
initial velocity in the interval 40 km/h ≤ V0 ≤ 72 km/h. To this end, we use the
interpolation expressions derived in Section 3.1. A separate interpolation model is
needed for each variable we want to interpolate. In this case we have a total of four
interpolating metamodels: three for the control signals and one more for the optimal
final time. Rather informally, the interpolating functions κi (i = 1,2,3,4) will give
the control inputs as follows

δ = κ1(u,v,ψ,ω f ,ω f ), (37)
Tb = κ2(u,v,ψ,ω f ,ω f ), (38)

Tbh = κ3(u,v,ψ,ω f ,ω f ). (39)

Similarly, the optimal time to perform the maneuver from the current state is given
by

t f = κ4(u,v,ψ,ω f ,ω f ). (40)

Note that the approach yields, at each instant of time, a control action that depends
on the current state, that is, the resulting control has a feedback structure. In essence,
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we have developed a tool for controller synthesis where the open-loop optimal con-
trollers are combined to a single feedback strategy. The difference with standard
approaches is that this synthesis is not performed analytically, but rather numeri-
cally, via an implicit interpolation of the open-loop control laws.

For all computations we have used the DACE toolbox for Matlab [18]. Both the
correlation functions and the allowable values for the parameter θ were determined
by trial and error.

4.2 Numerical Results
The family of near-optimal controls is shown in Figures 5(a)-5(c). The red lines
highlight the pre-computed solutions used to obtain the interpolating metamodel.
These results show that the controller obtained using the proposed statistical inter-
polation technique generates near-optimal solutions for the whole range of initial
velocities considered. In all simulations the trajectories reach the final constraint,
ψ = 90◦ deg as required. Furthermore, notice in Figures 5(a)-5(c) how the interpo-
lated solutions match the pre-computed ones at the trial sites. This is a consequence
of the exact interpolation property of the interpolation scheme, shown in (3.1). No-
tice also that the solutions vary smoothly along the whole range of initial velocities.
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Fig. 5 Interpolated optimal control histories.
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It is also interesting to explore the positive attributes that arise from having a con-
troller in feedback form. Although there is no analytic expression for the feedback
controller, it is obtained as function of the current state. Robustness is an inherent
property of feedback controllers. In order to check this, a simulation with a distur-
bance representing a 70% reduction in the yaw rate at t = 0.6t f was carried out.
The comparison was performed at one of the trial locations where the interpolated
solution matches the pre-computed one, so the comparison is fair. Figure 6 shows
how the interpolated control changes when the disturbance is applied and how the
system is finally guided to the final constraint.

0 0.2 0.4 0.6 0.8 1 1.2
−10

0

10

20

S
te

er
in

g 
(d

eg
)

Time (s)

 

 
Interpolation
Pre−computed

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

B
ra

ke
s 

(−
)

Time (s)

 

 
Interp. FB
Pre−computed FB
Interp. HB
Pre−computed HB

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

Y
aw

 r
at

e(
de

g/
s)

Time (s)

 

 
Interpolation
Pre−computed

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

H
ea

di
ng

 a
ng

le
 ψ

 (
de

g)

Time (s)

 

 
Interpolation
Pre−computed

Fig. 6 State evolution comparison under disturbance.

The average to compute a single interpolation of all three controls is 1.2 ms
or a rate of 800 Hz. This rate is considered fast enough for real-time controller
implementation.

5 Conclusions
The future generation of active safety systems for passenger vehicles will have to
take advantage of the nonlinearities of the vehicle and tire friction dynamics in or-
der to safely implement more aggressive obstacle avoidance maneuvers in the case
of an impeding accident. Unfortunately, generating optimally such aggressive ma-
neuvers – at the time scales required along with convergence guarantees – is still an
elusive goal with current trajectory optimizers. In this paper we investigate the use
of a statistical interpolation technique based on Gaussian processes (e.g., kriging)
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to generate near-optimal trajectories, along the corresponding control actions, from
a set of off-line pre-computed optimal trajectories. The resulting approach essen-
tially generates a metamodel of the action-response map based on the pre-computed
optimal control solutions. The resulting interpolation model emulates an optimal
feedback controller, as long as the initial conditions are contained in the convex hull
of the off-line test locations. Our numerical results show that the resulting controller
has excellent performance, always guiding the system to the exact terminal con-
straint. Furthermore, the controller is extremely fast to compute, since it is based on
simple algebraic manipulations and hence it is beneficial for all similar situations
where decisions must be taken within extremely short deadlines.
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