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Abstract

Sampling-basedalgorithms solve the motion planning problem by suc-
cessively solving several separate suproblems of reduced complexity.
As a result, the efficiency of the sampling-based algorithm depends on
the complexity of each of the algorithms used to solve the individual
subproblems, namely the procedures GenerateSample, FindNearest,
LocalPlan, CollisionFree, and AddToGraph. However, it is often the
case that these subproblems are quite related, working on common
components of the problem definition. Therefore, distinct algorithms
and segregated data structures for solving these subproblems might be
costing sampling-based algorithms more time than necessary.

The thesis of this dissertation is the following: By taking advantage
of the fact that these subproblems are solved repeatedly with similar
inputs, and the relationships between data structures used to solve the
subproblems, we may significantly reduce the practical complexity of
sampling-based motion planning algorithms. Moreover, this reuse of
information from components can be used to find a middle ground be-
tween exact motion planning algorithms which find an explicit represen-
tation ofthe collision-free space,and sampling-based algorithms which
find no representation of the collision-free space, except for the zero-
measure paths between connected nodes in the roadmap.

Thesis Supervisor: Prof. Emilio Frazzoli
Title: Professor of Aeronautics and Astronautics

3



4



Acknowledgments

First and foremost I would like to thank my thesis advisor, Emilio

Frazzoli, for the years of guidance and collaboration that have led me

through the exciting journey that has been my graduate career at MIT.

It has been my priviledge to study under someone with such expertise,

vision, and enthusiasm.

I am also indebted to my thesis committee, Russ Tedrake and Nick

Roy, for their insight and encouragement on this thesis, and for what

they have taught me. They have provided me with many of the tools

that I will carry with me through my career.

I would also like to thank my collaborators, Sertac Karaman, Michael

Otte, and Kyle Treleaven, and to my labmates. In the elaborate ritual

of banging one’s against a wall, it is easy to stray from reality in the

search for the truth.

I am grateful beyond measure to Irene Chen, for all the many gifts

she has given me, and to my family for their love and support.

5



6



Contents

1 Introduction 19

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 20

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Complete algorithms for specialized problems . . 22

1.2.3 Sampling-based motion planning . . . . . . . . . 23

1.2.4 Sampling-based algorithms . . . . . . . . . . . . . 24

1.3 Components of sampling-based motion planning . . . . . 25

1.3.1 Random Sampling . . . . . . . . . . . . . . . . . 25

1.3.2 Nearest neighbors . . . . . . . . . . . . . . . . . . 26

1.3.3 Collision checking . . . . . . . . . . . . . . . . . . 28

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Efficient Collision Checking in Sampling-based Motion

Planning 33

2.1 Notation, Problem Statement, and Main Results . . . . . 34

2.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Modified Collision Checking Procedures . . . . . 39

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Workspace Certificates 53

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Collision geometries . . . . . . . . . . . . . . . . 54

3.1.2 Articulated model . . . . . . . . . . . . . . . . . 55

3.1.3 Exponential map from so(3) to SO(3) . . . . . . 58

3.1.4 Sturm sequences . . . . . . . . . . . . . . . . . . 59

3.2 Local planning . . . . . . . . . . . . . . . . . . . . . . . 60

7



3.2.1 Canny interpolation . . . . . . . . . . . . . . . . 60

3.2.2 Constrained motions . . . . . . . . . . . . . . . 64

3.3 Collision checking preliminaries . . . . . . . . . . . . . 65

3.3.1 Type A contact . . . . . . . . . . . . . . . . . . . 65

3.3.2 Type B contact . . . . . . . . . . . . . . . . . . . 66

3.3.3 Type C contacts . . . . . . . . . . . . . . . . . . 68

3.4 Interference checking . . . . . . . . . . . . . . . . . . . 69

3.4.1 The narrow phase algorithm . . . . . . . . . . . 70

3.4.2 Types 1 and 2 predicates . . . . . . . . . . . . . 72

3.4.3 Type 3 predicate . . . . . . . . . . . . . . . . . 73

3.4.4 Implementation notes . . . . . . . . . . . . . . . . 74

3.5 Efficient collision checking with

workspace certificates . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Querying workspace certificates . . . . . . . . . . 76

3.5.2 Generating certificates from collision distances . . 77

3.5.3 Generating certificates by priority pruning . . . . 79

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . 80

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Free-configuration Biased Sampling 85

4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Convergence to a uniform distribution over free

space . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Performance and runtime . . . . . . . . . . . . . 98

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . 99

4.4.1 Sampling Performance . . . . . . . . . . . . . . . 100

4.4.2 Planar Point Robot . . . . . . . . . . . . . . . . . 101

4.4.3 Planar Object Robot . . . . . . . . . . . . . . . . 102

4.4.4 Planar Manipulator Robot . . . . . . . . . . . . . 103

4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . 105

5 Sampling directly from a triangulation 107

5.1 Uniform sampling from a simplex interior . . . . . . . . . 107

5.2 Sampling Uniformly from a Triangulation . . . . . . . . . 111

5.3 k-NN Searching in a Delaunay Triangulation . . . . . . . 113

8



5.4 Combined sampling and k-NN Searching in a Delaunay

Triangulation . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Proximity queries for robotic systems 117

6.1 Priority searching in spatial indices . . . . . . . . . . . . 118

6.2 Indexing Sn . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.1 Hyper-rectangular BVH of S2 . . . . . . . . . . . 121

6.2.2 Voronoi Diagram of Sn . . . . . . . . . . . . . . . 123

6.3 Indexing SO(3) . . . . . . . . . . . . . . . . . . . . . . 124

6.4 R3 × SO(3) . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Dubins Vehicles . . . . . . . . . . . . . . . . . . . . . . 125

6.5.1 0 active constraints . . . . . . . . . . . . . . . . . 127

6.5.2 1 active constraint, x or y . . . . . . . . . . . . . 128

6.5.3 1 active constraint, θ . . . . . . . . . . . . . . . . 129

6.5.4 2 active constraints, x and y . . . . . . . . . . . . 129

6.5.5 2 active constraints, x or y and θ . . . . . . . . . 129

6.5.6 3 active constraints . . . . . . . . . . . . . . . . . 131

6.5.7 Experiments . . . . . . . . . . . . . . . . . . . . . 131

A GJK algorithm 133

B Fast indexing for support functions in GJK 137

9



10



List of Figures

2-1 Illustration of the certificate covering for an implemen-

tation of RRT∗ for a planar point robot. As the number

of samples increase (images from left to right) the likeli-

hood of sampling from outside the certificates goes down. 34

2-2 (left) If the query point and its nearest neighbor are both

within the certificate, then the path between them is

collision free. (right) Likewise, if any candidates for con-

nection also lie within the same certificate, then the path

between is implicitly collision free. . . . . . . . . . . . . 41

2-3 (Left) Search tree, black, and balls where explicit col-

lision checks are unnecessary, purple, for the modified

RRT∗ algorithm with n = 2, 000. (Right) Runtimes for

the four algorithms tested, averaged over 30 runs of each

algorithm, and using graph size buckets of 1000 nodes. . 48

2-4 (Left) RRT∗ best-path cost vs. time, with and without

the proposed method, averaged over 30 runs and in buck-

ets of 100 time samples. The proposed method yields

significantly faster convergence. (Right) The experimen-

tal probability of performing an explicit collision query

vs. graph size. Only 1% of new nodes require an explicit

check when graph size is 100,000 nodes. . . . . . . . . . 50

2-5 The average computation time of a single iteration vs.

number of nodes for each algorithm (plot style), over 30

runs, in a configuration with 500 and 1000 obstacles (Left

and Right). Environments with more obstacles initially

have longer iteration times, but approach those with less

obstacles as the number of graph nodes increases. . . . . 50

11



2-6 Mean wall-clock runtime (Left) and experimental pexplicit

(Right), over 20 runs, for RRT in a unit workspace X =

[0, 1]d for several d. . . . . . . . . . . . . . . . . . . . . . 51

3-1 Centroidal projection of a path between two points in

S2. The Canny interpolation between orientations is a

similar projection in quaternion space (S3). . . . . . . . . 63

3-2 Type A contact occurs when a vertex of the moving ob-

ject pierces a face of the obstacle. . . . . . . . . . . . . . 66

3-3 Type B contact occurs when a face of the moving object

is pierced by a vertex of the obstacle. . . . . . . . . . . . 67

3-4 Type C contact occurs when an edge of the moving ob-

ject crosses an edge of the obstacle, piercing one of its

faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-5 Example of a workspace certificates for an L-shaped vol-

ume found from conservative dilation of the volume faces

by the collision distance. The example volume is in green,

the obstacles in red, and the certificate volumes in translu-

cent blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3-6 The addition of a redundant face allows for larger colli-

sion volumes. . . . . . . . . . . . . . . . . . . . . . . . . 78

3-7 Example of 2d certificates generated using (a) dilated

collision volume and collision distance and (b) successive

pruning by supporting hyperplane of nearest obstacle . . 80

3-8 Using workspace certificates accelerates continuous col-

lision checking by up to 40%, resulting in a 40% total

runtime reduction . . . . . . . . . . . . . . . . . . . . . 81

3-9 The certificate success rate grows with the size of the

point set, as the inter-configuration distance is shrinking. 81

3-10 When obstacles are close together (< 1× the length of

the moving object) the benefit of the collision cache is

greatly reduced. . . . . . . . . . . . . . . . . . . . . . . 82

3-11 The likelihood of the path to neighboring configurations

lying within a sample’s certificate volume remains small

for even relatively large point set sizes. . . . . . . . . . . 82

12



3-12 Caching of certificates generated by successive pruning

yields significantly improved runtime when obstacles are

close together with respect to the size of the collision

volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3-13 Certificates generated by successive pruning provide a

cache with a higher cache rate when obstacles are close

together. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-1 The induced sampling distribution of an augmented kd-

tree after 104, 105, and 106 samples are shown in (a),

(b), and (c), respectively. White-black represent low-high

sampling probability density. The actual obstacle config-

uration appears in (d), obstacles are red. . . . . . . . . . 86

4-2 kd-tree 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-3 Obstacle sets for experiments. For experiments with the

planar point and planar object, [i] and [ii] are mazes of

different complexity. For the planar manipulator [iii] is

a multi-crevice obstacle set with the manipulator in the

center crevice and [iv] is a wall with a narrow opening. . 100

4-4 Histogram of circumsphere sizes for the Delaunay Trian-

gulation of the point set generated after 1000 collision-

free samples in experiments with (a) the planar point

and obstacle set [i], (b) the planar object and obstacle

set [i], (c) the planar manipulator and obstacle set [iii]. . 101

4-5 Observed iteration times (a), (b), and incremental sam-

pling success rates (c), (d), for the planar point experi-

ments. Figures (a) and (c) are for obstacle set [i] while

(b) and (d) are for obstacle set [ii]. . . . . . . . . . . . . 102

4-6 Observed iteration times (a), (b), and incremental sam-

pling success rates (c), (d), for the planar object exper-

iments. Figures (a) and (c) are for obstacle set [i] while

(b) and (d) are for obstacle set [ii]. . . . . . . . . . . . . 103

4-7 Observed iteration times (a), (b), and incremental sam-

pling success rates (c), (d), for the planar point experi-

ments. Figures (a) and (c) are for obstacle set [iii] while

(b) and (d) are for obstacle set [iv]. . . . . . . . . . . . . 104

13



5-1 Barycentric coordinates provide a measure preserving

map from the surface of the canonical simplex to any

other simplex. . . . . . . . . . . . . . . . . . . . . . . . 110

5-2 Some examples of uniform sampling within a 2-simplex

(a.k.a. triangle) . . . . . . . . . . . . . . . . . . . . . . . 110

5-3 A balanced tree of partial sums for a distribution over

eight elements where the weights of the elements are 5,

2, 4, 3, 6, 3, 4, and 7. Given a query value of u = 1/2 the

dotted path shows the traversal of the Select procedure. 114

5-4 First three iterations of k-NN search in 2d. Q (in purple)

is initialized with the cell containing the query point. The

result set R (in green) is built up by successively adding

the nearest site of Q. . . . . . . . . . . . . . . . . . . . . 114

6-1 The orthodromic or great-circle distance between two

points on S2 . . . . . . . . . . . . . . . . . . . . . . . . . 121

6-2 Runtime for 10-nearest neighbor queries in R3 × SO(3).

(left) is in a linear scale and (right) is log-log. . . . . . . 125

6-3 Geometry of a Dubins state . . . . . . . . . . . . . . . . 127

6-4 Geometries of Dubins paths. ci is the center of the i’th

segment if the segment is an arc. l1 is the length of the

straight segment if it is part of the path. αi is the angular

coordinates of the start or end of an arc segment with

respect to the circle which the arc follows. . . . . . . . . 127

6-5 One active constraint in either x or y has solution prim-

itive L,R,LS, or RS. . . . . . . . . . . . . . . . . . . . . 128

6-6 Two active constraints specifying x and y yields either

LS or RS solutions. . . . . . . . . . . . . . . . . . . . . 128

6-7 LSL solutions for two active constraints including θ. There

are up to three cases. Each case to consider minimizes

one of the three segments. . . . . . . . . . . . . . . . . . 129

6-8 LSR solutions for two active constraints including θ.

There are up to three cases. Each case to consider mini-

mizes one of the three segments. . . . . . . . . . . . . . 130

6-9 LRL solutions for two active constraints including θ.

There are up to three cases. Each case to consider mini-

mizes one of the three segments. . . . . . . . . . . . . . 130

14



6-10 Runtime for 10-nearest neighbor queries in R2 × S1 for

a Dubins vehicle. (left) is in a linear scale and (right) is

log-log. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A-1 Supporting hyperplanes of the GJK output for a pair of

separated polygons . . . . . . . . . . . . . . . . . . . . . 135

B-1 Support set Voronoi diagram for a polygon in 2D. . . . . 138

B-2 Support set Voronoi diagram for a polygon in 3D. . . . . 138

15



16



List of Tables

2.1 Asymptotic bounds on the expected incremental com-

plexity of some standard sampling-based motion plan-

ning algorithms and of those same algorithms modified

according to the proposed approach. pcc is a function,

such that lim supn→∞ pcc(n) = 0 . . . . . . . . . . . . . . 37

3.1 Primitive procedures for polytope data structures . . . . 55

4.1 Constant type procedures for a node N . . . . . . . . . 88

5.1 Node Data Structure . . . . . . . . . . . . . . . . . . . . 112

17



18



Chapter 1

Introduction

A motion planning problem is, roughly speaking, a problem of finding

a connected set of collision-free configurations that begin at a desired

start region (or configuration) and end within a desired goal region.

These problems arise in the development of automated systems includ-

ing robotics in aerospace, underwater exploration, manufacturing, and

warehouse management. These problems are also becoming relevant in

in new industries such as personal transportation and personal robotics.

There are many exact motion planning algorithms which solve the

motion planning problem (see, for instance, those in [55]), but the com-

plexity of implementing them or the runtime required to solve the prob-

lem is often too high for practical use. In many cases, they require an

exact decomposition of the collision-free configuration set, which may

require storage exponential both in the representation of the obstacles

and in the dimension of the workspace (as is the case in retraction plan-

ning on a triangulation [52]). LIDAR sensors, for instance, are capable

of mapping a local environment as polygonal meshes with millions of

triangles, meaning the obstacle set for far-field planning may be too

large even to reside in computer memory at once. As a result, these

algorithms are, in many cases, restricted to simple two or three dimen-

sional problems with relatively small obstacle representations.

Alternatively, sampling-based motion planning algorithms forgo ex-

act representations of the collision-free set for planning. Instead, they

incrementally build a graph of paths, and thus require a collision checker

which solves the much simpler problem of checking whether a single (of-

ten short or simply-represented) path is collision free. This approach

has many advantages including conceptual simplicity, ease of implemen-
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tation, and modularity. In many cases, the opportunistic approach of

sampling-based algorithms can solve complex problems with less com-

putational resources than would be required by an exact algorithm. It

has proven to be an effective strategy even outside traditional motion

planning problems in robotics, in the areas of computer graphics and

synthetic biology [1, 19, 51]. Furthermore, the strategy can be used

in so-called any-time applications, where an initial solution is found

quickly and successively better solutions may be found by continuing

to sample from the space.

As illustrated in the sequel, sampling-based algorithms solve the mo-

tion planning problem by successively solving several separate suprob-

lems of reduced complexity. As a result, the efficiency of the sampling-

based algorithm depends on the complexity of each of the algorithms

used to solve the individual subproblems. However, it is often the case

that these subproblems are quite related, working on common com-

ponents of the problem definition. Therefore, distinct algorithms and

segregated data structures for solving these subproblems might be cost-

ing sampling-based algorithms more time than necessary.

The thesis of this dissertation is the following: By taking advantage

of the fact that these subproblems are solved repeatedly with simi-

lar inputs, and the relationships between data structures used to solve

the subproblems, we may significantly reduce the practical complexity

of sampling-based motion planning algorithms. In particular, as dis-

cussed below, we show that it is possible to improve the performance

of (i) random sampling, (ii) nearest neighbor searching, and (iii) col-

lision checking. Moreover, this reuse of information from components

can be used to find a middle ground between exact motion planning

algorithms which find an explicit representation of Xfree, and sampling-

based algorithms which find no representation of Xfree, except for the

zero-measure paths between connected nodes in the roadmap.

1.1 Problem statement

We are primarily concerned with the motion planning problem, which

we may precisely define as in [44]. The configuration space, X ⊂ Rd,

is the set of all configurations of the robotic system. The obstacle set,

initial set, and goal set are denoted Xobs, Xstart, and Xgoal respectively.
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The free space is given by Xfree = cl (X \Xobs) where cl (·) denotes set

closure.

Given a function σ : [0, 1] → Rd, its total variation is defined as

follows [44]:

TV (σ)
4
= sup

n∈N,0=t0<t1<...<tn=s

n∑
i=1

|σ (ti)− σ (ti−1) |.

We say a function σ has bounded variation if TV (σ) < ∞, and a

continuous function σ : [0, 1]→ Rd with bounded variation is called a

path.

A path is said to be collision free if it does not intersect the obstacle

set, i.e., σ (τ) ∈ Xfree, ∀τ ∈ [0, 1]. A collision-free path is said to be

feasible if it begins in the initial set and terminates in the goal set, i.e.,

σ (0) ∈ Xstart, σ (1) ∈ Xgoal. The feasible motion planning problem is to

find a feasible path if one exists or to determine that one does not.

Problem 1 (Feasible Motion Planning).

given Xfree, Xstart, Xgoal,

find σ : [0, 1]→ Xfree,

subject to σ ∈ C0,

TV (σ) < 0,

σ(0) ∈ Xstart,

σ(1) ∈ Xgoal.

Let us define Σ as the set of all solutions to a feasible motion plan-

ning problem. A functional J : Σ→ R≥0 is said to be a cost functional

if it assigns a non-negative value (cost) to all non-trivial paths, i.e.,

J (σ) = 0 if and only if σ (τ) = σ (0), ∀τ ∈ (0, 1], [44]. The optimal

motion planning problem is to find a feasible path with minimum cost

provided one exists, or determine if no feasible path exists.
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Problem 2 (Optimal Motion Planning).

given Xfree, Xstart, Xgoal, J,

minimize
τ

J(σ),

subject to σ : [0, 1]→ Xfree,

σ ∈ C0,

TV (σ) < 0,

σ(0) ∈ Xstart,

σ(1) ∈ Xgoal.

It is often the case that the configuration space of the system is

higher dimension then the physical (i.e., “real”) space in which it op-

erates. In this case we refer to the latter as the workspace, denoted

W ⊂ Rn (typically n = [2, 3]), and define a mapping w : X →W from

configurations to volumes of the workspace, i.e., given a configuration

x ∈ X, then w (x) ⊂ W is the set of points in the workspace which are

occupied by the system at configuration x. If the obstacles are specified

in terms of the workspace, i.e., Oi ⊂ W , then free space is defined as

Xfree = {x ∈ X |w (x) ∩Xobs = ∅}.

1.2 State of the art

1.2.1 Complexity

There are several well known results regarding the fundamental com-

plexity of motion planning problems. The generalized movers problem

is PSPACE–Complete (PSPACE–Hard [85], PSPACE [16]). Even the

somewhat simpler warehouse movers problem is PSPACE–hard [38], as

is the game Sokoban (a simplified warehouse movers problem) [21].

1.2.2 Complete algorithms for specialized problems

The PSPACE complexity class makes complete and exact algorithms for

complex (high dimensional, large obstacle representation) and general

problem instances computationally impractical. Nevertheless, there are

efficient algorithms for solving specializations of the motion planning
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problem with two or three degrees of freedom. Many such algorithms are

described in the books by Latombe, Goodman, and Lavalle [32, 52, 55].

1.2.3 Sampling-based motion planning

In contrast to exact algorithms, sampling-based motion planning al-

gorithms are algorithms which solve the feasible or optimal motion

planning problem by incremental construction of a roadmap of plans,

through either random or quasi-random sampling sequences. As a gen-

eral definition, a sampling-based algorithm takes as input a motion

planning problem (Xfree, Xstart, Xgoal), and an integer n ∈ N, and return

a graph Gn = (Vn, En) where Vn ⊂ Xfree, card (Vn) ≤ n, En ⊂ Vn × Vn.

Sampling-based algorithms map a sequence of sampled configurations ω

to a sequence of graphs. Let Gn(ω) = (Vn(ω), En(ω)) denote the output

of the algorithm, given ω.

Sampling-based algorithms address the complexity of motion plan-

ning problems by forgoing the traditional concepts of completeness and

optimality in favor of probabilistic completeness or asymptotic optimal-

ity. Traditionally a complete algorithm returns a solution to the problem

if one can be found, or returns an indication that no solution exists.

Likewise an optimal algorithm (in the sense of optimal solutions, not

of optimal complexity) returns an optimal solution if one exists or an

indication that no solution exists. For sampling-based algorithms we

consider the possible outcomes of an algorithm in terms of the event

determining the sequence of samples, ω. We say that a sampling-based

algorithm is probabilistically complete if, as the number of samples goes

to infinity, the probability of finding a solution (given that a robustly

feasible[44] solution exists) goes to unity.

lim
n→∞

P (Sol’n Found | Sol’n Exists ) = 1;

Likewise, if an optimal motion planning problem has a robustly op-

timal [44] solution with cost J∗, and the best solution found after n

samples is σ∗n, then we say that a sampling-based algorithm is asymp-

totically optimal if, as the number of samples goes to infinity, the cost

of the best path J (σ∗n) approaches J∗, with probability one. Formally:

P
(

lim
n→∞

J (σ∗n) = J∗
)

= 1.

23



Although they suffer reduced guarantees, sampling-based algorithms

have proven to be quite effective at efficiently finding solutions to sev-

eral difficult problems.

1.2.4 Sampling-based algorithms

One of the earliest sampling-based planning algorithms was the Ran-

domized Path Planner (RPP) [8] which is based on the computation

of a potential field and adds a random walk procedure to escape from

local minima.

The “Ariadne’s clew” algorithm [11] was developed based on place-

ment of landmarks, or intermediate configurations. An explore subalgo-

rithm iterates on the placement and number of these landmarks while

a search subalgorithm attempts to find at least one landmark which

can reach the goal by a simple Manhattan motion. The Ariadne’s Clew

algorithm utilizes genetic algorithms to optimize the location of land-

marks and perform local search for Manhattan motions that reach the

goal.

The Probabilistic Roadmap (PRM), introduced in [47], operates in

two phases. In the learning phase, a roadmap is constructed with nodes

corresponding to collision-free configurations, and edges corresponding

to feasible paths between these configurations. In the query phase, a

given start and goal configuration are added to this map, along with

appropriate edges, and then a graph search algorithm is used to find a

feasible path from the start configuration to the goal configuration.

The Rapidly Exploring Random Tree (RRT) [57, 56], is similar to

the PRM but for single query problems. A roadmap is constructed

similarly to PRM, but the graph is grown incrementally from the start

configuration, and new configurations are only added as nodes to the

roadmap if they can feasibly connect to a configuration already in the

roadmap.

Following the introduction of these algorithms, many variations of

PRM and RRT have been developed. However, despite significant diver-

sity among sampling-based planning algorithms, they share a common

high level structure based on the solution to several subproblems. They

are generally composed of the following components: (i) a sampling

scheme; (ii) a collision-checking procedure that determines if a point

or path is in collision, given an obstacle set, (iii) a proximity search
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procedure that returns “neighbors” to a point, given a point set; and

(iv) a local planning procedure that returns a path between two given

points. This structure represents the incremental computation of the

graph Gn+1 from the graph Gn, and is illustrated in pseudo code in

Algorithm 1.1.

Data: Gn = (En, Vn)

1 Gn+1 ← Gn ;

2 xsample ← GenerateSample ;

3 Xnear ← FindNear (xsample) ;

4 for x ∈ Xnear do

5 σ ← LocalPlan (x,xsample) ;

6 if CollisionFree (σ) then

7 Gn+1 ←
AddToGraph (σ,Gn) ;

8 return Gn+1

Algorithm 1.1: ExtendGraph (G),

Many sampling-based motion planning

algorithms share a common high level

structure.

Variations of these algorithms such as RRT∗ and PRM∗ are shown

to be asymptotically optimal and are designed to have the same asymp-

totic complexity bounds [44].

1.3 Components of sampling-based motion

planning

As illustrated in Algorithm 1.1, sampling-based algorithms solve the

motion planning problem by successively solving several separate suprob-

lems of reduced complexity, namely the procedures GenerateSample,

FindNearest, LocalPlan, CollisionFree, and AddToGraph.

1.3.1 Random Sampling

In most implementations the true randomness of the sampling sequence

is non-crucial, and so-called pseudo random number (PRN) sequences
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are sufficient for the sampling process[?]. A pseudo random number se-

quence is generated by a deterministic computational process which is

chaotic, relatively equidistributed, uncorrelated, and has a long period.

There are many popular algorithms for generating a PRN sequence

such as BBS [12], Multiply-with-carry [64], Linear Congruential Gen-

erators [58] (the most common generator in programming languages),

XOR-shift [65], Linear Feedback Shift, and of more recent popularity,

Mersenne Twister (MT) [66] (which can be efficiently implemented on

parallel hardware [100]). Each of these algorithms have complexity lin-

ear in the number of bits and several of them provide sequences with

long periods and sufficient distributions to provide adequate notions of

randomness to sampling-based planners.

Each of these algorithms generate sequences which are approxi-

mately uniformly distributed. Combined with the common choice of

a hyperrectangular configuration space, they are a suitable source for

random selection of points uniformly distributed over the workspace

W . However, it is the goal of sampling-based planners to build a tree

of collision-free trajectories, so an ideal sample generator would sample

uniformly from Xfree.

In general practice, this is achieved by rejection sampling of X. This

increases the complexity of the GenerateSample procedure by a factor

proportional to the relative volume of Xobs with respect to X times the

complexity of performing a collision check for a single configuration.

In addition to this fact, especially in the case of optimal motion plan-

ning, an independent sampling algorithm does not leverage information

currently obtained about the environment by the sampling sequence.

1.3.2 Nearest neighbors

The FindNearest procedure in sampling-based motion planning gener-

ally solves the (k-)Nearest Neighbor problem or the Range Search prob-

lem. The k-Nearest Neighbor problem is defined as follows: Given a set

of points X, a query point xq, a distance function d : X ×X → R≥0,

and an integer k, find the set Xnearest ⊂ X satisfying

card (Xnearest) = k,

max
x∈Xnearest

d (x,xq) ≤ min
x∈X\Xnearest

d (x,xq) .
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The Nearest Neighbor problem, then, is equivalent to the k-Nearest

Neighbor problem with k = 1. The Range Search problem is defined

as follows: Given a set of points X, a query point xq, a distance function,

and a parameter distance d, find the set Xrange = {x ∈ X | d (x,xq) < d}.
A näıve algorithm for solving either of these problems by exhaustive

search will take time O(n) where n = card (X). However, there are

many data structures (and with them algorithms) which yield much

better complexity.

One of the most important of these data structures is the Voronoi

diagram [6] (and its dual, the Delaunay graph). A hierarchy of Voronoi

diagrams [22] can be searched in expected time O(n log n), while a per-

sistent search tree [91] over the diagram can be searched in determinis-

tic time O(log n), which is optimal for the Nearest Neighbor problem.

However, it is known that there are degenerate configurations of points

X ∈ Rd such that the size of the diagram is O(nd), giving construction

of the Voronoi diagram exponential complexity in the worst case. On

the other hand, for a set of points X which are sampled at random

from a uniform distribution, the expected number of Delaunay neigh-

bors is O(αd) for a constant α [23], meaning that on average the cost

of incrementally constructing the Voronoi diagram will have an incre-

mental complexity which is constant for constant dimension. In fact, if

each point x ∈ X is independent and identically distributed, then the

Voronoi diagram can be constructed in linear expected time [24].

The problem of constructing a Voronoi diagram from a point set

is well studied [69]. Methods of incremental construction [68, 50] are

particularly useful for sampling-based motion planning algorithms since

the point set itself is built incrementally.

In particular, it has been shown that there is a linear-time mapping

from the problem of building a Voronoi diagram of a point set X ⊂ Rd

to the problem of building the convex hull of a point set X′ ⊂ Rd+1 [15].

Thus, all of the results for algorithms and complexity of convex hulls

applies to that of Voronoi diagrams. The problem is particularly well

studied for points in two and three dimensions, such as the O(n log n)

algorithm of [79]. In [93], a deterministic algorithm with complexity

O(n2 + F log n) for fixed dimension, and F = O(nbd/2c) is given. An

optimally output-sensitive randomized algorithm constructing convex

hulls in time O(nbd/2c) is given in [94]. An algorithm based on Random
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Incremental Construction (RIC) is given in [18]. Another popular algo-

rithm is the quickhull algorithm [7] and its randomized version [103].

While Voronoi diagrams are particularly useful in analysis, their

worst-case complexity tends to discourage their use in many applica-

tions. There are many alternative spatial indexes including other spatial

decompositions and search trees [89]. On of the most common search

trees for nearest neighbor queries is the kd-tree [9, 10] or one of its many

variants and derivatives such as the K-D-B tree [86], the hB-tree [62],

divided kd-trees [102], and the Bkd-tree [80]. The kd-tree is particu-

larly useful because it is very simple to implement, and for the case of

incremental insertion of points independently sampled and identically

distributed (i.i.d.) it is known to be asymptotically balanced such that

nearest neighbor queries are O (log n).

More recent work on neighbor searching in very high dimension has

yielded algorithms based on Locality Sensitive Hashing (LSH) [30]. Of

particular note is the hashing function described in [4] for Euclidean

distances. The most recent LSH algorithm is described in [5] and a

nice survey is given in [3]. Parallel implementations of LHS for nearest

neighbor searching using GPUs are described in [73, 74].

1.3.3 Collision checking

Collision checking for sampling-based algorithms is important for both

the GenerateSample and CollisionFree procedures. There is an im-

portant distinction between the two. Much of the literature on collision

checking focuses on the less complex problem of discrete collision check-

ing, namely determining if a single configuration x is in collision, i.e.,

whether w (x) ∩ Xobs 6= ∅. More recent work has been focused on the

problem of continuous collision checking : given a (usually infinite) set

of configurations X, determine if any configuration is in collision, i.e.,

∃x ∈ X |w (x) ∩Xobs 6= ∅.
Static collision checking is useful in rejection sampling for the

GenerateSample procedure, but continuous collision checking is re-

quired for the CollisionFree procedure, as the parameter of that pro-

cedure is a continuous path through the configuration space.

In collision checking, it is generally assumed that the obstacles and

the workspace volume of a configuration are both convex. While this

assumption is not always realistic, it is required for the efficient compu-
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tation of set distances and other spatial properties [14]. Furthermore,

for many systems of interest an efficient convex decomposition of ob-

stacles or configuration volumes is available.

Collision checking is generally based on the combination of two dis-

tinct components: interference testing and spatial indexing. An interfer-

ence test checks if a configuration or set of configurations is in collision

with a single obstacle. Spatial indexing is a strategy for creating a

data structure which can reduce the number of obstacles that must be

considered for interference testing. These components are often called

broad-phase (navigating the index) and narrow-phase (interference test-

ing) collision checking. A survey summarizing many of the following

techniques is given in [43].

Interference testing

Discrete interference testing between two convex objects is very often

implemented by the GJK algorithm [28]. Efficient exact interference

testing in 3d for a convex polytope undergoing smooth motion among

convex polytope obstacles is given in [17] by an algebraic representa-

tion of the interference predicates for configurations represented by a

translation vector and a rotation quaternion. If the motion between

two configurations is described by a polynomial vector function of the

configuration the resulting predicates are polynomials and interference

testing resolves to root-finding in a polynomial. In the special case that

the motion is linear in a parameter s, the interference test requires find-

ing the solution of a polynomial cubic in s. A derivative of this method

which replaces actual motions between two configurations with an ar-

bitrary surrogate that is sufficient for small time instances is given in

[81]. For the case that the motion can be approximated by a sequence of

screw motions (infinitesimal translations/rotations), a method is given

in [48]. A combination of the two with the addition of conservative

bounds given by interval arithmetic is given in [84].

Given that these methods rely on low-order representations of the

path between configuration pairs, they tend to have less utility for sys-

tems that evolve with complex dynamics, or systems with a large num-

ber kinematic constraints (especially robotic manipulators). Alterna-

tive strategies are based on inexact continuous checking by discrete

sampling, in many cases applying a static collision check at each of
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the sample points. A method of adaptive segment checking is presented

in [92]. Methods based on conservative certificates and interval arith-

metic are described in [82, 83]. An extension using Taylor models to

approximate incremental motion is described in [106]. A method based

on refitting bounding spheres is given in [46].

Spatial indexing

Data structures used as spatial indexes generally fall under the category

of spatial decompositions and bounding volume hierarchies [89]. As

in the case of nearest neighbor searching, the Voronoi diagram plays

an important role in collision checking. Especially in the case of two-

dimensional systems and obstacles, the Voronoi diagram of convex sites

yields an optimal data structure for set distances [67]. In the case where

the system and obstacles are polygons the Voronoi diagram of line

segments can be used [36, 45].

Voronoi diagrams provide an optimal spatial decomposition for set

distance queries, but the complexity of constructing the diagram can

prove to be unreasonable, especially in higher dimensions. One alter-

native based on non-optimal decomposition is a binary space partition

(BSP) [101].

Bounding volume hierarchies (BVHs), especially those based on R-

trees [35] are extremely popular for collision checking. One of the most

common is the Axis-Aligned Bounding Box tree (AABB-tree). A com-

bined method based on the R-tree of the Voronoi diagram is given

in [95].

Voronoi diagrams, BSPs and BVHs are shown to have, at least in

expectation, O(log n) search time (and thus, number of interference

tests) for a static collision query, where n is the size of the obstacle

representation, usually number of vertices or faces of the obstacle mesh.

Parallel hardware

By its nature, collision checking is a computationally intensive pro-

cess. Interference testing is O(nf ) in the number of features nf and

spatial index searching is often O(log no) in number of obstacles no.

For many practical applications the values of nf and no may be very

large compared to other data structures in a planning algorithm. How-
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ever, the low level mathematical operations to interference testing and

index searching tend to be elementary for hardware arithmetic units.

As such, new computational hardware designed with reduced capabil-

ity but many more logical processors, namely, graphics co-processors

(GPUs), are particularly well suited towards solving the collision check-

ing problem.

In [33] and [34], implementations of bounding volume strategies for

GPUs are presented. A BVH construction technique is presented in [53]

and collision checking based on that construction in [54]. A parallel

method based on maintenance of the colliding-front of the bounding

volume tree is presented in [99]. In [39] an alternative to breadth-first

construction order for GPU bounding volume hierarchies is proposed. A

modern general implementation for production use is described in [75,

72, 76].

1.4 Organization

The remainder of this document is organized as follows: chapter 2

demonstrates the use of proximity search structures as a cache for

collision information, allieviating the collision-checking bottleneck in

c-space planning algorithms. Chapter 3 extends the algorithm of chap-

ter 2 to workspace planning problems. Chapter 4 describes an algorithm

for efficiently sampling from the configuration free space by storing em-

perical data in a proximity search bounding volume hierarchy. Chap-

ter 5 extends the algorithm of chapter 4 to triangulations. Chapter 6

describes efficient proximity search structures for some common config-

uration spaces.
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Chapter 2

Efficient Collision Checking

in Sampling-based Motion

Planning

Collision checking is widely considered the primary computational bot-

tleneck of sampling-based motion planning algorithms (e.g., see [55]).

This chapter demonstrates that this does not have to be the case. We

introduce a novel collision checking implementation that has negligible

amortized complexity vs. the proximity searches that are already at

the core of sampling-based motion planning. As a consequence, prox-

imity searches are identified as the main determinant of complexity

in sampling-based motion planning algorithms, rather than collision

checking.

Traditionally, collision checking is handled by passing a point query

to a “Boolean black box” collision checker that returns either true or

false depending on if the point or path is in collision with obstacles or

not. In this chapter, we place a stronger requirement on the collision-

checking procedure, which is now assumed to return a lower bound on

the minimum distance to the obstacle set. Although computing such a

bound is harder than checking whether a point is in collision or not,

leveraging this extra information allows us to skip explicit collision

checks for a large fraction of the subsequent samples. Indeed, the prob-

ability of calling the explicit collision checking procedure, and hence

the amortized computational complexity due to collision checking, con-

verges to zero as the number of samples increases.

It is useful to think of this method as caching discrete collision check
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results inside the proximity search data structure. As proximity queries

precede path collision checking in sampling-based algorithms, the cache

fetch is implicit and occurs no additional work when used to accelerate

continuous collision queries. If the two end configurations of a path both

lie inside the certificate region, we may consider this a cache hit whereas

if they do not, then this is a cache miss. Furthermore, if proximity

queries are cheaper than discrete collision queries (i.e., the graph size

is small enough), the proximity query may be performed instead before

the discrete collision check to accelerate rejection sampling as well.

Figure 2-1: Illustration of the certificate covering for an implementation of
RRT∗ for a planar point robot. As the number of samples increase (images
from left to right) the likelihood of sampling from outside the certificates
goes down.

The rest of this chapter is organized as follows: In Section 2.1 we

introduce notation and state our problem and main results. In Sec-

tion 2.2 we present our new collision checking method. In Section 2.3

we analyze the expected fraction of samples that will require a colli-

sion distance query and calculate the expected runtime savings of the

proposed approach (e.g., for RRT, PRM, and many of their variants).

In Section 2.4 we demonstrate performance improvement when used

with RRT and RRT∗. In Section 2.5 we draw conclusions and discuss

directions for future work.

2.1 Notation, Problem Statement, and Main

Results

Let X = (0, 1)d be the configuration space, where d ∈ N, d ≥ 2

is the dimension of the space. Let Xobs be the obstacle region, such

that X \ Xobs is an open set, and denote the obstacle-free space as
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Xfree = cl (X \Xobs), where cl (·) denotes the closure of a set. The ini-

tial configuration xinit is an element of Xfree, and the goal region Xgoal

is an open subset of Xfree. For the sake of our discussion, we will as-

sume that sampling-based algorithms take as input a motion planning

problem as problem 1 or problem 2, and return a sequence of graphs

as in section 1.2.4. Let Gn (ω) = (Vn (ω) , En (ω)) denote the output of

the algorithm, given a sample sequence ω.

The problem we address in this chapter is how to reduce the com-

plexity of sampling-based motion planning algorithms, i.e., the (ex-

pected) number of operations needed to compute Gn. In particular, we

consider incremental complexity: the expected difference in the total

number of operations needed to compute Gn+1(ω) and Gn(ω). In what

follows, we characterize complexity based on the number of samples n

and the environment description Xobs, while keeping the dimension d of

the space a constant. For convenience, we assume stochastic sampling

that draws uniformly and independently from X. Our results extend to

deterministic and/or non-uniform sampling procedures, as long as the

sampling procedure satisfy the technical conditions required for proba-

bilistic or resolution completeness [55].

The computational complexity of a sampling-based algorithm can

be decomposed in terms of the complexity of its primitive operations.

The complexity of drawing a sample is bounded by a constant csample.

The complexity of a collision check is bounded by ccc(Xobs) a function

that depends only on the description of the environment—note that the

expected complexity of checking collisions with nobs convex obstacles is

O
(
log(nobs)

d
)

[89]. The complexity of (approximate) proximity searches

that return the O (log n) nearest elements to a query point from a set of

cardinality n is O (log n) [89]. The latter applies to k-nearest neighbor

searches (k fixed or scaling as log n), and range searches among uniform

random samples for those points within a ball of volume scaling as

log(n)/n.

The complexity of the local planner is bounded by a constant cplan

that does not depend on the environment description. For convenience

we also include in cplan all other bookkeeping operations that are con-

stant per candidate connection (cost updates, graph rewiring, etc.).

Each candidate path generated by the local planner must also be checked

for collisions, with complexity bounded by cpath(Xobs) a function that

35



depends only on the description of the environment.

The expected incremental complexity of sampling-based motion plan-

ning algorithms can be evaluated by examining the work induced by

each new sample:

• RRT: Find the nearest neighbor, generate a new point, check the

new point for collision, and connect the new point to the nearest

neighbor.

• k-PRM: Collision check the sample, find and connect to its k-

nearest neighbors.

• RRT∗, PRM∗: Collision check the sample, find the neighbors within

a ball of volume scaling as log(n)/n—or, equivalently, the (k log n)-

nearest neighbors, for a fixed k—and connect to them.

Table 2.1 summarizes the main contributions to the expected incremen-

tal complexity of these algorithms, in their standard implementation,

based on collision-checking queries. Note that the local planning and

path checking only occur if the new sample is not in collision with

obstacles.

It is important to note that the asymptotic bounds may be mislead-

ing. In practice, the cost of collision checking the new sample and a new

candidate connection ccc(Xobs)+cpath(Xobs) often effectively dominates

the incremental complexity, even for very large n. Hence, collision check-

ing is typically regarded as the computational bottleneck for sampling-

based motion planning algorithms. The cost of collision checking is even

more evident for algorithms such as RRT∗ and PRM∗, where collision

checks are carried out for each of the O(log n) candidate connections

at each iteration. Moreover, the ratio of the incremental complexity of

RRT∗ to that of RRT depends on the environment via cpath(Xobs), and

is potentially very large, although constant with respect to n.

In our approach, we replace standard collision checks with approx-

imate minimum-distance computations. The complexity of computing

a non-trivial lower bound on the minimum distance of a point from

the obstacle set is also bounded by a function that depends on the de-

scription of the environment. In particular, we will require our collision

checking procedure to return a lower bound d̄ on the minimum distance

d∗ that satisfies αd∗ ≤ d̄ ≤ d∗, for some α ∈ (0, 1]. The computational
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cost of such a procedure will be indicated with cdist(Xobs); in many

cases of interest such a lower bound can be computed with a relatively

small overhead vs. collision checking.

Algorithm Proximity
Search

Point Collision Checking Local Planning Path Collision Checking

RRT O (log n) ccc(Xobs) cplan cpath(Xobs)
RRT (Modified) O(log n) O(log n) + pcc(n)ccc(Xobs) cplan pcc(n)cpath(Xobs)

k-PRM O (log n) ccc(Xobs) k cplan k cpath(Xobs)
k-PRM (Modified) O(log n) O(log n) + pcc(n) ccc(Xobs) k cplan k pcc(n) cpath(Xobs)

RRT∗, PRM∗ O (log n) ccc(Xobs) O (log n) cplan O (log n) cpath(Xobs)
RRT∗, PRM∗ (Modified) O(log n) O(log n) + pcc(n) ccc(Xobs) O (log n) cplan O(log n) pcc(n) cpath(Xobs)

Table 2.1: Asymptotic bounds on the expected incremental complexity of some
standard sampling-based motion planning algorithms and of those same algo-
rithms modified according to the proposed approach. pcc is a function, such that
lim supn→∞ pcc(n) = 0

The output of the minimum-distance computations is stored in

a data structure that augments the standard graph constructed by

sampling-based algorithms. Using this information, it is possible to re-

duce the number of explicit collision checks and minimum-distance com-

putations that need to be performed. As we will later show, using our

approach to modify the standard algorithms results in the asymptotic

bounds on expected incremental complexity summarized in table 2.1,

where pcc is a function such that lim supn→∞ pcc(n) = 0. Again, the

local planning and path checking only occur if the new sample is not

in collision with obstacles.

Inspection of table 2.1 reveals that the incremental complexity of

our version of RRT and k-PRM is less sensitive to the cost of collision

checking. Moreover, the asymptotic ratio of the incremental complexity

of our version of RRT∗ and RRT is a constant that does not depend on

the environment.

2.2 Proposed Algorithm

Before describing our proposed modification to the collision checking

procedure in section 2.2.1, we first formalize its primitive procedures

and data structure.

Sampling: Let Sample : ω 7→ {Samplei(ω)}i∈N ⊂ X be such that

the random variables Samplei, i ∈ N, are independent and identically

distributed (i.i.d.). The samples are assumed to be from a uniform
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distribution, but results extend naturally to any absolutely continuous

distribution with density bounded away from zero on X.

Nearest Neighbors: Given a finite point set S ⊂ X and a point

x ∈ X, the function Nearest : (S, x) 7→ s ∈ S returns the point in S

that is closest to x,

Nearest (S, x)
4
= argmin

s∈S
‖x− s‖,

where ‖ · ‖ is a metric (e.g., Euclidean distance—see [56] for alternative

choices). A set-valued version is also considered, kNearest : (S, x, k) 7→
{s1, s2, . . . , sk}, returns the k vertices in S that are nearest to x with

respect to ‖·‖. By convention, if card (S) < k, then the function returns

S.

Near Vertices: Given a finite point set S ⊂ X, a point x ∈ X,

and a positive real number r ∈ R>0, the function Near : (S, x, r) 7→
Snear ⊆ S returns the vertices in S that are inside a ball of radius r

centered at x,

Near (S, x, r)
4
= {s ∈ S | ‖s− x‖ ≤ r} .

Set distance: Given a closed set S ⊂ X and a point x ∈ X,

SetDistance returns a non-trivial lower bound on the minimum dis-

tance from x to S, i.e., for some α ∈ (0, 1],

αmin
s∈S
‖s− x‖ ≤ SetDistance (S, x) ≤ min

s∈S
‖s− x‖.

Segment Collision Test: Given points x, y ∈ X, CFreePath(x, y)

returns True if the line segment between x and y lies in Xfree, i.e.,

[x, y] ⊂ Xfree, and False otherwise.

Data Structure: We achieve efficient collision checking by stor-

ing additional information in the graph data structure that is already

used by most sampling-based algorithms. Specifically, we use the “aug-

mented graph” AG = (V,E, Sfree, Sobs,Dist), where V ⊂ Xfree and

E ⊂ V ×V are the usual vertex and edge sets. The sets Sfree ⊂ Xfree and

Sobs ⊂ Xobs are sets of points for which an explicit collision check has

been made. For points in Sfree or Sobs the map Dist : Sfree∪Sobs → R≥0

stores the approximate minimum distance to the obstacle set or to the

free space, respectively. The vertices V and edges E are initialized ac-

cording to the particular sampling-based algorithm in use. The sets
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Sfree and Sobs are initialized as empty sets.

2.2.1 Modified Collision Checking Procedures

Using the augmented graph data structure allows us to modify the colli-

sion checking procedures as shown in algorithm 2.1 and 2.2, respectively

for points and paths. For convenience, we assume that the augmented

data structure AG can be accessed directly by the collision checking

procedures, and do not list it as an input.

Point Collision Test: Given a query point xq ∈ X, the function

CFreePoint(xq) returns True if x ∈ Xfree, and False otherwise. When

a new sample xq is checked for collision, we first check if we can quickly

determine whether it is in collision or not using previously computed

information, lines 2.1.1-2.1.6. In particular, we use the configuration

xfree ∈ Sfree that is nearest to xq (found on line 2.1.1). If xq is closer

to xfree than the xfree is to an obstacle, then clearly xq is collision free,

lines 2.1.3-2.1.4. Otherwise, we find the configuration xobs ∈ Sobs that

is nearest to xq, line 2.1.2. If xq is closer to xobs than xobs is to the free

space, then clearly xq is in collision, line 2.1.5-2.1.6.

If these two checks prove inconclusive, then a full collision check is

performed using set distance computations. First, one can compute the

approximate minimum distances from xq to the obstacle set, and to

the free set, respectively indicated with dobs and dfree, lines 2.1.7-2.1.8.

If dobs > 0, xq is in Xfree and is added to the set Sfree of vertices that

have been explicitly determined to be collision-free, lines 2.1.9-2.1.10.

Furthermore, Dist(xq) is set to be equal to dobs, line 2.1.11. Otherwise,

xq is in Xobs, and is added to the set Sobs, with Dist(xq) = dfree, lines

2.1.13-2.1.15.

Path Set Collision Test: Given a vertex set S ⊆ V and query

point xq, the function BatchCFreePath(S,xq) returns a set of edges

H ⊆ (V ∪ {xq}) × (V ∪ {xq}) such that for all h = (x, y) ∈ H,

CollisionFreePath (x, y) evaluates to True. The form of S depends

on the particular planning algorithm that is being used, e.g.,

• RRT: S = Nearest (V,xq) is the single nearest point to xq in V .

• k-PRM: S = kNearest (V, x, k) contains up to k nearest neigh-

bors to xq in V .
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1 xfree ← Nearest (Sfree,xq);
2 xobs ← Nearest (Sobs,xq);
3 if ‖xq − xfree‖ ≤ Dist (xfree)

then
4 return True

5 else if ‖xq − xobs‖ ≤ Dist (xobs)
then

6 return False

7 dobs ← SetDistance (Xobs,xq) ;
8 dfree ← SetDistance (Xfree,xq) ;
9 if dobs > 0 then

10 Sfree ← Sfree ∪ {xq};
11 Dist(xq)← dobs;
12 return True

13 else
14 Sobs ← Sobs ∪ {xq};
15 Dist(xq)← dfree;
16 return False

Algorithm 2.1: CFreePoint(xq)

1 H ← ∅;
2 xnear ← Nearest (Sfree,xq);
3 foreach x ∈ S do
4 if ‖x− xnear‖ ≤ Dist (xnear)

then
5 H ← H ∪ {(x,xq)};
6 else if CFreePath(x,xq) then
7 H ← H ∪ {(x,xq)};

8 return H

Algorithm 2.2: BatchCFreePath(S,xq)

1 d← (Axq − c) ;
2 dmin = −‖ − d‖∞ ;
3 dmax = ‖d‖∞ ;
4 if dmax > 0 then
5 return (False, dmax) ;
6 else
7 return (True,−dmin) ;

Algorithm 2.3:
ApproxCDistPolytope(A, c,xq)

• RRT∗ and PRM∗: S contains O (log n) points—either the points

within a ball of volume scaling as log(n)/n centered at xq, or the

(k log n)-nearest neighbors to xq.

We assume CFreePoint(xq) is called prior to BatchCFreePath(S,xq),

and thus xq is collision-free. For each pair (s, x), s ∈ S, the first step

is to check whether the segment [s, x] can be declared collision-free

using only the information already available in AG, lines 2.2.2-2.2.5.

Let xnear ∈ Sfree be the vertex in Sfree that is nearest to xq, line

2.2.2. If both s and xq are closer to xnear than xnear is to the obsta-

cle set, then clearly the segment [s,xq] is collision free, lines 2.2.4-2.2.5

(‖xq−xnear‖ ≤ Dist(vnear) is automatic, given that CFreePoint(xq) has

already been called). If this check is inconclusive, then a full collision

check is performed, lines 2.2.6-2.2.7.

Approximate set collision distance: The set distance computa-

tion method depends on the choice of an obstacle index. For two dimen-

sional polygonal obstacles, a segment Voronoi diagram is an index for

which set distance computation is efficient and exact. For polyhedral

obstacles with halfspace representation {x : Ax ≤ c}, algorithm 2.3

computes a non-trivial lower bound on the set distance in O (nfd) time

for nf faces in d dimensions. If J∗ is the true set distance, then al-

gorithm 2.3 will return a distance J satisfying αJ∗ ≤ J ≤ J∗ where
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Figure 2-2: (left) If the query point and its nearest neighbor are
both within the certificate, then the path between them is colli-
sion free. (right) Likewise, if any candidates for connection also
lie within the same certificate, then the path between is implicitly
collision free.

α > 0 depends on the smallest angle between two adjacent faces. For

polytopes obstacles represented by vertex sets, GJK [28] provides simi-

lar approximate set distances and can be extended to provide exact set

distances.

Efficient collision checking: We now illustrate how to improve

the efficiency of standard sampling-based motion planning algorithms.

As an example, Algorithms 2.4 and 2.5 show modified versions of the

RRT and PRM∗ (pseudo-code based on [44]). AG is initialized on lines

2.4.1/2.5.1. Standard point collision checks are replaced with CFreePoint

(i.e., Algorithm 2.1), lines 2.4.4/2.5.4. The code generating neighbor

connections from a new sample is modified to generate those connec-

tions in a batch manner via a single call to BatchCFreePath (i.e., Al-

gorithm 2.2), lines 2.4.6/2.5.8.

1 V ← {xinit}; E ← ∅; Sfree ← ∅; Sobs ← ∅ ;
2 for i = 1, . . . , n− 1 do
3 xrand ← Samplei (ω);
4 if CFreePoint(xrand) then
5 xnearest ← Nearest (E,xrand);
6 H ← BatchCFreePath ({xnearest} ,xrand);
7 if H 6= ∅ then
8 V ← V ∪ xrand;
9 E ← E ∪H;

10 return G = (V,E);

Algorithm 2.4: Modified RRT
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1 V ← {xinit}; E ← ∅; Sfree ← ∅; Sobs ← ∅ ;
2 for i = 1, . . . , n− 1 do
3 xrand ← Samplei (ω);
4 if CFreePoint (xrand) then
5 V ← V ∪ {xrand} ;

6 foreach x ∈ V do

7 S ← Near
(
V,x, γPRM (log(n)/n)

1/d
)

;

8 H ← BatchCFreePath (S \ {x} ,x);
9 E ← E ∪H;

10 return G = (V,E);

Algorithm 2.5: Modified PRM∗

2.3 Analysis

Suppose ALG is a sampling-based motion planning algorithm. Let

Ipoint(n) denote the indicator random variable for the event that the

SetDistance procedure in algorithm 2.1 is called by ALG during the

iteration in which the n-th sample is drawn. Similarly, define Ipath(n)

as the indicator random variable for the event that the CFreePath pro-

cedure in algorithm 2.2 is called by ALG in the iteration in which

the n-th sample is drawn. Define I(n)
4
= Ipoint(n) + Ipath(n), and let

pcc(n) = E[I(n)]. We prove our main result for algorithms satisfying

the following assumptions:

(A1) ALG calls the CFreePoint procedure O(1) times per iteration;

(A2) At the n-th iteration, ALG calls the batch CFreePath procedure

with O(log n) paths, and all such paths lie inside a ball of radius

o(n−1/(d+1)) as n→∞.

Our main result is stated in the following theorem.

Theorem 1. Suppose ALG satisfies Assumptions (A1) and (A2). Then

ALG, implemented using the proposed collision-checking algorithm, has

zero asymptotic expected incremental set-distance complexity, i.e.,

lim sup
n→∞

pcc(n) = 0.

Note that all algorithms in Table 2.1 satisfy Assumptions (A1) and

(A2). Hence, the results summarized in Table 2.1 can be deduced from

Theorem 1.
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The rest of this section is devoted to the proof of Theorem 1. The

key idea behind the proof is to divide up the state space into several

cells. This particular discretization allows us to compute a bound on

the expected number of samples that require Algorithm 2.1 to call the

set-distance procedure. We show that this number grows slower than

n, which implies Theorem 1.

Consider a partitioning of the environment into cells, where the size

and number of cells used in the partition grows with the number of

samples n. More precisely, divide up the configuration space [0, 1]d into

openly-disjoint hypercube cells with edge length ln := n−
1

d+1 . Given

z ∈ Zd, we define the cell with index z as the L∞ ball of radius ln

centered at ln z, i.e., Cn(z) :=
{
x′ ∈ X : ‖x′−lnz‖∞ ≤ ln

}
, where ln z is

the scalar-vector multiplication of z by ln, and ‖·‖∞ is the infinity norm.

Let Zn ⊂ Zd denote the smallest set for which Cn := {Cn(z) : z ∈ Zn}
covers the configuration space, i.e., X ⊆ ⋃z∈Zn

Cn(z). Clearly, Zn is a

finite set, since X is compact.

Let γu denote the maximum distance between two points in the unit

hypercube using the distance metric ‖ ·‖ employed in the SetDistance

procedure. For instance, if ‖·‖ is the usual Euclidean metric (L2 norm),

then γu =
√
d; if ‖ · ‖ is the L∞ norm, then γu = 1.

We group the cells in Cn into two disjoint subsets, namely the

boundary cells Bn and the interior cells In. Let B
′
n denote the set of

all Cn(z) ⊂ Cn that include a part of the obstacle set boundary, i.e.,

Cn(z)∩∂Xobs 6= ∅. Then Bn contains exactly those cells that are within

a cell-distance of at most 2 (d(1/α) γue+ 1) to some cell in B
′
n,

Bn :=
{
Cn(z) : ‖z− z′‖∞ ≤ 2

(
d(1/α) γue+ 1

)
for some z′ with Cn(z′) ∈ B

′

n

}
,

where α is the constant in the constant-factor lower bound in the com-

putation of the SetDistance procedure. Finally, In is defined as exactly

the set of those cells that are not boundary cells, i.e., In := Cn\Bn. The

reason behind our choice of the number 2(d(1/α)γue + 1) will become

clear shortly.
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Let λ(·) denote the Lebesgue measure in Rd. The total number of

cells, denoted by Kn, can be bounded for all n as follows 1:

Kn ≤
λ(X)

λ(Cn(z))
=

λ(X)(
n−

1
d+1

)d = λ(X)n
d

d+1 . (2.1)

Notice the number of cells, Kn, is an increasing and sub-linear function

of n.

Let Bn denote the number of boundary cells.

Lemma 1. There exists a constant c1 > 0 such that Bn ≤ c1 (Kn)1−1/d

for all n ∈ N.

Proof. This result follows from the fact that the obstacle boundary

can be covered by N (d−1)/d = N1−1/d cells, where N is the number of

equal-size cells that cover the configuration space.

Thus the fraction of cells that are boundary cells can be bounded

by

c1Bn

Kn

=
c1 (Kn)1−1/d

Kn

= c1 (Kn)−1/d ≤ c1 (λ(X))−1/d n−
1

d+1 = c2 n
− 1

d+1 ,

where c2 is a constant.

We now bound the number of calls to the collision-distance pro-

cedure by examining the number of such calls separately for samples

that fall into interior cells or boundary cells, respectively. Recall that

Sfree and Sobs are defined as the vertices that are explicitly checked and

found to be in Xfree and Xobs, respectively. Define C := Sfree∪Sobs. Our

key insight is summarized in the following lemma, which will be used

to derive a bound on the number of points in C that fall into interior

cells.

Lemma 2. Given any algorithm in Table 2.1, suppose that algorithm is

run with n samples using our collision checking algorithm. Let Cn(z) ∈
In be some interior cell. Then, there exists at most one vertex from C

in Cn(z), i.e.,

|Cn(z) ∩ C| ≤ 1 for all Cn(z) ∈ In.

1Strictly speaking, this bound should read: Kn ≤ dλ(X)nd/(d+1)e, where d·e is
the standard ceiling function (i.e., dae returns the smallest integer greater than a).
We will omit these technical details from now on to keep the notation simple.
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Before proving Lemma 2, we introduce some additional notation

and establish two intermediate results. Let Nn(z) ⊆ Cn denote the

set of all cells that have a cell distance of at most d γue + 1 to Cn(z),

i.e., Nn(z) := {Cn(z′) : ‖z′ − z‖∞ ≤ dγue+ 1}. Nn(z) includes the cell

Cn(z) together with all its neighbors with cell distance less than dγue+1.

The cells in Nn(z) are such that they exclude points that are sufficiently

far away from points in Cn(z) and they include points that are suffi-

ciently far away from the boundary of the obstacle set. The last two

properties are made precise in the following two lemmas.

Lemma 3. Any point that lies in a cell outside of Nn(z) has distance

at least γu ln to any point that lies in Cn(z), i.e., ‖x − x′‖ ≥ γu ln for

all x ∈ Cn(z) and all x′ ∈ Cn(z′) with Cn(z′) /∈ Nn(z).

Proof. The claim follows immediately by the construction of Nn(z).

Lemma 4. Any point in a cell from Nn(z) has distance at least(
d(1/α) γue+ 1

)
ln to any point that lies on the obstacle set boundary,

i.e., ‖x− x′‖ ≥
(
d(1/α) γue+ 1

)
ln for all x ∈ ∂Xobs and all x′ ∈ Cn(z′)

with Cn(z′) ∈ Nn(z).

Proof. The interior cell Cn(z) has a cell distance of at least 2(d(1/α) γue+
1) to any cell that intersects with the boundary of the obstacle set. Any

cell in Nn(z) has a cell distance of at most dγue+ 1 ≤ d(1/α) γue+ 1 to

Cn(z). Thus, by the triangle inequality (for the cell distance function),

any cell in Nn(z) has a cell distance of at least d(1/α) γue + 1 to any

cell that intersects the obstacle boundary.

Now we are ready to prove Lemma 2.

Proof of Lemma 2. The proof is by contradiction. Suppose there exists

two points x1, x2 ∈ C that fall into Cn(z). Suppose x1 is added into C

before x2. Let xnearest denote the nearest point when Algorithm 2.1 was

called with x2.

First, we claim that xnearest lies in some cell in Nn(z). Clearly, xnearest

is either x1 or it is some other point that is no farther than x1 to x2.

Note that x1 and x2 has distance at most γu ln. By Lemma 3, any point

that lies in a cell outside of Nn(z) has distance at least γu ln to x2.

Thus, xnearest must lie in some cell in Nn(z). However, Dist(xnearest) ≥
(1/α) ‖x2 − xnearest‖ by Lemma 4; In that case, x2 should have never
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been added to C, even when the SetDistance procedure returns α-

factor of the actual distance to the obstacle set boundary. Hence, we

reach a contradiction.

The following lemma provides an upper bound on the expected num-

ber of samples that fall into boundary cells, thus an upper bound on

the expected number of points in C that fall into a boundary cell.

Lemma 5. Let Xn denote a set of n samples drawn independently and

uniformly from X. Let Sn denote the number of samples that fall into

boundary cells, i.e.,

Sn :=
∣∣{x ∈ Xn : x ∈ Cn(z) with Cn(z) ∈ Bn}

∣∣.
Then, there exists some constant c3, independent of n, such that E[Sn] ≤
c3 n

d
d+1 .

Proof. Let Ei denote the event that the i-th sample falls into a bound-

ary cell. Let Yi denote the indicator random variable corresponding to

this event. From Lemma 1 and the discussion following it, the fraction of

cells that are of boundary type is c2n
− 1

d+1 . Thus, E[Yi] = P(Ei) = c2 i
− 1

d+1

and E[Sn] = E [
∑n

i=1 Yi] =
∑n

i=1 E[Yi] =
∑n

i=1 c2 i
− 1

d+1 ≤ c2

∫ n
1
x−

1
d+1dx,

where c2

∫ n
1
x−

1
d+1dx = c2 (d+1)

d

(
n

d
d+1 − 1

)
. Thus, E[Sn] ≤ c3 n

d
d+1 ,

where c3 is a constant that is independent of n.

The following lemma gives an upper bound on the number of points

in C.

Lemma 6. There exists a constant c4, independent of n, such that

E [card (C)] ≤ c4 n
d

d+1 .

Proof. On one hand, the number of points in C that fall into an interior

cell is at most the total number of interior cells by Lemma 2, and thus

less than the total number of cells Kn, which satisfies Kn ≤ λ(X)n
d

d+1

(see Equation (2.1)). On the other hand, the expected number of points

in C that fall into a boundary is no more than the expected number

of samples that fall into boundary cells, which is bounded by c3 n
d

d+1 ,

where c is a constant independent of n (see Lemma 5). Thus, we con-

clude that E [card (C)] ≤ c4 n
d

d+1 for some constant c4.
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Finally, we are ready to prove Theorem 1.

proof of Theorem 1. First, we show that pcc is a non-increasing function

of n using a standard coupling argument. We couple the events {I(n) =

1} and {I(n+1) = 1} with the following process. Consider the run of the

algorithm with n+ 1 samples. Let An and An+1 denote the events that

the nth and the (n + 1)st samples are explicitly checked, respectively.

Clearly, P(An+1) ≤ P(An) in this coupled process, since the first (n −
1)st samples are identical. Moreover, P(An) = P({I(n) = 1}) = pcc(n)

and P(An+1) = P({I(n+1) = 1}) = pcc(n+1). Thus, pcc(n+1) ≤ pcc(n)

for all n ∈ N. Note that this implies that limn→∞ pcc(n) exists.

Next, we show that limn→∞(1/n)
∑n

k=1 pcc(k) = 0. Clearly,∑n
k=1 Ipoint(k) = |C|. Hence,

∑n
k=1 E[Ipoint(k)]

n
=

E[
∑n

k=1 Ipoint(k)]

n
≤ c4 n

d
d+1

n
= c4 n

− 1
d+1 ,

where the inequality follows from Lemma 6. Similarly,

lim sup
k→∞

(E[Ipath(k)]− E[Ipoint(k)]) = 0,

since all paths fit into an Euclidean ball with radius o(n−1/(d+1)), which

is asymptotically smaller than the side length of each cell ln = n−1/(d+1).

Hence,

lim sup
n→∞

∑n
k=1 pcc(k)

n
= lim sup

n→∞

(∑n
k=1 E[Ipoint(k)] + E[Ipath(k)]

n

)
= lim sup

n→∞

E[
∑n

k=1 I(k)]

n
≤ lim sup

n→∞

c4 n
d

d+1

n
= lim sup

n→∞
c4 n

− 1
d+1 = 0,

Finally, pcc(n+ 1) ≤ pcc(n) for all n ∈ N and

lim
n→∞

(1/n)
n∑
k=1

pcc(k) = 0

together imply that limn→∞ pcc(n) = 0.
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2.4 Experiments

To validate and demonstrate the utility of our method, we compared

the performance of implementations of the RRT and RRT∗ algorithms,

both with and without our proposed modification for collision check-

ing. Our implementations are single threaded, utilize a kd-tree [9] for

point-proximity (i.e., nearest neighbor and k- nearest neighbor) queries,

and a segment-Voronoi hierarchy [6] for set distance queries. The ex-

periments were run on a 1.73 GHz Intel Core i7 computer with 4GB of

RAM, running Linux. We performed experiments on an environment

consisting of a unit-square workspace with 150 randomly placed convex

polygonal obstacles (see Figure 2-3). The goal region is a square with

side length 0.1 units at the top right corner; the starting point is at the

bottom left corner.

Figure 2-3 (Left) shows both the tree of trajectories generated by

RRT∗, and the set of collision-free balls that are stored in the aug-

mented graph. After 2,000 samples, the collision-free balls have filled

a significant fraction of the free space, leaving only a small amount of

area uncovered near the obstacle boundaries. As proved in Section 2.3,

any future sample is likely to land in a collision-free ball common to

both it and its nearest neighbor, making future collision checks much

less likely.
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Figure 2-3: (Left) Search tree, black, and balls where explicit collision checks are
unnecessary, purple, for the modified RRT∗ algorithm with n = 2, 000. (Right)
Runtimes for the four algorithms tested, averaged over 30 runs of each algorithm,
and using graph size buckets of 1000 nodes.

To generate timing profiles, both RRT and RRT∗ were run on the

obstacle configuration in Figure 2-3 with and without the use of the new
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collision algorithm. In each run, both variants of both algorithms are

run with the same initial random seed for the point sampling process

so that the points sampled in each algorithm are the same (i.e., the

sample sequence ω is the same for both algorithms).

Figure 2-3 (Right) illustrates the wall-clock measured runtime re-

quired to reach various tree sizes for each of these four implementations.

Runtimes are averaged over 30 runs and in graph-size buckets of 1000

nodes. As expected from the amortized complexity bounds, longer runs

enable the proposed approach to achieve greater savings. For exam-

ple, the runtime of RRT∗ is reduced by 40% at 10,000 vertices, and by

70% at 100,000 vertices, vs. the baseline implementation. The runtime

of RRT is reduced by 70% at 10,000 vertices, and by 90% at 100,000

vertices.

The increased efficiency stemming from our proposed approach also

results in an effective increase in the rate at which RRT∗ converges to

the globally optimal solution. these implementations. Figure 2-4 (Left)

illustrates the cost of the best path found in the baseline RRT∗ and the

modified RRT∗. In general and on average, the modified RRT∗ finds

paths of lower cost significantly faster than the baseline RRT∗.

Figure 2-4 (Right) illustrates the average number of explicit checks

required for points which are not in collision vs. different graph sizes.

As the number of samples added to the database grows, the probability

of performing an explicit check decreases. At a graph size of 100,000

nodes, on average only one out of every 100 samples required an explicit

check when the implementations reached that point.

Figure 2-5 illustrates the computation of a single iteration of the

four algorithms at various different graph sizes and for two different

obstacle configurations. Increasing the number of obstacles increases

the average iteration time while the graphs remain small; as the graph

grows, the iteration times for higher obstacle count case approaches

that of the lower obstacle count case.

A Voronoi diagram obstacle index makes exact collision distance

computation no more expensive than collision checking, however gen-

erating a Voronoi diagram in higher dimensions is prohibitively com-

plicated. To address this, we compare the performance of the RRT

with and without our proposed modification in a second implementa-

tion utilizing a kd-tree for point-proximity searches, and an axis-aligned

49



0 10 20 30 40 50 60
time, t (sec)

1.36

1.37

1.38

1.39

1.40

1.41

co
st

of
be

st
pa

th
rrtstar
rrtstar ball

103 104 105

graph size, n

10−2

10−1

em
pi

ri
ca

le
st

im
at

e
of
p c

c
(n

)

Figure 2-4: (Left) RRT∗ best-path cost vs. time, with and without the proposed
method, averaged over 30 runs and in buckets of 100 time samples. The proposed
method yields significantly faster convergence. (Right) The experimental probability
of performing an explicit collision query vs. graph size. Only 1% of new nodes require
an explicit check when graph size is 100,000 nodes.

0 20000 40000 60000 80000 100000
number of nodes, n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

it
er

at
io

n
ti

m
e
t

(µ
s)

rrtstar
rrtstar ball
rrt
rrt ball

0 20000 40000 60000 80000 100000
number of nodes, n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

it
er

at
io

n
ti

m
e
t

(µ
s)

rrtstar
rrtstar ball
rrt
rrt ball

Figure 2-5: The average computation time of a single iteration vs. number of nodes
for each algorithm (plot style), over 30 runs, in a configuration with 500 and 1000
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bounding box tree with Algorithm 2.3 for set distance queries and col-

lision checking. Obstacles are generated as randomly placed simplices.
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Figure 2-6: Mean wall-clock runtime (Left) and experimental pexplicit (Right), over
20 runs, for RRT in a unit workspace X = [0, 1]d for several d.

Figure 2-6 illustrates the measured runtime of this implementation,

as well as the observed frequency of performing an explicit collision

check for a unit workspace in 2 to 5 dimensions. For this choice of index,

the modified algorithm using an approximate collision distance reaches

a given graph size faster in 2 and 3 dimensions, at the roughly the same

speed in 4 dimensions, and slower in 5 dimensions. The number of ex-

plicit collision checks is also shown. There is a significant degradation

of the performance in higher dimensions. In general, the volume cover-

age of a d-ball becomes less significant at higher dimensions. However,

we note that uniform placement of obstacles is a somewhat degener-

ate scenario in higher dimensions. For many problems of interest, it is

likely that obstacles will lie in a lower dimensional subspace, in which

case hyper-cylindrical, rather than spherical, certificates would be more

prudent.

2.5 Conclusions

This chapter introduces a novel approach to collision checking in sampling-

based algorithms. This approach allows us to demonstrate, both the-

oretically and experimentally, that collision-checking is not necessarily

a computational bottleneck for sampling-based motion planning algo-

rithms. Rather, the complexity is driven by nearest-neighbor searches

within the graph constructed by the algorithms. Experiments indicate

significant runtime improvement in practical implementations.
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The proposed approach is very general but there are some important

implementation details to be aware of when using it. First, we indicate

that points which are sampled in collision are kept in order to character-

ize the obstacle set (i.e., in addition to those that are not in collision).

While this allows that the expected number of explicit collision checks

goes to zero, the number of points required to truly characterize the

obstacle set can be quite large, especially in high dimension.In practice,

strategies for biasing samples away from the obstacle set are likely to

be more effective then keeping points which are sampled in collision. If

in-collision samples are not kept and no biasing is used, the expected

number of explicit checks will approach the proportion of the workspace

volume which is in collision.However, even in such a case, the strategy

described in this chapter is effective at marginalizing the extra collision

checks in the asymptotically optimal variants of sampling-based mo-

tion planning algorithms. As an example, the expected runtime ratio

between RRT∗ and RRT will be a constant which does not depend on

the obstacle configuration, even if no in-collision samples are kept.

In addition, we show that calculating a sufficient approximation

of the collision distance of a particular point and obstacle often does

not require more computation than the worst case of performing a

collision query. While this is true for a single obstacle, it is important

to note that collision checking is often done using a spatial index and

the choice of index may affect how the efficiency of a collision distance

query compares to a simple collision query.

Also, In practice our method may benefit multi-query algorithms

(e.g. PRM) and asymptotically optimal algorithms (e.g. PRM*, RRT*)

more than single-query feasible planning algorithms (e.g. RRT). The

latter return after finding a single path, and thus experience less ball

coverage of the free space and proportionately more explicit checks,

in a sparse environment. The multi-query and asymptotically optimal

algorithms require more collision checks per new node, and so offer

more opportunities for savings.

Lastly, some of the steps leverage the fact that in path planning

problems, the straight line connecting two points is a feasible trajectory

for the system. This is in general not the case for robotic systems subject

to, e.g., differential constraints. Extensions to such systems is a topic

of current investigation.
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Chapter 3

Workspace Certificates

In the previous chapter we illustrated the utility of caching discrete

collision checks to accelerate future collision queries in sampling-based

algorithms. The proposed method relies on the ability to efficiently com-

pute the collision distance in configuration space. It is often the case,

however, that collision information for the system and obstacles are rep-

resented in a physical workspace, and cannot be efficiently mapped to

configuration space. Furthermore, the nearest obstacle in the workspace

is not necessarily the nearest obstacle in configuration space.

In this chapter we demonstrate the tools necessary to utilize the

collision cache with workspace certificates for rigid body systems and

articulated models. In particular Canny’s method of non-linear inter-

polation between orientations [17] provides a method for local plan-

ning of articulated robots which is as straight forward to implement as

straight line segments for point robots, and admits algebraic conditions

for continuous collision checking which can be evaluated to arbitrary

precision for points of contact. For an articulated model the polyno-

mial expression for the motion of a particular joint of the robot grows

with the length of the armature, but we show that the theory of Sturm

sequences allows for efficient and robust continuous collision checking

of such paths without solving for the exact roots of these polynomials.
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3.1 Preliminaries

3.1.1 Collision geometries

A polyhedron P in Rn is the set of points x ∈ Rn satisfying

ni · x < di i ∈ I
nj · x ≤ dj j ∈ J

for some set of inequality constraints. We refer to this definition as the

half-space representation of a polyhedron (a polyhedron is the set of

x ∈ Rn formed by the intersection of a finite number half-spaces).

A polyhedron is bounded if it is a bounded subset of Rn, or, equiva-

lently, if the number of linearly independent constraint equations strictly

greater than n. A polytope is the convex hull of a finite number of points.

A polytope is a bounded polyhedron. A polytope is open if it is an open

subset of Rn, or, equivalently, if all inequalities are strict. A polytope

is closed if it is a closed subset of Rn, or, equivalently, if none of the in-

equalities are strict. We will assume that all collision geometries (both

obstacles and workspace volumes of the system) are polytopes in R3,

or in R2, and all certificate volumes are polyhedra.

Let P ⊂ Rn, n = 2, 3 be a polyhedron, the ith face fi ⊂ P is the

set of points x satisfying

ni · x = di, (3.1)

nj · x, ≤ dj j 6= i. (3.2)

We are often concerned only with the oriented plane coincident to

face i, which is the set of points satisfying only equation 3.1. When

this context is understood, we may also denote this plane as fi. By the

convention that all inequalities are “less than”, faces are oriented, such

that the vector ni is a a vector normal to fi and points outside the

polyhedron.

Let P ⊂ R3 be a polyhedron. An edge ei,j ⊂ P is the set of points

satisfying exactly two of the constraint equations with equality, and all

others with inequality. This set forms a line segment in R3. When we

refer to an edge of P this line segment has an arbitrary orientation. We
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may describe the edge as

{x |x = x0 + se, s ∈ [0, 1]} ,

where x0 is one endpoint of the line segment and e = x1 − x0 with x1

the other endpoint. In this case edges may be oriented with respect to

fi such that the vectors ej point counter-clockwise around the face. In

other words the vector ni×ej points to the interior of fi for all j edges

of face i. We are often concerned only with the line coincident to edge i

which is the set of all points which satisfy the two equality constraints

of the edge. When this context is understood, we may also denote this

line as ej.

Let P ⊂ Rn be a polyhedron. A vertex vi ∈ P is a point which

satisfies n constraints equations with equality, and all others with in-

equality. We note that an open polytope does not contain its vertices,

edges, and faces.

There are several different methods for efficiently storing the repre-

sentation of a polyhedron on a digital computer. For the remainder of

this paper we do not necessarily assume any particular representation,

but that the following procedures are efficient.

procedure description

vi ← Vertex (i, P ), retrieves the ith vertex of P
fi ← Face (i, P ) retrieves the ith face of P
(x0, e)← Edge (j, fi) retrieves the jth edge of face fi
(n, d)← Constraint (j, fi) retrieves the jth constraint of face fi

Table 3.1: Primitive procedures for polytope data structures

We also assume it is efficient to iterate over these primitives, but

make no assumptions about the ordering of vertices, faces, or edges

with respect to their indices.

3.1.2 Articulated model

An armature is a tree of reference frames each one referred to as a link

of the armature. We assign a unique index to each link in the armature

and denote the reference frame of the ith link as Fi. Each link has a

unique parent. We refer to the root of the armature as the single link

whose parent is the global reference frame.
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Each reference frame in the armature is related to its parent by a

rotation Ri and a translation Ti. Given a vector x represented in Fi,

the same point represented in its parent frame Fj is given by:

xj = Ti +Rix.

A collision volume is a closed set of points in the workspace which

are occupied by the model. Collision volumes are parameterized with

respect to the reference frame of a link of the armature (i.e., they “be-

long” to a particular link).

We will assume that all collision volumes are closed polytopes. While

it is common to model the geometry of a robot as a non-convex trian-

gular mesh there are efficient automated algorithms for generating ap-

proximate convex decompositions [59, 63] from such meshes. By taking

the convex hulls of this approximate decomposition, we may efficiently

and automatically generate a convex cover of the approximation of the

original mesh. As a closed polytope, a collision volume may be repre-

sented as

Ci = {x |Nix ≤ di} ,

where the vector inequality x ≤ y indicates that xi ≤ yi for each of

the ith elements of the vectors x and y, and Ni is a matrix which is

the row concatenation of face normals, and di is a matrix which is the

row concatenation of face offsets. We use the notation Ci = (Ni,di) to

denote the specification of a collision volume. Note that Ni must have

at least n+ 1 linearly independent rows.

If a link i is parented to link j then we say that links i and j

are joined. Link i may be free to translate and/or rotate with respect

to its parent, potentially with constraints on the motion. We refer to

the specification of these constraints on motion between a link and its

parent as a joint of the armature.

As an example, in robotic manipulators, it is often the case that a

link may rotate about a fixed axis with respect to its parent. We refer to

this as a one degree of freedom (1-DOF)) rotational joint (a.k.a a hinge

joint, or elbow joint). A link may also rotate about an arbitrary axis

with respect to its parent. We refer to this as a three degree of freedom

(3-DOF) rotational joint (a.k.a conical joint, or shoulder joint).

We refer to the combined specification of an armature, its collision
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volumes, and joints as an articulated model.

The configuration of an articulated model is a specification of the

translation Ti and rotation Ri for each link i of the armature. The

set of all possible configurations for an articulated model is called the

configuration space, denoted X.

An obstacle is an open set of points in the workspace. In order for

a motion plan to be collision free it must be true that for all collision

volumes Ci and all obstacles Oj, Ci ∩Oj = ∅.

We will assume that all collision volumes are open, not necessarily

bounded polyhedra, and thus can be represented as

Oi = {x |Nix < di} .

We use the notation Oi = (Ni,di) to denote the specification of an

obstacle. Note that Ni and di may have any number of rows.

Given a point x as a vector in frame Fi, we may find the vector in

the global frame which represents that point by successively applying

the inverse rotation and translation along the ancestry of link i. We may

represent this compactly by the use of homogeneous coordinates [55].

In Rn, n ∈ {2, 3}, we may represent the combined rotation of Ri and

translation of Ti by a (n+1)×(n+1) matrix of a certain form. Because

this rotation and translation define a frame with respect to its parent,

we use Fi to denote both the ith frame, and the homogeneous matrix

used to transform coordinates in frame i to coordinates in the parent

frame. We generate a homogeneous coordinate vector x ∈ Rn+1 from a

vector x ∈ Rn by row concatenation with unity:

Fi x =

[
Ri Ti

0 1

][
x

1

]
=

[
Ti +Rix

1

]
. (3.3)

In this representation, the equation for xg represented in the global

frame is

xg =

(
Π
j∈J
Fj

)
x, (3.4)

where J is the sequence of link indices defining the ancestry of link i:

J = {0, . . . , i}, with 0 the root link and i the link of the frame in which

x is represented.
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3.1.3 Exponential map from so(3) to SO(3)

There are many different ways of parameterizing the group of rotations

in R3. We describe here the axis, angle parameterization so(3) and its

relation to rotation matrices SO(3).

Given an axis v, |v| = 1, and an angle θ ∈ R, we may describe the

rotation about v by the angle θ as a single vector ω ∈ R3, ω = vθ. As

a vector describing a rotation, we say that ω ∈ so(3). We then define

the exponential map from so(3) to SO(3).

θ = ‖ω‖,

v =
1

θ
ω,

exp(ω) = I cos θ + v̂ sin θ + (1− cos θ)vv>,

(3.5)

where x̂ is a skew symmetric “cross-product” matrix:

x̂ =

 0 −x2 x1

x2 0 −x0

−x1 x0 0

 .
Equation 3.5 is also known as Rodrigues’ formula for rotations. The

inverse (log) map from SO(3) to so(3) is given by

θ = cos−1

(
trace(R)

2

)
,

v =
1

2 sin θ

R(2, 1)−R(1, 2)

R(0, 2)−R(2, 0)

R(1, 0)−R(0, 1)

 ,
log(R) = vθ.

(3.6)

Note that, unlike the exponential map, the log map is not defined ev-

erywhere. In particular, consider the case that θ = π. In this case we

may revisit Rodrigues’ formula substituting π for θ and derive

vv> =
1

2
(R + I) .

The diagonal terms of 1/2 (R + I) gives the squared magnitude of the

elements of v and the off-diagonal elements yield the signs up to a sign

ambiguity. Thus there are exactly two possibilities for (θ,v), given R.
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We will represent orientations in R3 as rotation vectors when used

as configuration variables, and as rotation matrices when transforming

between frames.

3.1.4 Sturm sequences

Given a polynomial p(x), a Sturm sequence of p(x) is a finite sequence

of polynomials p0(x), p1(x), . . . pn(x) of decreasing degree satisfying the

following [37]:

1. p0 = p has no repeated roots

2. if p0(x) = 0 then sgn (p1(x)) = sgn (p′0(x))

3. if pi(x) = 0, 0 < i < n then sgn (pi−1(x)) = − sgn (pi+1(x))

4. sgn (pn) is constant

where sgn (x) is the signum function defined as

sgn (x) =


−1 if x < 0

0 if x = 0

1 if x > 0.

Theorem 2 (Sturm’s Theorem). Let p0, p1, . . . , pn be a Sturm sequence

of the square-free polynomial p(x), and let σ(x) : R → N denote the

number of sign changes in the sequence

p0(x), p1(x), . . . , pn(x),

where a sign of 0 is ignored. Then, for any two real numbers u, v ∈ R,

u < v, the number of distinct real roots of p in the half-open interval

(u, v] is |σ(u)− σ(v)|.

If p is not square-free, then Sturm’s theorem holds for u, v so long

as neither u nor v is a multiple root of p. A Sturm sequence of the
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polynomial p may be constructed as follows:

p0(x) = p(x),

p1(x) = p′(x),

p2(x) = p1(x)q0(x)− p0(x),

. . .

pn(x) = pn−1(x)qn−2(x)− pn−2(x),

where qi(x) is the quotient of pi−1(x)/pi−2(x). In other words pi(x) is

the remainder after polynomial long division of pi−1(x) by pi−2(x).

3.2 Local planning

3.2.1 Canny interpolation

For sampling-based motion planning, a requisite component is a local

planning method. The local planner takes two configurations and gen-

erates a path σ : [0, 1] → X. For efficient sampling-based planning,

the generated plan should be computed efficiently, admit efficient col-

lision queries, and satisfy a notion of optimality: for a distance metric

d : X ×X → R
lim

d(x0,x1)→0

J(σ)/J∗ = 1,

where J∗ = min
σ∈Σ

J (σ) and Σ denotes the set of all possible paths

between configurations x0 and x1. A common method of local planning

is to use linear interpolation between configurations. For a particular

configuration variable (say θi for a 1-DOF joint ) we choose θi(s) = θ0
i +

s(θ1
i − θ0

i ). This satisfies the requirements of being computed efficiently

and satisfies a notion of optimality for many distance metrics, but is

difficult to compute points of contact. The method of interpolating

orientations developed by Canny [17] using the stereographic projection

of quaternions is asymptotically equivalent to linear interpolation as the

magnitude of the angle goes to zero, but admits an efficient method of

collision checking. We derive equations for representing Canny’s method

of interpolation using rotation matrices and homogeneous transforms

in order to derive algebraic conditions of collision for linked frames.

Consider a vector x represented in the frame Fi of link i. At the

60



initial configuration that reference frame is translated and rotated with

respect to its parent by by T0 and R0, and at the target configuration

that reference frame is translated and rotated with respect to its parent

by T1, R0.

The path σ between the two configurations is generated on a link

by link basis as follows: The translation Ti(s) is found by a linear

interpolation:

T(s) = T0 + s (T1 −T0) , 0 ≤ s ≤ 1. (3.7)

We generate intermediate rotations by linearly interpolating the tan-

gent of the angle. We first find the direct relative rotation ∆R0,1 from

R0 to R1

∆R0,1 = R1R
>
0 .

Then we determine the axis-angle representation of that rotation by

Equation 3.6,

ω = log(∆R0,1),

∆θ = ‖ω‖,

v =
1

∆θ
ω.

Note that the magnitude of the direct rotation is at most π. Further

note that if the magnitude of the rotation is exactly ∆θ = π, then the

log map is undefined. As noted earlier, there are in fact two axis-angle

rotations which satisfy Rodrigues’ formula in this case. For the purpose

of local planning, we may simply consider both rotations.

We will generate a matrix polynomial in s which yields a rotation

about v by an angle θ(s) such that tan θ(s) = s tan(∆θ). We do this by

first defining an intermediate frame F ′i in which the x axis is coincident

with v. The translation for F ′i is zero, and its rotation is given by:

v′ =
e0 × v

‖e0 × v‖ ,

θ′ = sin−1 ‖e0 × v‖,
R′ = exp(θ′v′).

Within this intermediate frame, rotation about the vector ω is ex-

pressed as a rotation about the x axis. At an intermediate angle θ,

0 ≤ θ ≤ ∆θ, we may compute the orientation along minimum rotation
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path by the following equation:

R(θ) = Rx(θ)R
′R0,

where Rx is the basic rotation matrix about the x axis of magnitude θ,

given by

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .
Because a rotation by θ is equivalent to two rotations by θ/2 we have

Rx(θ) = Rx

(
θ

2

)2

=

1 0 0

0 cos θ/2 − sin θ/2

0 sin θ/2 cos θ/2


2

= cos (θ/2)2

sec (θ/2)2 0 0

0 1− tan (θ/2)2 −2 tan (θ/2)

0 2 tan (θ/2) 1− tan (θ/2)2


=

1 0 0

0 0 0

0 0 0

+
1

1 + tan (θ/2)2

0 0 0

0 − tan (θ/2)2 −2 tan (θ/2)

0 2 tan (θ/2) − tan (θ/2)2

 .
Or, more compactly:

(
1 + tan (θ/2)2)Rx(θ) =

1 + tan (θ/2)2 0 0

0 − tan (θ/2)2 −2 tan (θ/2)

0 2 tan (θ/2) − tan (θ/2)2

 .

We may ensure that any linear equation involving Rx(s) is a poly-

nomial in s by picking θ(s) such that tan θ/2 is linear in s. Thus define

γ = tan ∆θ/2, (3.8)

θ(s) = 2 ∗ tan−1(sγ). (3.9)
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Then we have that

tan (θ(s)/2) = tan
(
(1/2) 2 tan−1(sγ)

)
,

= tan
(
tan−1(sγ)

)
,

= sγ.

Note that this choice means that orientations are interpolated linearly

along a central projection of the unit sphere in quaternion space.

Figure 3-1: Centroidal projection of a
path between two points in S2. The
Canny interpolation between orientations
is a similar projection in quaternion space
(S3).

Because R′ and R0 are defined by the pair of configurations in the

interpolation and constant on σ, we define ∆Ri,σ = R′R0, and we use

γi,σ to denote specifically the value of γ for link i on σ so that Rx(s)

and R(s) are

(
1 + γ2

i,σs
2
)
Rx(θ) =

1 + γ2
i,σs

2 0 0

0 −γ2
i,σs

2 −2γi,σs

0 2γi,σs −γ2
i,σs

2

 , (3.10)

(
1 + γ2

i,σs
2
)
Ri,σ(s) =

(
1 + γ2

i,σs
2
)
Rx(s)∆Ri,σ. (3.11)
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The homogeneous transformation for Fi,σ along σ is then given by

Fi,σ(s) =

[
Ri,σ(s) Ti,σ(s)

0 1

]
(
1 + γ2

i,σs
2
)
Fi(s) =

[(
1 + γ2

i,σs
2
)
Ri(s)

(
1 + γ2

i,σs
2
)
Ti(s)

0 1

]

=


1 + γ2

i,σs
2 0 0

0 −γ2
i,σs

2 −2γi,σs

0 2γi,σs −γ2
i,σs

2

∆Ri,σ

(
1 + γ2

i,σs
2
)

(Ti,0 + s∆Ti,σ)

0
(
1 + γ2

i,σs
2
)


Note that each element of this matrix is a polynomial of degree at most

3. Thus, after appropriate pre-multiplication, the matrix polynomial

describing the homogeneous transformation from the global frame to

Fi is a polynomial of degree 3k where k is the number of links between

the global frame and Fi.

We will see that this yields interference predicates which are uni-

variate polynomials for the orientation of frame Fi along the path σ.

3.2.2 Constrained motions

Generally speaking, an articulated robot is composed of links which

are joined in such a way as to constrain the relative motion of their

reference frames. In particular, the joint between two links is most often

actuated by either a linear or rotary actuator. A linear actuator allows

only translational motion in a fixed direction, and a rotary actuator

allows only rotation about a fixed axis. These types of constrained

motions simplify the polynomial equation for Fi. If Fi is linked to Fj

by a linear actuator with direction v in Fj, then

(
1 + γ2

i,σs
2
)
Fi,σ =

[
R

(
1 + γ2

i,σs
2
)

(x0 + s∆x) v

0
(
1 + γ2

i,σs
2
) ]

,

where x0 is the translation at the initial configuration, and x1 = x0+∆x

is the translation at the final configuration. Likewise if Fi is linked to
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Fj by a rotary actuator which rotates about v in Fj then

(
1 + γ2

i,σs
2
)
Fi,σ =


1 + γ2

i,σs
2 0 0

0 −γ2
i,σs

2 −2γi,σs

0 2γi,σs −γ2
i,σs

2

∆Ri 0

0
(
1 + γ2

i,σs
2
)


where ∆Ri is fixed and does not change for different paths. We note

that for rotary actuators with a range greater than π, our choice of ∆θ

as the direct rotation with magnitude always < π may be in a direction

which is not feasible for the actuator. However for two configurations

we may simply test whether or is not the case, and if it ∆θ as described

above is in a direction which is infeasible for the actuator we simply

choose ∆θ′ = ∆θ − 2π, though we must then split the path into two

intermediate configurations because ∆θ′ has magnitude greater than π.

3.3 Collision checking preliminaries

For an articulated model evolving along a path σ between two con-

figurations generated by a Canny interpolation, we duplicate here the

results of [17]. We derive the following formulations using homogeneous

transformations as this leads more compact representations of motions

for an armature than quaternion algebra. The development of these in-

terference tests with quaternions is given in [17], and we note that in

implementation on a digital computer with finite precision arithmetic

representing rotations as quaternions generally suffers from fewer nu-

merical precision issues.

3.3.1 Type A contact

Given a point x in link i of an articulated model undergoing Canny

interpolated motion between two configurations parameterized by s ∈
[0, 1], and an oriented plane (n, d), the values of s where x is on the

interior halfspace of the plane must satisfy

n ·
(

Π
j∈J
Fj,σ(s)

)
x− d ≤ 0.
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x

do

Figure 3-2: Type A contact occurs when a vertex
of the moving object pierces a face of the obstacle.

Noting that by construction
(
1 + γ2

j s
2
)
> 0 for all j, and multiplying

by this factor on both sides we get

n ·
(

Π
j∈J

(
1 + γ2

j s
2
)
Fj,σ(s)

)
x− d Π

j∈J

(
1 + γ2

j s
2
)
≤ 0.

We define the left hand side of the inequality to be a type A constraint :

An,d,x,σ(s) = n ·
(

Π
j∈J

(
1 + γ2

j s
2
)
Fj,σ(s)

)
x− d Π

j∈J

(
1 + γ2

j s
2
)
. (3.12)

A is a polynomial of degree 3 · |J |. The number of zero crossings of

this polynomial on the interval s ∈ [0, 1] is the number of times that

x crosses the plane on the path between configurations. By the con-

vention that n is normal to the plane in the direction that is outside

a polyhedron, Equation 3.12 will be positive when x is outside of the

polyhedron, negative inside the polyhedron, and zero on the surface of

the polyhedron.

3.3.2 Type B contact

Given an oriented plane (n, d) on link i, of an articulated model under-

going Canny interpolated motion between two configurations parame-

terized by s ∈ [0, 1], then the same oriented plane in the global frame

is given by (ng, dg). We may compactly represent the face n, d by the

homogeneous normal N which is the row concatenation of n with d.

Then the same plane defined in the global coordinate frame is given by[
ng

dg

]
=

(
Π
j∈J
Fj

)[
n

d

]
.
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x

do

Figure 3-3: Type B contact occurs when a face
of the moving object is pierced by a vertex of the
obstacle.

We may also use the homogeneous representation to define the con-

straint for when a static point x in the workspace lies on the interior

halfspace of a moving plane: [
x

−1

]
·
[
ng

dg

]
≤ 0[

x

−1

]>(
Π
j∈J
Fj

)[
n

d

]
≤ 0.

We multiply both sides by the product of the rotation denominators

and get [
x

−1

]>(
Π
j∈J

(1 + γ2
j,σs

2)Fj(s)

)[
n

d

]
≤ 0.

We define the left hand side of this inequality to be a type B constraint :

Bx,n,d,σ(s) =

[
x

−1

]>(
Π
j∈J

(1 + γ2
j,σs

2)Fj(s)

)[
n

d

]
. (3.13)

B is a polynomial of degree 3 · |J |. The number of zero crossings of this

polynomial on the interval s ∈ [0, 1] is the number of times that the

plane crosses x on the path between configurations. And, as with type

A constraints, by the convention that n is normal to the plane in the

direction that is outside a polyhedron, Equation 3.13 will be positive

when x is outside of the polyhedron, negative inside the polyhedron,

and zero on the surface of the polyhedron.
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Figure 3-4: Type C contact occurs when an edge of the moving object crosses an
edge of the obstacle, piercing one of its faces.

3.3.3 Type C contacts

Type C constraints are only meaningful in R3, as all interferences in

R2 may be detected by type A and B constraints. An edge is the line

segment formed at the intersection of two faces of a polyhedron. Let

(x0,x1) be two endpoints of an edge of a polyhedron represented in Fi.

We may describe the line coincident to this edge as the set of points

x = x0 + ze

for e = x1 − x0 and z ∈ R. Clearly x is only on the edge if z ∈ [0, 1].

Let us now consider all edges of an obstacle which border a particular

face f0 = (n0, d0). Unless eg is orthogonal to n0, the point on the line

coincident to the moving edge intersects the plane coincident to f0 at

0 = n>0 (xg0 + zeg)− d0,

z =
d0 − n>0 xg0

n>0 eg
.

This point of intersection is interior to f0 if the constraint for all ad-

jacent faces is satisfied. Let fi = (ni, di) be an adjacent face to f0.

Then

n>i

(
xg0 +

d0 − n>0 xg0
n>0 eg

eg
)
− di ≤ 0,

(
n>0 eg

) (
n>i xg0 − di

)
−
(
n>0 xg0 − d0

) (
n>i eg

)≤ 0
(
n>0 eg

)
≥ 0,

≥ 0
(
n>0 eg

)
< 0.
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We define the left hand side of this a type C constraint. Expanding xg0
and eg yields

Ce,f0,fi,σ(s) =

(
n>0

(
Π
j∈J

(1 + γ2
j,σs

2)Rj(s)

)
e

)
·
(

n>i

(
Π
j∈J

(1 + γ2
j,σs

2)Fj(s)

)
x0 − di

)
−
(

n>i

(
Π
j∈J

(1 + γ2
j,σs

2)Rj(s)

)
e

)
·
(

n>0

(
Π
j∈J

(1 + γ2
j,σs

2)Fj(s)

)
x0 − d0

)
.

(3.14)

Type C constraints require a bit more care in their use. In particular,

the sign of the inequality depends on the sign of
(
n>0 eg

)
. Thus, the point

at the intersection of the line coincident to the moving edge e and the

plane coincident to the face f0 lies on the interior of the f0 if and only

if, for all faces fi adjacent to f0

sgn (Ce,f0,fi,σ(s)) = − sgn

(
n>0

(
Π
j∈J

(1 + γ2
j,σs

2)Rj(s)

)
e

)
.

We denote the right hand side as

C ′e,f0,fi,σ(s) = n>0

(
Π
j∈J

(1 + γ2
j,σs

2)Rj(s)

)
e,

such that the type C constraint is given by

sgn (Ce,f0,fi,σ(s)) = − sgn (C ′e,f0,fi,σ(s)) . (3.15)

Note that C is only zero at a vertex or when the moving edge is normal

to both faces of the static edge.

3.4 Interference checking

In continuous collision checking, it is common practice to divide the

problem into multiple phases (see e.g. [33, 83, 106, 72]). Each phase

in the so-called collision checking pipeline is designed to reduce the

workload of subsequent phases. At the lowest level (the terminal phase

in a pipeline, often called the narrow phase) is the interference checker.

Given a collision volume C on link i of an articulated model evolving
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on a path σ, and an obstacle O, the narrow phase algorithm performs

fine-grain continuous collision checking and determines if Cg(s)∩O 6= ∅
for some s along the subinterval of interpolation s ∈ [s0, s1]. In this

section we review the procedure of interference checking which provides

the tools we will use in workspace certificate checking.

3.4.1 The narrow phase algorithm

Given a collision volume C in link i on an articulated model evolving

according to a Canny interpolated path σ through configuration space,

we wish to determine if C collides with a static obstacle O. We say that

C collides with O if there exists s ∈ [s0, s1] such that the intersection

Cg(s)∩O 6= ∅. Cg(s) denotes the geometry of the collision volume rep-

resented in the global frame at interpolation parameters s ∈ [s0, s1]. We

assume that at s0 the collision volume does not intersect the obstacle,

i.e., Cg(s0) ∩O = ∅.
A collision may occur in one of three ways.

1. A vertex of C lies inside O,

2. A vertex of O lies strictly inside C,

3. An edge of C pierces a face of O,

4. An edge of O pierces a face of C.

A type 1 collision occurs for a vertex v of C if there is a value of

s such that the type A constraint (Equation 3.12) is satisfied for every

face of O. A type 2 collision occurs for a vertex v of O if there is a

value of s such that the type B constraint (Equation 3.13) is satisfied

for every face of C.

Types 3 and 4 collision is slightly more complex, however there is a

symmetry that may be exploited. If an edge of O pierces a face of C,

then either one endpoint of that edge lies inside C (a type 2 collision),

or else an edge of C also pierces a face of O. A type 4 collision will be

detected if all collisions of type 2 and 3 are detected.

A type 3 collision may be detected by evaluation of type A and type

C constraints. For a moving edge e and a static face f0, if the type C

constraint for all faces adjacent f0 are satisfied, then there is a point

on the line coincident to the edge which is interior to f0. If the type B

constraint for one endpoint of the moving edge and f0 is satisfied, and

the type B constraint for the other endpoint is not satisfied, then this
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point on the line coincident to the edge and interior to f0 also lies on

the edge, and thus e ∩ f0 6= ∅ and the moving edge pierces the static

face. We determine whether contact occurs by evaluating all possible

cases of type 1, 2, and 3 contacts.

Each of these contacts is determined by conditions on sign of several

polynomials. The theory of Sturm sequences allows us a convenient

test which may indicate if, for a particular segment of the interpolation

parameter, there is guaranteed to be a point of contact, or there is

guaranteed to be no point of contact. The test may be inconclusive,

which yields a natural bisection search algorithm for the narrow phase.

Let Predicatet be the procedure for the test, with the output being

one of contact, no-contact, inconclusive. Thus for an interval [s0, s1]

the narrow phase algorithm proceeds as in Algorithm 3.1.

1 if d > dmax then
2 return inconclusive

3 else
4 r ← Predicatet ([s0, s1])
5 if r = inconclusive then
6 r0 ← EvaluateIntervalt ([(s0+s1/2) , s1], d+ 1)
7 r1 ← EvaluateIntervalt ([s0, (s0+s1/2)], d+ 1)
8 if r0 = contact || r1 = contact then
9 return contact

10 else if r0 = inconclusive || r1 = inconclusive

then
11 return inconclusive

12 else
13 return no-contact

14 else
15 return r

Algorithm 3.1: EvaluateInterval (Predicatet, [s0, s1], d = 0)

Note the use of a maximum recursion depth dmax. If any test is

inconclusive at a depth of d, then there may or may not be a colli-

sion on some subinterval of size ∆s/2d. The maximum range of s is 1 so

∆s = s1−s0 < 1. Thus, for an appropriate choice of dmax in the context

of a sampling-based planner, we are effectively choosing a threshold for

very small motions at which, if the test is inconclusive, we may simply

choose to consider the path in collision, and not add the path to our

graph. If the test is inconclusive, it means that there are multiple zero

crossings of some set of constraints for a small range of s. Even if the the

path is in fact collision-free, this implies that a small change of the path
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could make it collide, and thus it is “close” to the obstacle. For asymp-

totically optimal planning algorithms, as the number of samples grows,

the expected distance between any two configurations will shrink, so

this threshold will also shrink. We may choose dmax =∞ if we wish to

detect all collision free paths with certainty, but in implementation it

provides an opportunity for increasing the computational efficiency.

3.4.2 Types 1 and 2 predicates

The predicate for type 1 contact between a vertex v ∈ C and O, given

in Algorithm 3.2, returns contact if there is an s ∈ [s0, s1] where the

vertex is entirely contained by O, or no-contact if there is face such

that, for all s ∈ [s0, s1], the constraint is not satisfied. These two facts

may be determined by the sign of the constraint equation at the start

of the interval, and the number of zero crossings during the interval.

Thus for a vertex v ∈ C we generate a Sturm sequence of the

constraint equation Av,nj ,dj ,σ(s) for each face fj ∈ Faces (O). Let S

denote a Sturm sequence andS be the set of these Sturm sequences.

The type 1 predicate then takes a set of Sturm sequences S and an

interval [s0, s1] and performs the following test to potentially determine

if the path encounters a contact or not.

First, if there is any constraint j which is satisfied at the start of

the interval, p0,j(s0) = Av,nj ,dj ,σ(s) ≤ 0, and has no zero crossings

σj(s1) − σjs0 then that constraint is satisfied for the entire interval,

meaning that the vertex lies on the interior halfspace of that face for

the entire subpath of σ, so we may remove it from further consideration.

If all the constraints are satisfied at either the start or end of the in-

terval, i.e., ∀j, p0,j(s0) = Av,nj ,dj ,σ(s0) ≤ 0 or ∀j, p0,j(s1) = Av,nj ,dj ,σ(s1) ≤
0 then the vertex is contact with the obstacle at s0 or s1 respectively,

and the predicate returns contact.

If there is only one constraint under consideration, i.e., all other

constraints have been removed from consideration because they are

satisfied on the entire interval, and it has at least one zero crossing,

i.e., σ(s1) − σ(s0) > 0, then the vertex enters the obstacle at the zero

crossing, and the predicate returns contact.

If there is any constraint which is not satisfied at the start of the

interval and has no zero crossings on the interval, then that constraint

is left unsatisfied for the entire interval, and there can be no contact on
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the interval, so the predicate returns no-contact.

If none of these conditions are satisfied then there are multiple zero

crossings of multiple constraints which may or may not be interleaved

in such a way as to make contact, so the predicate is indeterminate and

returns inconclusive, indicating that the interval is to be subdivided

and retested.

1 leftContact← true

2 rightContact← true

3 foreach P ∈ S do
4 if p0(s0) ≤ 0 then
5 if σP (s1)− σP (s0) = 0 then
6 S ← S \ P
7 else
8 leftContact← false

9 if σP (s1)− σP (s0) = 0 then
10 return no-contact

11 if p0(s1) > 0 then
12 rightContact← false

13 if leftContact || rightContact then
14 return contact

15 if card (S) = 1 then
16 if σP (s1)− σP (s0) > 0 then
17 return contact

18 return inconclusive

Algorithm 3.2: Predicate1,2 (S, [s0, s1])

The predicate for type 2 contact between a vertex v ∈ O and the

faces of C is the same as type 1 contact (Algorithm 3.2) but the Sturm

sequences are generated from the type B constraints, B(s).

3.4.3 Type 3 predicate

The predicate for type 3 contact requires a bit more effort. The type

C constraints C and C ′ indicate when the intersection point of the line

coincident to the moving edge and the face in question is interior to

the face. The type A constraint A indicates when the endpoints are on

the inside and outside of the face. Thus for a given edge e and face f0

we enumerate the adjacent faces fj, and generate the Sturm sequences

Pj = SturmSeq (C), P ′j = SturmSeq (C ′). Then we generate the Sturm

sequences P0 = SturmSeq (A0) and P1 = SturmSeq (A1) for the two

endpoints of the moving edge. Let S be the set of Sturm sequence pairs
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(Pj, P
′
j) and the pair (P0, P1). The type 3 predicate then takes as input

S and an interval [s0, s1] and performs the following tests to potentially

determine if the path encounters a contact or not.

As with type 1 and two 2 predicates, if there is any constraint pair

which is satisfied for the entire interval, sgn (pj,0(s0)) = − sgn
(
p′j,0(s0)

)
,

σj,0(s1)− σj,0(s0) = 0, and σ′j,0(s1)− σ′j,0(s0) = 0 then we may remove

it from further consideration.

If there is only one constraint pair under consideration, i.e., all other

constraints have been removed from consideration because they are

satisfied on the entire interval, and this remaining constraint pair has at

least one zero crossing, i.e., σj,0(s1)−σj,0(s0) > 0, or σ′j,0(s1)−σ′j,0(s0) >

0, then the edge pierces the face at the zero crossing, and the predicate

returns contact, so long as the zero crossings for both constraints in

the pair are not at the same value of s. For the type C constraint pair,

both constraints in the pair may have a zero crossing at the same value

of s only if the edge crosses at an orientation so that it is parallel to

the face. In this case the edge must also pierce some other face at an

orientation which is not parallel to that face, so we may safely disregard

this case. For the endpoint constraint pair, both constraints in the pair

may have a zero crossing at the same value of s only if both endpoints

cross the same face at s. This is the same as the previous case and either

the edge pierces some other face at s, or one of the endpoints enters

the obstacle at s (a type 1 contact) and so we may safely disregard this

case as well.

If there is any constraint pair constraint which is not satisfied for

the entire interval sgn (pj,0(s0)) = sgn
(
p′j,0(s0)

)
, σj,0(s1)− σj,0(s0) = 0,

σ′j,0(s1)− σ′j,0(s0) = 0, then there can be no contact and the predicate

returns no-contact.

If none of these conditions are satisfied then there are multiple zero

crossings of multiple constraints which may or may not be interleaved

in such a way as to make contact, so the predicate is indeterminate and

returns inconclusive, indicating that the interval is to be subdivided

and retested.

3.4.4 Implementation notes

There are a couple of opportunities for information reuse in these pred-

icates. Because the constraint equations do not change in calls to the
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1 leftContact← true

2 rightContact← true

3 foreach (P, P ′) ∈ S do
4 if sgn (p0(s0)) = − sgn (p′0(s0)) then
5 if σP (s1)− σP (s0) = 0 & σ′P (s1)− σ′P (s0) = 0

then
6 S ← S \ P
7 else
8 leftContact← false

9 if σP (s1)− σP (s0) = 0 & σ′P (s1)− σ′P (s0) = 0
then

10 return no-contact

11 if sgn (p0(s0)) 6= − sgn (p′0(s0)) then
12 rightContact← false

13 if leftContact || rightContact then
14 return contact

15 if card (S) = 1 then
16 if σP (s1)− σP (s0) > 0 ||σ′P (s1)− σ′P (s0) > 0 then
17 return contact

18 return inconclusive

Algorithm 3.3: Predicate3 (S, [s0, s1])

predicate, but only the interval over which they are evaluated, the

Sturm sequences may be generated at once at the start of the narrow

phase, and then be reused in all iterations of the bisection. In addition,

when an interval is subdivided, any constraints that have been removed

from consideration, may be ignored in evaluating the subintervals.

In addition, this narrow phase procedure is a brute force expansion

of all possible feature intersections. An alternative approach may con-

sider only the nearest pair of features between C and O, as in [60]. In

this case only Sturm sequences for the particular contact type need be

generated for a particular sub interval, but an additional iteration over

the sequence of nearest features is required.

3.5 Efficient collision checking with

workspace certificates

Using the workspace collision tools described in this chapter, we may

apply the efficient collision checking algorithm from chapter 2 without

explicitly mapping collision volumes and obstacles to the configuration
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space. When a new collision-free configuration is added to the plan-

ning graph, we associate with each collision volume a certificate volume

which is a polyhedron in the workspace whose interior fully contains

the associated collision volume.

3.5.1 Querying workspace certificates

Given a Canny interpolated path between two configurations ca and

cb we wish to determine if the ith collision volume remains within its

certificate volume for all values of the interpolation parameter s ∈ [0, 1].

Assuming that collision volumes are polytopes and certificate volumes

are polyhedra in the workspace, we may restrict our focus to type A

collision predicates:

Theorem 3. Let P0 be a collision volume undergoing a smooth motion

described by the path σ : [0, 1] → Rn × SO(n). Let P1 be a collision

certificate such that at σ (0), P0 ⊂ P1. If, at some s ∈ [0, 1], σ (s) is

such that P0 leaves P1, P0 ∪ P1 6= P1, then there exists some vertex x

of P0 and some face n, d of P1 such that

n ·
(

Π
j∈J
Fj,σ(s)

)
x− d > 0.

Proof. Assume that the converse is true, and there is no such vertex.

Let P0 ∪ P1 6= P1 at s, and let x be some non-vertex point x ∈ P0 and

outside of P1, x 6∈ P1. By definition of a polytope, x may be represented

by a convex combination of the vertices of P0. By assumption all vertices

of P0, vj ∈ P1, so by convexity of P1, x must all be in P1, which is a

contradiction.

Theorem 3 says that if the collision volume leaves the certificate

volume the first point of contact will occur with a vertex of the collision

volume moving fromm the interior half space of a face of the certificate

volume to the exterior half space, i.e., a type A predicate taking a zero

value. In particular, a collision volume leaves a certificate volume at the

minimum value of s such that any vertex of the collision volume has a

positive type A value with any face of the bounding volume.

To evaluate path containment within a certificate then, we compute

the sturm polynomial for the type A constraint associated with each
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vertex-face pair (vertex of the collision volume, face of the certificate

volume). We then compute the Sturm value for all such constraint poly-

nomials at the start (σi(0)) and at the end (σi(1)). If σi(1)− σi(0) > 0

for any vertex-face pair i, then the collision volume exits the certificate

volume at some point along that path. Otherwise the entire path lies

within the certificate volume, and is known to be collision free.

We note that evaluating certificate containment of a path in this

way is significantly more complex than for configuration space certifi-

cates which require only computing an Euclidean distance. However,

this computation requires only evaluating a set of polynomials at two

values of their argument, whereas continuous collision checking requires

solving a set of polynomials (i.e., algorithm 3.2), once for each obstacle

identified in the broadphase algorithm. Furthermore, the test is applied

only to a single certificate volume, and not to a multitude of volumes

as required n continuous collision checking.

3.5.2 Generating certificates from collision distances

Just as with configuration space certificates, workspace certificates can

be built using the collision distance from the static collision checks. Ex-

act distances may be computed with, i.e., Lin-Canny [60] or extended

GJK [28] in conjunction with a bounding volume hierarchy. Approxi-

mate collision distances similar to those used for the previous section

may also be computed as a computational optimization using GJK as

in appendix A.

Let c be a configuration, and let xi Ri, di be the position, orien-

tation, and collision distance of the ith collision volume of the system

at this configuration. The Minkowski sum Ci ⊕Bdi , of the ith collision

volume with a ball or radius di yields a convex certificate whose interior

is collision free, but for which path containtment is difficult to evaluate.

We can select instead any polytope contained in Ci ⊕ Bdi which also

contains Ci.

We may consider various certificate volume families for selecting

such polytopes, trading off between complexity of the volume and spa-

tial coverage, just as in how we select the collision volume itself. In this

section we will discuss using certificates which are dilated copies of the

collision volume.

We may generate a certificate volume quite easily by dilating each
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Figure 3-5: Example of a workspace certificates
for an L-shaped volume found from conservative
dilation of the volume faces by the collision dis-
tance. The example volume is in green, the obsta-
cles in red, and the certificate volumes in translu-
cent blue.

of the faces of the collision volume by a distance Di ≤ di which is

selected such that surface of the certificate volume is at most di from

the surface of the collision volume. If two faces are adjacent with a

very small angle between them (i.e., the dot product of the normals

is near negative unity) then Di may be overly conservative, so it may

be beneficial to augment the face set of the collision volume with a

redundant face at the meeting edge with normal half way between the

the normals of the two faces (the average normal), as illustrated for a

2d volume in figure 3-6. Note that we may also simply assume such

options where exploited in the modeling phase.

di

Di
Di

Di

di

Figure 3-6: The addition of a redundant face al-
lows for larger collision volumes.
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3.5.3 Generating certificates by priority pruning

The method of computing certificates in section 3.5.2 has the advantage

of requiring only collision distance output from the collision checker, the

same as in chapter 2. Certficates generated in this way may, however,

be overly conservative in the case that a collision volume is very close to

a single obstacle, but very far from any others. In this section we pro-

pose a certificate generation algorithm which requires digging slightly

deeper into the discrete collision checker. The algorithm is summarized

in algorithm 3.4.

input : Xo the workspace obstacle set
input : Pi a workspace collision volume

1 initialize Pc = Rn

2 while Xo 6= ∅ do
3 x← Nearest (Xo, P )
4 if x ∈ P then
5 return in-collision

6 (n, d)← SupportingHyperplane (P,x)
7 Pc ← Pc ∩ {x |n · x ≤ d}
8 Xo ← Xo ∩ {x |n · x ≤ d}
9 return Pc
Algorithm 3.4: PruneCertificate (Xo, P ) returns
in-collision if P ∩Xo 6= ∅. Otherwise returns a polyhedron
Pc which is collision free and fully contains P .

Algorithm 3.4 builds a polyhedral certificate Pc by first finding the

nearest obstacle to the obstacle set. The algorithm returns the point x ∈
Xo which is nearest to the collision volume. The supporting hyperplane

at x is a hyperplane coincident to x and oriented so that the normal

n points from x toward a nearest point in P to x[28]. This hyperplane

is added as a face of Pc, and the obstacle set is pruned to remove

obstacle points on the outer halfpace of the supporting hyperplane.

The algorithm is then repeated on the remaining obstacle set until all

obstacles lie outside of Pc.

Note that this certificate generating static collision algorithm per-

forms even more work than a collision-distance algorithm (which would

terminate after finding the first nearest obstacle). The time complexity

is now output sensitive in the number of faces of Pc, which will depend

on the distribution of obstacles around the collision volume. The trade-
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off being made, however, is that the collision certificate does not suffer

from the same level of conservatism as the collision-distance method.

(a) (b)

Figure 3-7: Example of 2d certificates generated using (a) dilated colli-
sion volume and collision distance and (b) successive pruning by support-
ing hyperplane of nearest obstacle

3.6 Experimental results

In order to demonstrate the utility of workspace certificates and their

ability to accelerate sampling-based planning algorithms we performed

experiments on the 3d piano mover problem, as illustrated in figure 3-5.

The moving object is an L-shaped volume, decomposed into two convex

collision volumes. The planning algorithm is PRM∗ [44], collision check-

ing is done with FCL [72], and proximity queries are done with brute

force on a GPU. The cost of a path segment between two configurations

(xa, Ra) and (xb, Rb) is taken to be ‖xb − xa‖+ w log
(
R>a Rb

)
. We use

the simple certificate volumes which are dilated collision volumes by

the collision distance found during rejection sampling. The certificate

checking code computes the n×m vertex-face constraint polynomials,

and evaluates them all simultaneously on a GPU, leading to very low

certificate checking overhead. The results presented in this section are

averaged over 20 trials with different random seeds for the sampling

process.

Figure 3-8 shows the wall-clock total normalized runtime (runtime

divided by number of points) with and without the use of a workspace

certificate cache, and when the obstacle set is spaced far apart (inter-

obstacle distances 3x the length of the moving object). We see that
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Figure 3-8: Using workspace certificates
accelerates continuous collision checking
by up to 40%, resulting in a 40% total
runtime reduction
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Figure 3-9: The certificate success rate
grows with the size of the point set, as the
inter-configuration distance is shrinking.

the use of the certificate cache reduces the total runtime between 20%

and 40% depending on the number of points. This performance increase

comes from reducing the time to perform continuous collision queries for

path segments. Building the cache, however, requires an increase in the

cost of static collision checking each of the samples during the sampling

phase, performing a collision-distance query instead of a collision-only

query. This increase is from about 0.05ms to about 0.25ms (5X), how-

ever, because the static collision queries are such a small part of the

overall runtime, this overhead is amortized by the acceleration of the

continuous checking resulting in an overall performance boost for the

planning algorithm.

The benefits of the certificate cache exhibit a trend of increasing

reward. As the number of samples increases, the inter-sample configu-

ration distance is reduced, and so the likelihood that the path between

two samples lies entirely within the certificate increases. Figure 3-9

shows the cache hit-rate for different point set sizes and demonstrates

this increase for more samples.

Because of the anytime property of asymptotically optimal sampling-

based algorithms, such as PRM∗, we can see the end-to-end benefit of

using the certificate cache. Depending on the planning time budget, we

observe a 5s to 10s improvement in the time to find a solution of a given

cost.

The symmetrically dilated collision certificate, while efficient to com-

pute, is a rather conservative choice. When one face of the collision

81



volume is close to an obstacle at a particular configuration, then all of

the faces are dilated by that short distance. When the obstacles are

rather tightly packed, this conservatism can greatly reduce the util-

ity of the certificate cache. Figure 3-10 illustrates the that runtime of

the cache-enabled implementation is only marginally improved over the

baseline implementation when obstacles are tightly packed in this 3d

piano mover example, and when using conservatively dilated certifi-

cates. We can see in figure 3-11 that the conservatism leads to a very

low cache hit-rate in this case.
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Figure 3-10: When obstacles are close
together (< 1× the length of the moving
object) the benefit of the collision cache
is greatly reduced.
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Figure 3-11: The likelihood of the path
to neighboring configurations lying within
a sample’s certificate volume remains
small for even relatively large point set
sizes.

In this case, the higher coverage afforded by certificates generated

from successive pruning (algorithm 3.4) provides a more appropriate

collision cache. Figure 3-12 shows the runtime of the cache accelerated

algorithm for the closely-packed obstacle case when certificates are gen-

erated with this method. We recover the runtime improvement of the

widely-spaced experiment. The trade-off between the two certificate

generating methods is evident in figure 3-13. The increased cost of gen-

erating the certificates is offset by the higher cache hit rate, reaching

30% after 10,000 samples.

3.7 Conclusions

The use of the workspace certificate cache is closely related to several

common continuous collision checking algorithms based on conservative
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Figure 3-12: Caching of certificates gen-
erated by successive pruning yields signif-
icantly improved runtime when obstacles
are close together with respect to the size
of the collision volume.
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Figure 3-13: Certificates generated by
successive pruning provide a cache with a
higher cache rate when obstacles are close
together.

advancement such as kinetic data structures [49] and adaptive bisec-

tion [84, 92]. These algorithms determine if a path is collision free by

incrementally building a workspace certificate for some configuration

in the path, removing the segment of the path which is certified col-

lision free, and then recursing on the remaining uncertified paths. Be-

cause sampling-based planning algorithms often consider multiple con-

nections from a single source configuration, the same initial certificate

may be used for all paths from the source configuration. Furthermore,

since the the source configuration is statically collision checked during

the sampling phase, this initial certificate can be computed up front,

prior to any continuous collision checking. The key insight, however, is

the fact that increased sampling resolution decreases inter-configuration

distances. When the configuration set is large enough, all candidates for

connection will be sufficiently close to the source configuration that the

entire path segment can be certified by this single workspace certificate.

The experimental results demonstrate the potential for significant

runtime improvement using the workspace certificate cache. This is

largely due to the fact that single certificate checking yields straightfor-

ward parallel implementations on modern hardware, meaning that even

if success rate is zero the additional cost of checking the initial certifi-

cate is marginal at worst. If the continuous collision checking algorithm

is in fact a variant of conservative advancement, the overhead merged

into the continuous collision checking procedure. Furthermore, use of
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a collision cache exhibits increasing reward, so its use is particularly

advantageous in long running implementations.

The experiments also show that there is significant room for im-

provement in parameterizing the collision volumes. Symmetrically di-

lated volumes have the advantage of requiring only one additional scalar

of storage per configuration, but can be overly conservative, especially

in dense obstacle environments. A particular area of future work that

could greatly benefit applications of this algorithm would be design-

ing efficient static collision checking proceedures which emit whole vol-

umes rather than simply the collision distance. If such procedures can

be designed in a way which does not incur too large an overhead, the

effectiveness of the collision cache can be greatly improved.
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Chapter 4

Free-configuration Biased

Sampling

Sampling-based algorithms avoid the construction of an explicit free-

space map often generally relying on rejection sampling for generating

new configurations (i.e., xsample) from the free space [55]. In rejection

sampling a point is first drawn from the configuration space1 and then

statically collision checked. If the point is in collision, then it is dis-

carded and a new point is drawn. This continues until a collision-free

point is found.

Once a collision-free sample is found, it is immediately submitted to

a proximity query in order to discover candidates for graph connection.

There are many data structures which are used for these proximity

queries, most notably spatial indices like bounding volume hierarchies

(e.g., kd-trees and quad-trees), and tessellations (e.g., triangulations

and Voronoi diagrams) [89].

In the algorithm from chapters 2 and 3 we take advantage of the spa-

tial correlation of collision properties by caching collision free volumes

along with sites in a proximity search structure. Building a certificate

cache which reduces the collision checking time of new samples and

paths which are in fact collision-free requires very little overhead be-

cause proximate neighbors are already indexed for finding candidate

connections. We showed, however, that achieving the same acceleration

of collision checking for samples and paths that are in collision requires

storing additional data that would not otherwise have been stored.

1Often either from a uniform distribution or deterministically (for example,
using a Halton sequence or a space filling curve).
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Sampling Distribution Induced by Our Algorithm in 2D

(a) (b) (c) (d)

Figure 4-1: The induced sampling distribution of an augmented kd-tree after 104,
105, and 106 samples are shown in (a), (b), and (c), respectively. White-black rep-
resent low-high sampling probability density. The actual obstacle configuration ap-
pears in (d), obstacles are red.

Furthermore, while the cache accelerates the process of determining

whether or not a particular point or path is in collision, it does nothing

to reduce the frequency with which we must reject a new sample.

Our key insight is that many spatial indices passively encode infor-

mation about the location of obstacles within the configuration space;

by exposing and exploiting this information we can significantly reduce

the number of rejected (i.e., unnecessary) future samples. In particular,

by augmenting the index to record empirical collision information, it

is possible to generate samples from a distribution that converges to

uniform sampling over the free space, while simultaneously finding con-

nection candidates for the new sample. In exchange for reducing the

number of rejected samples, we accept a constant factor increase in the

space/memory complexity of our spatial index, and sacrifice indepen-

dence of consecutive samples.

4.1 Previous Work

In the context of sampling-based motion planing, a variety of tech-

niques have been proposed to increase the chances of sampling from

within narrow corridors [42, 40, 88], goal regions [31], or other partic-

ular regions of the configuration space [2, 104, 13]. Surveys of these

methods can be found in [27], [61], and [90]. In contrast to our work,

none are concerned with sampling uniformly from the free space.

Our idea can be described as an adaptive sampling algorithm as

defined in [61] (i.e., a sampling algorithm that changes its sampling

distribution as it runs, in response to new information that is gathered
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and/or other stimuli). A canonical algorithm for adaptive sampling

from a univariate distribution that learns the envelope and squeezing

functions is presented in [29]. The main differences between [29] and

our work is that we consider a multivariate distribution with an ar-

bitrarily large number of variables (i.e., dimensions), and we focus on

the problem of uniform sampling from an unknown (but discoverable)

subspace of interest.

Related work in adaptive sampling for sample based motion plan-

ning follows. The randomized planning algorithm in [41] generatesnew

samples such that the chance of sampling a particular point is inversely

proportional to the local density of previous samples near that point.

The planner in [90] is similar to [41], except that it samples less densely

in open regions of the configuration space and more densely in cluttered

regions. Tha planner in [77] weights the probability of sampling from

a particular region based on the properties of the nearest node as fol-

lows: the weight is inversely proportional to a function of the nearby

node’s A* cost and its number of graph-neighbors, and proportional to

a function of its order in the sample sequence. A later modification [78]

additionally weights new samples inversely proportional to a function of

the local density of previous samples. The main difference between all

of these methods and our idea is that they focus on generating samples

from sparsely sampled portions of the configuration space—a practice

that is actually expected to decrease the probability a new point is sam-

pled from the free space2. In contrast, we are interested in producing

the opposite behavior—as more and more samples are generated, our

algorithm has an increasing probability of sampling from the free space.

Finally, [71] is arguably related to our idea because it records statis-

tics of total successful vs. unsuccessful samples (although it uses this

data to test a stopping criterion that results in probably more than

a user defined proportion of the free-space being explored). While we

propose recording similar statistics in the spatial index structure, we

use this data to guide future sampling instead.

2The rejection of obstacle space points upon collision detection results in free
space regions becoming increasingly populated with old samples (e.g., relative to
obstacle space), and hence the sparsely populated obstacle space is sampled increas-
ingly frequently.
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4.2 Algorithm

In this section we illustrate the application of our method by describing

the sampling and search algorithm for an augmented kd-tree. The algo-

rithm presented in this section may be used as a guide to implementing

the method for other hierarchical spatial data structures where nodes

at any depth form a tessellation of the indexed space.

Our method relies on storing extra data in each node of a kd-tree.

A kd-tree is a special type of binary search tree that can efficiently de-

termine the nearest neighbor(s) of a query point xq within a previously

defined set of points X ⊂ Rd [9]. Each node in the kd-tree is a Node data

structure the fields of which are such that the operations summarized

in table 4.1 are all constant time.

Each interior node in a kd-tree defines an axis-aligned hyper-rectangle

H ⊂ Rd. It forms the root of a subtree where all descendant nodes are

a strict subset of H. An interior node is assigned a point x ∈ X and an

index j ∈ {1 . . . d}. Its two children are the hyper-rectangles found by

splitting H with a hyperplane aligned to the jth axis and coincident to

x. Leaf nodes are the same as interior nodes except that they have no

point x or children (yet). Finally, Measure (H) returns the measure of

the total space within H, and SampleUniform (Y ) returns a point from

a uniform distribution over a set Y .

Table 4.1: Constant type procedures for a node N

procedure return type description

point (N) vector ∈ Rd The point associated with this
node

split (N) integer ∈ {1..d} The dimension of the split plane
count (N) scalar ∈ R+ The number of samples gener-

ated from H
freecount (N) scalar ∈ R+ The number of collision free

samples generated from H
weight (N) scalar ∈ R+ The weight of node N in the in-

duced distribution
childi (N) node structure Reference to the ith child of the

node (two in the case of a kd-
tree), or a null reference, ∅, if
this is a leaf node

hRect (N) hyper-rectangle The hyper-rectangle covered by
the node

In our augmented kd-tree we associate three additional fields to each

node: T = count (V ), F = freecount (V ), and M = weight (V ). Both
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1 if isLeaf (V ) then
2 x← SampleUniform (hRect (V )) ;
3 count (V )← count (V ) + 1 ;
4 r ← isCollision (x) ;
5 t← count (V ) ;
6 f ← freecount (V ) ;
7 if r then
8 point (V )← x ;
9 freecount (V )← freecount (V ) + 1 ;

10 (child0 (V ) , child0 (V ))← split (V,x) ;
11 for i = {0, 1} do
12 Vc ← childi (V ) ;
13 parent (Vc)← V ;
14 split (Vc)← (split (V ) + 1) mod d ;
15 w ← measure (v) /measure (V ) ;
16 count (Vc)← w · t;
17 freecount (Vc)← w · f ;
18 weight (Vc)← f/tMeasure (v);

19 return (x, r) ;

20 else
21 u← SampleUniform ([0, weight (V )]) ;
22 if u ≤ weight (child0 (V )) then
23 (x, r)← GenerateSample (child0 (V )) ;
24 else
25 (x, r)← GenerateSample (child1 (V )) ;

26 weight (V )← weight (child0 (V )) + weight (child1 (V )) ;
27 return (x, r)

Algorithm 4.1: GenerateSample (V )

T and F are used only by leaf nodes, where T is a score derived from

total number of samples taken from H, and F is a score derived number

of those samples that are collision free. When a leaf node generates a

new sample and splits, each child inherits a weighted version of T and

F from the parent. Both values are weighted by the relative measure of

the space contained in the child vs. the parent, and both account for the

successful sample before weighting. M is the estimate of the measure

of free space contained in H. For leaf nodes M = F/T measure (H).

For non-leaf nodes, M is the sum of the values of M contained in the

node’s children (computed recursively).

New samples are generated by the procedure shown in Algorithm 4.1

(this recursive procedure may be replaced with two loops and a stack if

desired). The procedure starts at the root of the tree, and then recur-

sively picks a child using weighted coin flip. In particular, the chance

of recursing on the i-th child is calculated as wi/
∑

k wk (lines 5-6).
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Once a leaf node is reached, the sample point is drawn from a uniform

distribution over that leaf’s hyper-rectangle.

The sampled point and the result of the collision check are propa-

gated back up the tree so that the statistics of each interior node in the

recursion can be updated (lines 16-18). As more samples are generated

by descendants of a particular node, the estimate of that node’s free

space improves. Thus, future sampling more accurately reflect the true

distribution of free space. Formal proofs are presented in Section 4.3.

When a sampled point is added to the tree as a leaf node, the total

number of samples T and the number of free samples are both initialized

to 1 (as the point itself was a sample drawn from that hyper-rectangle).

This results in a prior belief that the hyper-rectangle of a new node is

entirely collision free, but is necessary to ensure that all children have

a probability greater than 0 of generating a sample.

Lastly, we recall the algorithm for performing nearest neighbor queries3

in a kd-tree: For a query point xq, we perform a depth first search to

find the leaf node V0 containing xq. During this search we push each

touched node into a stack S. We initialize the nearest neighbor xNN

with the point corresponding to V0. Then, while the stack is not empty,

we pop the top node V of the stack and do the following:

• for the point x associated with V , if d(x,xq) < d(xNN ,xq) we

replace xNN with x.

• if the hypercube of any unsearched children contains a point x

such that d(x,xq) < d(xNN ,xq), we push that child onto the

stack.

Thus, we may simultaneously generate a new sample and perform near-

est neighbor queries by replacing the initial depth first search with Al-

gorithm 4.1, at the same runtime complexity of doing a nearest neighbor

search.

3k-nearest neighbor, range search, and many other proximity queries follow this
same general structure.
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4.3 Analysis

4.3.1 Convergence to a uniform distribution over

free space

We now prove that the sampling distribution induced by our algorithm

converges to a uniform distribution over the free space. To improve

readability, in this section we utlize the following shorthand notation for

fields of a Node data structure V : V.x = point (V ), V.P = parent (V ),

V.T = count (V ), V.F = freecount (V ), and V.M = weight (V ).

Let SO, SF, and S denote the obstacle space, free space, and total

space respectively. S = SO ∪ SF and SO ∩ SF = ∅. We use the notation

S (·) to denote the subset of space associated with a data structure el-

ement, e.g., H = S (V ) is the hyper-rectangle of V . We also use P (·)
to denote probability, and λ (·) to denote the Lebesgue measure, e.g.,

λ (SF) is the hyper-volume of the free space. We assume that the con-

figuration space is bounded and that the boundaries of SO, SF, and S

have measure zero.

Let C denote the set of children of V . Each child ci ∈ C represents

a subset of S (V ) such that
⋃
i S (ci) = S (V ) and S (ci) ∩ S (cj) = ∅ for

all i 6= j. In a kd-tree |C| = 2.

Note the wording in this section is tailored to the kd-tree version

of our algorithm; however, the analysis is generally applicable to any

related data structure 4.

Let fn (·) be the probability density function for the sample returned

by Algorithm 4.1, when the kd-tree contains n points. Let fF (·) rep-

resent a probability density function such that fF (xa) = fF (xb) for all

xa, xb ∈ SF and fF (xc) = 0 for all xc ∈ SO. Let XF and Xn denote ran-

dom variables drawn from the distributions defined by fF (·) and fn (·),
respectively.

We now prove that P (limn→∞ fn (x) = fF (x)) = 1, for almost all

4In particular, we only require a tree-based space partitioning spatial index
that is theoretically capable of containing any countably infinite set of points X,
and such that the hyper-space of the leaf nodes covers the configuration space
S =

⋃
S
(
V leaf

)
. Our proofs can be modified to the general case by replacing ‘hyper-

rectangle’ with ‘hyper-space’ and assuming that a weighted die determines the re-
cursion path (instead of a coin). When the die is thrown at V it has |C| sides and the
weight of the i-th side is determined by the estimated value of λ (S (ci)) /λ (S (V ))
(i.e., the relative amount of free space believed to exist in child ci vs. its parent V ).

91



x ∈ S, i.e., that the induced distribution of our algorithm converges to

a distribution that is almost surely equal to fF (x) almost everywhere

in S, possibly excluding a measure-zero subset.

We begin by observing that the nodes in the kd-tree may be classi-

fied into three sets:

• free nodes, VF, the set of nodes V such that λ (S (V ) ∩ SO) = 0

and ∃x |x ∈ S (V ) ∧ x ∈ SF,

• obstacle nodes, VO, the set of nodes, V such that λ
(
S
(
V O
)
∩ SF

)
= 0

and ∃x |x ∈ S (V ) ∧ x ∈ SO,

• mixed nodes, VM contains all nodes do not fit the definition of a

free node or a mixed node.

Although our algorithm is ignorant of the type of any given node

(otherwise we would not need it to begin with), an oracle would know

that free nodes contain free space almost everywhere, obstacle nodes

contain obstacle space almost everywhere, and mixed nodes contain

both free space and obstacle space. Note that if V ∈ VM and λ (S (V )) >

0 then λ (S (V ) ∩ SO) > 0 and λ (S (V ) ∩ SF) > 0. It is possible for

V such that λ (S (V )) = 0 to be both an obstacle node and a free

node if it exists on the the boundary between SO and SF; because their

cumulative measure is zero, such nodes can be counted as both obstacle

nodes and free nodes (or explicitly defined as either one or the other)

without affecting our results.

We are particularly interested in the types of leaf nodes, because

they cover S and also hold all of the mass that determines the induced

sampling distribution.

Let VL denote the set of leaf nodes, and let VFL, VOL, VML denote

the set of leaf nodes that are also free nodes, obstacle nodes, and mixed

nodes, respectively. We use S (V) = ∪
V ∈V

S (V ) to denote the space

contained in all nodes in a set V . Figure 4-2 depicts the space contained

in the set of leaf nodes, VL, of a particular kd-tree.

Recall that V.M is the estimated probability mass that our algo-

rithm associates with node V . Let D denote tree depth.

Proposition 1. P (Xn ∈ S (V )) = V.M/
∑
V ′∈VL

V ′.M
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Figure 4-2: The hyper-rectangles of leaf nodes (Top) from the corresponding kd-
trees (Bottom). Letters show the correspondence between nodes and their hyper-
rectangles. Left and Right show 28 and 41 points, respectively. Obstacle space is red.
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Descendants of a free node are always free. Mixed nodes eventually produce free
node descendants (the probability that an obstacle node is produced is 0).

Proof. This is true by the construction of our algorithm. In particular,

from lines 16-17 and 21.

Proposition 2. For all V at depth D > 1 such that λ (S (V )) > 0 there

exists some δ > 0 such that V.F > δ.

Proof. All nodes at depth D > 1 have a parent V.P , which must have

generated at least one sample in order to create V . Since λ (S (V )) > 0,

we know that λ (S (V.P )) > 0. Therefore, by construction (lines 7, 11,

13) we know V.F ≥ λ(S(V ))
λ(S(V.P ))

> 0. Thus, the lemma is true for δ such

that 0 < δ < λ(S(V ))
λ(S(V.P ))

.

Lemma 7. For a particular node V , let Nn (V ) be the number of times

that a sample was generated from S (V ) when the kd-tree has n nodes.

Then, for all V such that λ (S (V )) > 0, P (limn→∞Nn (V ) = +∞) = 1.

Proof. We begin by obtaining two intermediate results:

First, V.F ≤ V.T for all V by construction (lines 3, 5, 7, 11, 13).

Thus, for all leaf nodes V ∈ VL it is guaranteed V.M ≤ λ (S (V )) by

the definition of M (line 12). Recall that the set of leaf nodes covers

the space S
(
VL
)

= S and that the space in each leaf node is non-

overlapping S (Vi) ∩ S (Vj) = ∅ for all Vi, Vj ∈ VL, Vi 6= Vj. Thus, we
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can sum over all leaf nodes to obtain the bound:∑
V ∈VL

V.M ≤
∑
V ∈VL

λ (S (V )) = λ (S).

Second, using Proposition 2 we know that for any particular node

V with positive measure λ (S (V )) > 0 there exists some δ such that

V.F > δ.Thus, the following bound always holds:

V.M = λ (S (V ))
V.F

V.T
≥ λ (S (V ))

δ

V.T

(where the first equality is by definition). Note this is the worst case

situation in which node V always samples from obstacle space (and

thus V remains a leaf node forever). Thus, V.M ≥ λ (S (V )) δ
V.T

.

Combining the first and second results yields:

P (Xn ∈ S (V )) =
V.M∑

V ′∈VL V ′.M
≥ δλ (S (V ))

V.Tλ (S)

Where the left equality is by Proposition 1. By definition δλ(S(V ))
λ(S)

= k

is a constant, and so P (Xn ∈ S (V )) ≥ k
V.T

. By definition, V.T only

increase when we draw a sample from S (V ). Let n̂ be the iteration at

which the previous sample was generated from S (V ). The probability

that we never again generate a sample from S (V ) is bounded:

P
(

lim
n→∞

Nn (V ) = Nn̂ (V )
)
≤ lim

n→∞

n∏
i=n̂

(
1− k

V.T

)
= 0

for all V.T <∞ and Nn̂ (V ) <∞ (and thus n̂ <∞). The rest of the

proof follows from induction.

Lemma 8. Let VF
n be the set of free nodes in the tree of n samples.

Then, for all x ∈ SF, limn→∞ P
(
∃V ∈ VF

n |x ∈ S (V )
)

= 1

Proof. Let Ξε,x be the open L1-ball with radius ε that is centered at

point x. For all x ∈ int(SF) there exists some ε > 0 for which Ξε,x ⊂ SF.

Therefore, it is sufficient to prove that for x ∈ SF,

lim
n→∞

P
(
∃V ∈ VF

n |V ⊂ Ξε,x

)
= 1.

Without loss of generality, we now consider a particular x. At any
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point during the run of the algorithm there is some leaf node VL |VL 3 x.

Lemma 7 guarantees that VL 3 x will almost surely split into two

children, one of which will also contain x, etc. Let VD,x represent the

node at depth D that contains x. Let XD ∈ S (VD,x) be the sample

point that causes VD,x to split. Let xxi refer to the i-th coordinate of x.

Thus, the splitting plane is normal to the D mod d-axis, and intersects

that axis at XD[D mod d], where d is the dimensionality of the space.

Each time the current leaf VD,x 3 x splits

P (XD ∈ Ξε,x ∧ xXD
i < xxi)=

λ (S (VD,x) ∩ S (Ξε,x))

2λ (S (VD,x) ∩ SF)
>0.

By construction

λ (S (VD+d,x) ∩ S (Ξε,x))

λ (S (VD+d,x) ∩ SF)
≥ λ (S (VD,x) ∩ S (Ξε,x))

λ (S (VD,x) ∩ SF)

so

lim
D→∞

P (∃XD |XD ∈ Ξε,x ∧ xXD
D mod d < xxd mod D)=1.

A similar argument can be made for xXi > xxi,

lim
D→∞

P (∃XD |XD ∈ Ξε,x ∧ xXD
D mod d > xxD mod d)=1.

Thus, in the limit as D →∞, there will almost surely be a set of

2d points {XD1 , . . . , XD2d
} sampled at levels D1, . . . , D2d, such that

XDi
∈ Ξε,x for i = {1, . . . , 2d}, and i = Di mod d and xXDi

i < xXi, and

i = Dd+i mod d and xXDd+i
i > xXi. By construction, Xmaxi(Di) is on a

splitting plane that borders a node V such that S (V ) 3 x and V ⊂ Ξε,x

(and thus V ∈ VF). Lemma 7 implies that P (limn→∞D =∞) = 1 for

VD,x |S (VD,x) 3 x.

Corollary 1. P
(
limn→∞ λ

(
S
(
VML

)
∩ SF

)
= 0
)

= 1.

Corollary 2. P
(
limn→∞ λ

(
SF \ S

(
VFL

))
= 0
)

= 1.

Corollary 3.

P
(
limn→∞

∑
V ∈VFL λ (S (V )) = λ (SF)

)
= 1.

Lemma 9. P (limn→∞ V.M = 0) = 1 for all obstacle leaf nodes V ∈
VOL.
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Proof. There are two cases, one for λ (S (V )) = 0 and another for λ (S (V )) > 0.

The first is immediate given V.M
4
= V.F

V.T
λ (S (V )). For the second, we ob-

serve that P (∃x |x ∈ S (V ) ∧ x ∈ SF) = 0 by definition, and so V.F will

almost surely not change (and V will remain a leaf node almost surely).

Thus, P (V.T =∞) = 1 by Lemma 7, and so P
(
limn→∞

V.F
V.T

= 0
)

= 1.

Using the definition of V.M finishes the proof.

Corollary 4. limn→∞ P
(
Xn ∈ S

(
VOL

))
= 0.

Lemma 10. P (limn→∞ V.M = 0) = 1 for all mixed leaf nodes V ∈
VML.

Proof. V.F will almost surely not change by Corollary 1. The rest of

the proof is similar to Lemma 9.

Corollary 5. limn→∞ P
(
Xn ∈ S

(
VML

))
= 0.

Corollary 6.

limn→∞ P
(
Xn ∈

(
S
(
VML

)
∪ S

(
VOL

)))
= 0

We observe that this result does not conflict with Lemma 7. Each

node with finite space is sampled an infinite number of times; how-

ever, the proportion of samples from obstacle nodes and mixed nodes

approaches 0 in the limit as n→∞.

Lemma 11. limn→∞ P (Xn ∈ SO) = 0

Proof. This follows from Corollary 6 and the fact that

λ
(
SO \

(
S
(
VML

)
∪ S

(
VOL

)))
= 0.

Lemma 12. P (limn→∞ V.M = λ (S (V ))) = 1, for all free nodes V ∈
VF.

Proof. There are two cases, one for when λ (S (V )) = 0 and another

for when λ (S (V )) > 0. The former is immediate given the definition

of V.M , and so we focus on the latter. When a new free node VD ∈ VF

is created at depth D > 1 of the tree it initializes VD.F > 0 and

VD.T > 0 based on similar values contained in its parent (and weighted

by the relative measures of VD vs. its parent). By Lemma 7 we know
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that VD will almost surely generate two children VD+1,0 and VD+1,1. By

construction (lines 11-13), they will be initialized with

VD+1,j.F = (VD.F + 1)
λ (S (VD+1,j))

λ (S (VD))

VD+1,j.T = (VD.T + 1)
λ (S (VD+1,j))

λ (S (VD))

, for j ∈ {0, 1}. These children will also generate their own children

almost surely, etc. Because VD is a free node, all samples from its sub-

tree will result in more free node descendants being created almost

surely. Let Ĉn be the set containing all leaf node descendants of VD
at iteration n. By construction (line 24), as soon as |Ĉn| ≥ 1, then

VD.M =
∑

V ∈Ĉn
V.M . We now examine a single term of the latter sum-

mation, i.e., the term for node VD+k at depth D + k. In particular.

VD+k.M = VD+k.F

VD+k.T
λ (S (VD+k)). For the remainder of this proof we will

abuse our notation and let ‖ · ‖ = λ (S (·)) to make the following equa-

tions more readable. Unrolling the recurrence relation for VD+k.F gives:

VD+k.F =

‖VD+k‖
‖VD+k−1‖

(
. . .
‖VD+2‖
‖VD+1‖

(‖VD+1‖
‖VD‖

(VD.F + 1) + 1

)
. . .+ 1

)
where VD+k−1, . . . , VD+2, VD+1, VD, are the ancestors of VD+k going up

the tree to VD. This can be rearranged:

VD+k.F =

‖VD+k‖
‖VD‖

VD.F +
‖VD+k‖
‖VD‖

+
‖VD+k‖
‖VD+1‖

+ . . .+
‖VD+k‖
‖VD+k−1‖

.

Similarly, the VD+k.T recurrence relation is:

VD+k.T =

‖VD+k‖
‖VD‖

VD.T +
‖VD+k‖
‖VD‖

+
‖VD+k‖
‖VD+1‖

+ . . .+
‖VD+k‖
‖VD+k−1‖

.

limk→∞
‖VD+k‖
‖VD‖ = 0, also P

(
‖VD+k‖
‖VD+k−1‖ = 0

)
= 0 given λ (S (VD)) > 0, where

we resume our normal notation. Thus, P (limk→∞ VD+k.M = λ (S (VD+k))) = 1.

Lemma 7 guarantees that P (limn→∞ k =∞) = 1 for all VD+k such

that Ĉn 3 VD+k. Thus, by summing over the members of Ĉn we get:

P
(
limn→∞

∑
V ∈Ĉn

V.M =
∑

V ∈Ĉn
λ (S (V ))

)
= 1. VD.M =

∑
V ∈Ĉn

V.M

by definition. Also by definition S (VD) =
⋃
V ∈Ĉn

S (V ) and Vi ∩ Vj = ∅
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for all Vi, Vj ∈ Ĉn such that i 6= j; therefore, λ (S (VD)) =
∑

V ∈Ĉn
λ (S (V )).

Substitution finishes the proof.

Note, Corollary 7 depends on Lemma 12 and Corollary 2:

Corollary 7.

P
(
limn→∞

∑
V ∈VFL V.M = λ (SF)

)
= 1.

Lemma 13. P (limn→∞ fn (x) = c) = 1 for all x and B such that x ∈ B ⊂ SF

and λ (B) > 0

Proof. By Proposition 1 and Lemmas 12 and Corollary 7 we know that

limn→∞ P (xn ∈ S (V )) = λ(S(V ))
λ(SF)

for all free nodes V ∈ VF almost surely.

By construction (line 2) once a leaf node V ∈ VFL is reached, samples

are drawn uniformly from within S (V ). Thus, the uniform probability

density of drawing xn ∈ S (V ), given that the algorithm has decided to

draw from within S (V ), is fn (xn|xn ∈ S (V )) = 1
λ(S(V ))

. Therefore, the

posterior probability density

lim
n→∞

fn (xn) = lim
n→∞

fn (xn|xn∈S (V ))P (xn∈ S (V ))=
1

λ (SF)

almost surely, which is constant and independent of V ∈ VFL, and thus

holds almost everywhere in ∪
V ∈VFL

S (V )—and thus almost everywhere

in SF (by Corollary 2).

Theorem 4. P (limn→∞ fn (x) = fF (x)) = 1.

Proof. This is proved by combining Lemmas 11 and 13.

4.3.2 Performance and runtime

Our method is designed to increase the speed at which new points are

added to the search graph by eliminating the work wasted on points

that will be rejected. That said, our method cannot be expected to

outperform more traditional rejection sampling in every case that may

be encountered. We now discuss the runtime of the kd-tree version of

our algorithm vs. rejection sampling, in order to evaluate when it should

be used.

Let ckd be the work associated with performing graph operations

(nearest neighbor searching, or insertion) on a standard kd-tree. Let cgen
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denote the time to generate a sample from a distribution uniform over a

hyper-rectangle, and let ccc denote the time required to collision check

a point. Note that ckd = O (log n) for a balanced kd-tree of n points

and cgen = O (d), where d is the dimensionality of the configuration

space. As compared to rejection sampling, our method changes the

computation time required to generate a candidate sample from cgen to

cgen · ckd.
Our method also changes the expected number of trials required to

sample a point x ∈ SF from S/SF to Etrials, where Etrials = S/SF for the

first sample (n = 1) and then limn→∞ Etrials = 1 (i.e., Etrials approaches

1 as the number of successful samples increases).

Thus, our method changes the expected time to both find a point

x ∈ SF and then perform graph operations on kd-tree from (cgen + ccc) (S/SF)+

ckd to (cgen · ckd + ccc)Etrials. Note that S/SF is a constant (assuming a

static environment). We expect our method to have a practical improve-

ment in cases where we may reasonably expect Etrials < (S/SF) (1/ckd).

4.4 Experiments and Results

In order to validate our method and profile its performance we perform

several experiments for different robotic systems and obstacle sets. We

present results for three systems: a planar point, a concave planar ob-

ject, and a 4-link thin-arm manipulator in the plane. Figure 4-3 shows

the obstacle sets used for the the planar object and the manipulator,

respectively. Those used for the planar point are identical to those used

for the planar object.

In each experiment we compare the results for both (1) sampling

a collision-free configuration and (2) sampling a collision-free config-

uration and finding its nearest neighbor among previously sampled

collision-free configurations. We compare the results for the (a) the

kd-tree implementation described in Section 4.2 and (b) classical re-

jection sampling. We use the abbreviations KDS (1a), KDSS (2a), RS

(1b) and RSS (2b). Note that (2b) is comprised of the subroutines (1b)

would replace in an otherwise standard implementation of RRT, RRT*,

PRM, or PRM*.

Results are averaged over thirty runs, and collision checking is per-

formed using an axis-aligned bounding box tree.
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[i] [ii]

[iii] [iv]

Figure 4-3: Obstacle sets for experiments. For experiments with the planar point
and planar object, [i] and [ii] are mazes of different complexity. For the planar
manipulator [iii] is a multi-crevice obstacle set with the manipulator in the center
crevice and [iv] is a wall with a narrow opening.

4.4.1 Sampling Performance

The biased sampling method sacrifices independence of the sampling

process, so we must question the quality of the induced sampling dis-

tribution. We compare the sample sets generated by KDS and RS by

comparing the distribution of circumspheres in the Delaunay Triangu-

lation of the point set (the radius of largest circumsphere being the L2

dispersionof the point set [55] ).

Figure 4-4 illustrates the histogram of the radii of these circum-

spheres for obstacle sets [i] and [iii] using KDS and RS. As these plots

show, the point set generated using KDS is quite similar to that of the

point set generated using RS. The Kolmogorov-Smirnov p-values for

the tests are 1.000, 0.893, and 0.999 respectively, suggesting the way

in which KDS sacrifices independence in the sampling process does not
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Figure 4-4: Histogram of circumsphere sizes for the Delaunay Triangulation of the
point set generated after 1000 collision-free samples in experiments with (a) the
planar point and obstacle set [i], (b) the planar object and obstacle set [i], (c) the
planar manipulator and obstacle set [iii].

significantly affect the quality of the sampling sequence.

4.4.2 Planar Point Robot

Figure 4-5 shows the profiling results for the planar point experiments.

In obstacle set [i] the obstacles are grouped to create wide regions of

free space, while in [ii] they are arranged to divide up the free-space

into many narrow passages. The latter should require a larger number

of samples before the information encoded in the kd-tree is sufficient

to improve the sampling success rate in KDSS. Indeed, as Figure 4-5d

shows the sampling success rate for this obstacle set increases more

slowly than for obstacle set [i], shown in Figure 4-5c. Note also that

the proportion of the configuration space that is collision-free is higher

for obstacle set [ii] than [i]. For these two reasons the iteration time for

KDSS and obstacle set [ii] is not much different than for RSS, though
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Figure 4-5b does show that there is a crossover point at around 5000

samples where KDSS becomes faster than RSS. We do see an approxi-

mately 5% improvement in iteration time of KDSS over RSS for obstacle

set [i] as shown in Figure 4-5a. For both obstacle sets KDS less than

4% slower than RS alone.
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Figure 4-5: Observed iteration times (a), (b), and incremental sampling success
rates (c), (d), for the planar point experiments. Figures (a) and (c) are for obstacle
set [i] while (b) and (d) are for obstacle set [ii].

4.4.3 Planar Object Robot

While the planar point experiment is useful for gaining some intu-

ition the low dimension of the configuration space and ease of collision

checking are somewhat unrepresentative of the challenging planning

problems which are typically solved with sampling-based planning al-

gorithms.

Figure 4-6 shows the profiling results for the planar object experi-

ments. KDSS has 25% lower incremental runtime than RSS for obstacle

set [i] (Figure 4-6a) and a 15% lower runtime for obstacle set [ii] (Fig-

ure 4-6b). Note that for these obstacle sets, sampling generating (RS

and KDS) alone takes roughly the same amount of time as sampling
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and searching (RSS and KDSS). Clearly in these experiments sam-

pling (and static collision checking) contributes to the majority of the

runtime while graph searching, which is the theoretical bottleneck in

sampling-based planning algorithms, has yet to begin dominating the

runtime after 10,000 samples. The experimental sampling success rates

(Figures 4-6c and 4-6d) show that the hyper-cubical decomposition of

the configuration space does not cover the configuration space as well

in three dimensions as it does in two, with the success rate topping out

at around 60% in these experiments. Never the less, this is a significant

improvement over the 30%-35% success rate of rejection sampling in

these experiments, leading to the significant reduction in runtime.
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Figure 4-6: Observed iteration times (a), (b), and incremental sampling success
rates (c), (d), for the planar object experiments. Figures (a) and (c) are for obstacle
set [i] while (b) and (d) are for obstacle set [ii].

4.4.4 Planar Manipulator Robot

Experiments with the planar manipulator allows us to consider the

performance of this method in higher dimension configuration spaces.

Figure 4-7 shows the profiling results for the planar manipulator ex-

periments. Obstacle set [iii] has a more complex representation with
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more of the configuration space in collision, and thus KDS and KDSS

show a high (65%) runtime improvement over both RS and RSS (Fig-

ure 4-7a). The improvement of the kd-tree based sampling technique

for obstacle set [iv] is with a 5% runtime improvement of KDSS over

RSS (Figure 4-7b). In this case the KDSS and RSS take roughly the

same amount of time. We see in Figure 4-7d however that the propor-

tion of the configuration space which is collision-free is quite high in

this case (nearly 90% collision-free) while for obstacle set [iii] it is less

than 10% collision-free. For obstacle set [iv] KDS provides only slightly

higher sampling success rates. However, because collision checking is

significantly more complex in this case we still see an improvement in

the runtime of KDSS over RSS.

We also note that for obstacles set [iii] our method tops out at a

sampling success rate of only 45% which is even less than in the planar

object experiments. However, as with the planar object experiments,

this increase in sampling success rate is significant enough to lead to

the runtime improvement that we observe.
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Figure 4-7: Observed iteration times (a), (b), and incremental sampling success
rates (c), (d), for the planar point experiments. Figures (a) and (c) are for obstacle
set [iii] while (b) and (d) are for obstacle set [iv].
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4.5 Summary and Conclusions

We present a new method for sampling such that samples are drawn

from a distribution that provably converges to uniform sampling over

an initially unknown but discoverable and static subset of space. Our

method works by recording the observed distribution of the subset of

interest vs. the total space within subspaces covered by a spatial index.

We demonstrate the specifics of this method with an algorithm for

augmenting kd-trees. The observed number of samples (e.g., from the

subset of interest vs. the total number samples) at each node is used to

guide future sampling.

Our method can also be viewed as constructing an approximate

obstacle representation that becomes more refined as more samples are

generated (and samples are generated from areas that contain obstacles

with increasingly low probability). However, experiments show that the

number of samples required to characterize the free space sufficiently

well to reduce rejection sampling over head is relatively small in many

complex planning problems. The complexity of generating new samples

also inherits a log n factor of complexity from the kd-tree around which

it is built, but in practice this appears to be a useful compromise. In

particular, this compromise is worthwhile when

• the complexity of the obstacle field is high, e.g., a large number

of obstacles, or obstacles with complex shapes;

• the complexity of interference testing is high, e.g., a complex map-

ping from (high) configuration space to workspace volumes;

• the proportion of the configuration space which is collision-free is

low.

We expect our method to be especially useful as a subroutine in

sample based motion planning which are already bound to search op-

erations on a spatial index.
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Chapter 5

Sampling directly from a

triangulation

The sampling algorithm in the previous chapter describes a method

of combining tree based proximity data structures with collision infor-

mation to inform the sampling priors. In this chapter we extend this

algorithm to triangulation proximity data structures.

5.1 Uniform sampling from a simplex in-

terior

We begin the discussion by describing an algorithm to efficiently gener-

ate a point from the interior of a simplex. Let S1 ⊂ Rn be the canonical

(i.e., unit) simplex.

Let zi ∼ U (0, 1) for i in 1 . . . n − 1 be n scalar values drawn i.i.d

from a uniform distribution over (0, 1). Let z0 = 0 and zn = 1. Let us

reassign the labels i in 1 . . . n− 1 such that zi < zi+1. Let xi = zi+1− zi
for i in 0 . . . n− 1. Let x = [x0 . . . xn−1] be the vector of these ordered

values.

Theorem 5 (Uniform sampling on the canonical simplex). x is dis-

tributed uniformly over S1.

The proof of theorem 5 is given in [87]. Now let V be a set of n+ 1

points vi ∈ Rn for i in 0 . . . n. Let S = conv (V ) be the simplex which

is the convex hull of the vertices in V . If S is not degenerate, i.e., not

all vi ∈ V lie in the same hyperplane, then any point x ∈ Rn may be
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represented by λ = [λ0 . . . λn1 ] satisfying

x =
n∑
i=0

λivi,

1 =
∑
i=0

λ0.

(5.1)

We refer to λi the barycentric coordinates of x with respect to S.

Theorem 6 (General measure rule for barycentric coordinates). Let

x ∈ Rn be any point and λ = [λ0 . . . λn1 ] its barycentric coordinates.

Furthermore, let Si = conv (V \ vi ∪ x). Then µ (Si) = λiµ (S) where

µ (X) is the Lebesgue measure of the set X.

Proof. Without loss of generality we consider only the case of S0 as

the result is symmetric and holds for any assignment of indices. The

Lebesgue measure of a simplex S = conv (V ) is given by [98]

µ (S) =
1

n!
det
∣∣∣(v1 − v0) . . . (vn − v0)

∣∣∣ ,
µ (S0) =

1

n!
det
∣∣∣(v1 − x) . . . (vn − x)

∣∣∣ .
Let V =

[
v1 . . . vn

]
be the horizontal concatenation of the vertices

V \ v0, and let 1 =
[
1 . . . 1

]>
be the n× 1 vector of ones. Note that

we assume S is not degenerate and so V is invertible. Note then the

following:

x =
n∑
0

λivi = λ0v0 + Vλ\0,

where λ\0 =
[
λ1 . . . λn

]>
is the n× 1 vector of barycentric coordinates

excluding λ0. We begin by rearranging equation (5.1).

1− λ0 = 1>λ\0

= 1>V−1Vλ\0

= 1>V−1
(
λ0v0 + Vλ\0 − λ0v0

)
= 1>V−1 (x− λ0v0)

1− 1>V−1x = λ0

(
1− 1>V−1v0

)
.
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Applying the matrix determinant lemma

det
(
A+ uv>

)
= det (A)

(
1 + v>A−1u

)
,

det
(
1− 1>V−1x

)
= λ0det

(
1− 1>V−1v0

)
det (V) det

(
1− 1>V−1x

)
= λ0det (V) det

(
1− 1>V−1v0

)
det
(
V− x 1>

)
= λ0det

(
V− v0 1>

)
det
∣∣∣(v1 − x) . . . (vn − x)

∣∣∣ = λ0det
∣∣∣(v1 − v0) . . . (vn − v0)

∣∣∣
1

n!
det
∣∣∣(v1 − x) . . . (vn − x)

∣∣∣ = λ0
1

n!
det
∣∣∣(v1 − v0) . . . (vn − v0)

∣∣∣
µ (S0) = λ0µ (S) .

Corollary 8. Let SA = conv (VA) be a simplex in Rn and Sa = conv (Va)

be a second simplex in its interior: Sa ⊂ SA. Now let SB = conv (VB) be

some other simplex in Rn, and let λi be the barycentric coordinates of

vertex va,i ∈ Va with respect to SA. Also, let vb,i ∈ Rn be the point with

barycentric coordinates λi with respect to SB, and let Sb = conv (Vb).

Then Sb ⊂ SB and µ(Sb)/µ(SB) = µ(Sa)/µ(SA)

Note that if ∀i in 0 . . . n− 1, 0 ≤ λi ≤ 1 then x is a convex combi-

nation of the vertices of the simplex, and must lie in the interior. Thus

for a point x and its barycentric coordinates λ with respect to some

simplex S, we know that x ⊂ S if and only if λ ∈ S1.

Theorem 7 (Uniformly sampled barycentric coordinates sample uni-

formly over any simplex). Let S1 ⊂ Rn+1 be the canonical, i.e., unit

simplex and S ⊂ Rn be any nondegenerate simplex, i.e., S = conv (V )

for V = {v0, . . . ,vn} where vi ∈ Rn. Let λ ∼ U (S1) be a random

point distributed uniformly over S1. Furthermore, let x =
∑n

i=0 λivi

be the the point in Rn with barycentric coordinates {λ0, . . . , λn}. Then

x ∼ U (S)

Proof Sketch. In order to show that x ∼ U (S) we must show that for

any open subset X of S, P (x ∈ X) = µ(X)/µ(S). We will show that this

is true if X is the interior of a polytope P ⊂ S.

Every polytope P emits a finite triangulation, i.e., a finite set of

simplices S such that Si, Sj ∈ S, i 6= j, Si ∩ Sj = ∅ and P = ∪
S
Si.
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By corollary 8, the barycentric coordinates of the vertices of P emit

a Lebesgue measure ratio preserving map of the polytope to a new

polytope P ′ in the interior of any other simplex in Rn. In particular,

the surface of the canonical simplex in Rn+1 is itself a simplex in Rn,

embedded in the n + 1 dimensional hyperplane normal to 1. Because

barycentric coordinates are sampled uniformly from this surface and

they provide a measure preserving map from S to that surface, the

probability that a sample lies in the polytope is P (x ∈ P ) = µ(P )/µ(S).

Figure 5-1: Barycentric coordinates
provide a measure preserving map from
the surface of the canonical simplex to
any other simplex.

Figure 5-2: Some examples of uniform
sampling within a 2-simplex (a.k.a. tri-
angle)

Theorems 5 and 7 together yield a simple and efficient O (n log n)

algorithm for sampling a point uniformly inside any simplex.

Input: U , a uniform RNG
Output: λ ∈ Rn

1 Z ← {0, 1}
2 for i ∈ [1 . . . n− 1] do
3 sample zi ∼ U (0, 1)
4 Z ← Z ∪ {zi}
5 Y ← sort (Z)
6 for i ∈ [0 . . . n− 1] do
7 λi ← yi+1 − yi
8 return

[
λ0 . . . λn−1

]>
Algorithm 5.1: SampleCanonical (n) re-
turns a point sampled uniformly from the
surface of the canonical simplex in n dimen-
sions
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Input: V , a set of n+ 1 vertices vi ∈ Rn

Output: x ∼ U (conv (V ))
1 λ← SampleCanonical (n+ 1)

2 V←
[
v0 . . . vn

]
3 return Vλ

Algorithm 5.2: SampleSimplex (V ) re-
turns a point sampled uniformly from the
interior of the simplex S = conv (V )

5.2 Sampling Uniformly from a Triangu-

lation

The results of the previous section may be utilized in an efficient al-

gorithm to sample a new point uniformly from the set covered by a

triangulation.

Let V be a set of n vertices vi ∈ Rd with n > d. Also, let T be a

triangulation of V , i.e., a set of non-overlapping simplices which cover

conv (V ). Let µ (S) denote the Lebesgue Measure of a simplex S ∈ T ,

and let µ (T ) be the Lebesgue Measure of conv (V ).

We may sample a point uniformly over the interior of conv (V ) by

first selecting a simplex at random from a distribution where the prob-

ability of selecting a simplex S is proportional to µ (S). We may then

apply algorithm 5.2 to sample a point uniformly over its interior. The

resulting distribution is uniform over conv (V ).

An efficient algorithm for sampling from a discrete distribution with

finite support can be realized by use of a balanced tree of partial sums :

a type of binary tree. In the BTPS each element in the support is

represented by a leaf node in the tree, and each interior node encodes

the sum of the weight of its two children. We assume that if N is a

node in the tree, then the following procedures are O (1) time.
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field type description

weight (N) ∈ R The total weight summed over all leaf

nodes in this node’s subtree

num (N) ∈ N The total number of descendants of this

node

parent (N) Node The parent node

child (N, i) Node The ith child of N , i ∈ 0, 1

payload (N) variable if N is a leaf node, points to the corre-

sponding element in the support of the

distribution
isLeaf (N) Boolean true if N is a leaf node, false if it is an

interior node

Table 5.1: Node Data Structure

As a notational convenience, let x (N, i) denote the application of

procedure x to the ith child ofN , i.e., weight (N, 0) denotes weight (child (N, 0)).

There is one leaf node in the tree for each simplex in the triangula-

tion, and its weight is assigned the Lebesgue measure of that simplex.

The interior nodes of the tree encode partial sum information, and in-

formation required to keep the tree balanced. In effect the tree is a

binary search tree over the unit interval which is subdivided into seg-

ments of length proportional to the measure of the simplices in the

triangulation. We may then draw a random number X ∼ U (0, 1) and

then use the binary tree to discover the division of the unit interval on

which X lies.

Input: P , a node in the tree
Input: L, a node to insert

1 i← argmin (num (P, i))
2 if isLeaf (P, i) then
3 L′ ← child (P, i)
4 child (P, i)← Node (P,L, L′)

5 else
6 Insert (child (P, i) , L)

7 meas (P )← meas (P ) + meas (L)
8 num (P )← num (P ) + num (L)
9 return

Algorithm 5.3: Insert (P,L) add
an element to the support of the dis-
tribution

Input: L, the leaf node to remove
1 P ′ ← parent (L)
2 P ← parent (P ′)
3 child (P, i)← child (P ′, i)
4 while P 6= ∅ do
5 weight (P )←

weight (P )− weight (L)
6 num (P )← num (P )− num (L)
7 P ← parent (P )

8 return

Algorithm 5.4: Remove (L) re-
move an element from the support
of the distribution

Algorithms 5.3 and 5.4 give the insert and removal procedure for the

tree. Note that the removal procedure does not perform any rotations.

Explicit maintenance of the tree’s balance after removal is unnecessary

112



for our application since the support of the distribution is always grow-

ing: accounting for the number of leaves in each subtree is sufficient.

Algorithm 5.5 gives the recursive procedure for sampling from the

distribution. The procedure starts at the root, R, such that to generate

the sample one may apply Select (R,∼ U (0, 1) , 0, weight (R)).

It is straightforward to see that insertion, removal, and sampling

from the distribution are all O (log n) time, and the tree requires O (n)

storage.

Input: P , an interior node
Input: u ∈ [0, 1]
Input: w ∈ R, weight of pruned subtrees
Input: W ∈ R, total weight

1 if u < w+weight(P,0)/W then
2 C ← child (P, 0)
3 else
4 C ← child (P, 1)
5 w ← weight (P, 0)

6 if isLeaf (C) then
7 return payload (C)
8 else
9 Select (C, u,w,W )

Algorithm 5.5: Select (P, u, w,W ) sam-
ple an element from the support of a dis-
crete distribution. Initially P is the root of
the tree, W is weight (P ), w is zero, and
u ∼ U (0, 1).

5.3 k-NN Searching in a Delaunay Trian-

gulation

The canonical algorithm for performing k nearest neighbor searching

in a Delaunay Triangulation is more readily explained in terms of the

Voronoi diagram (the dual of the Delaunay Triangulation).

The algorithm first finds the nearest neighbor of the query point xq

by finding the Voronoi cell containing xq (a point location query) and

then retrieving the generator site x0 associated with that cell. Equiv-

alently, x0 is the nearest vertex to xq among vertices of the Delaunay

simplex containing xq.

The algorithm then proceeds by maintaining a priority queue of

Voronoi cells to expand. When a cell is expanded, all of the neighbor-
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Figure 5-3: A balanced tree of partial sums for a distribution over eight elements
where the weights of the elements are 5, 2, 4, 3, 6, 3, 4, and 7. Given a query value
of u = 1/2 the dotted path shows the traversal of the Select procedure.

ing cells are evaluated to determine the distance of their associated

generator site to the query point. Each of these sites are added to the

priority queue, keyed on their distance. The expanded cell is then added

to the result set. The processes is illustrated for a 2d point set in fig-

ure 5-4. Note that the sites associated with each Voronoi neighbor of

a Voronoi cell generated by xi are exactly the Delaunay neighbors xi.

Pseudocode for this algorithm is given in algorithm 5.6.

Assuming that the point location query is efficient, algorithm 5.6 is

Figure 5-4: First three iterations of k-NN search in 2d. Q (in purple) is initialized
with the cell containing the query point. The result set R (in green) is built up by
successively adding the nearest site of Q.
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Input: T , a Delaunay triangulation
Input: xq, the query point
Input: k, number of nearest neighbors to find

1 initialize O,R as PriorityQueue

2 initialize C as Set

3 s← containingSimplex (T,xq)
4 (x0, d0)← nearestVertex (s,xq)
5 insert (O, (d0,x0))
6 while |R| < k or MinKey (O) < MaxKey (R) do
7 (di,xi)← popMin (O)
8 insert (R, (di,xi))
9 if |R| > k then

10 popMax (R)

11 insert (C,xi)
12 for xj ∈ delaunayNeighbors (T,xi) do
13 if xj 6∈ O and xj 6∈ C then
14 dj ← ||xj − xq||
15 insert (O, (dj ,xj))

16 return R

Algorithm 5.6: findNN (T,xq, k) find the k nearest
neighbors to xq in a Delaunay triangulation T .

output sensitive optimal and has runtime O (k) for constant dimension.

The complexity of the point location query, however, is what dominates

the overall algorithm runtime. Optimal indices of the DT may find

the simplex containing the query point in O (log n) time for constant

dimension. Each of these two procedures, however, scale exponentially

in dimension.

5.4 Combined sampling and k-NN Search-

ing in a Delaunay Triangulation

As with kd-trees in the previous section, if the query point is generated

from a uniform distribution over the convex hull of the current point

set, then we may combine sampling and proximity queries to eliminate

the point location query. In doing so we exchange a separate sampling

procedure followed by a O
(
cd log n

)
point location query with a sin-

gle O (log n) combined sampling and point location procedure whose

complexity does not grow with dimension.
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Chapter 6

Proximity queries for robotic

systems

Proximity queries are of fundamental importance to sampling-based

motion planning algorithms, as it drives their asymptotic incremental

runtime. For many sampling-based planning algorithms these proximity

queries are k-nearest neighbor or range queries. There are known data

structures for Euclidean spaces which yield efficient proximity queries

for several metrics, such as the spatial indices referred in the intro-

duction, however they suffer either space or query time exponential

in dimension. The often used kd-tree, for example, can find k nearest

Euclidean neighbors in d dimensions in time O (G(d) log n) [26], where

G(d) is exponential in d. Nearest neighbor queries in a kd-tree are never

worse than O (dn).

Locality sensitive hashing in a Euclidean space [5] avoids the expo-

nential size or query time of spatial tesselations and decompositions by

finding a lower dimensional subspace on which to project and bin the

sites of a data set. The problem finding a suitable subspace however

precludes the use of such data structures when the point set is built

incrementally as in many sampling-based planning algorithms.

In this chapter we begin by reviewing priority searching on spatial

indices noting how these searches can be extended to different metrics

and distance functions while preserving their correctness and complex-

ity (section 6.1). The extensibility of priority searching algorithms be-

yond traditional metrics (Euclidean,`−1, etc) was previously discussed

in [105] in which formulas are derived for utilizing kd-trees as an effi-

cient index for a circle, real projective spaces, and Cartesian products
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of these and Eucliean spaces. In this chapter we further extend the set

of configuration spaces which can be efficiently indexed with kd-trees

by providing the requisite formulas for computing shortest path dis-

tances to hyperrectangular-cells in Sn, SO(3), R3×SO(3), and Dubins

vehicles.

6.1 Priority searching in spatial indices

Let S ⊂ X be a finite set of n sites in a metric space X with metric

dX . A bounding volume hierarchy is a tree data structure, where each

vertex represents some subset of X, usually compact and connected.

Let S (vi) ⊂ X denote the set covered by vertex vi. Let v0 be the root

vertex of the tree. The hierarchy represents a successive decomposition

of S (v0). In other words if vj is a decendent in the tree from vi, then

S (vj) ⊂ S (vi). The leaf vertices in the tree reference a subset of the

sites. Let vi be a leaf node and Si be the set of sites referenced by vi,

then Si ⊂ S (vi). Furthermore, these referenced sets are disjoint, i.e.,

for all leaves i, j, Si ∩ Sj = ∅.
Priority based k-NN searches on a bounding volume hierarchy can

be performed with a straightforward branch-and-bound algorithm, as

illustrated in algorithm 6.1.

1 initialize Q as a min-priority queue
2 initialize R as a max-priority queue
3 v0 ← root (T )
4 insert (Q, (0, v0))
5 while size (Q) > 0 and
6 size (R) < k or minKey (Q) < maxKey (R) do
7 (·, v)← popMin (Q)
8 for x ∈ sites (v) do
9 insert (R, dX(q, x), x)

10 if size (R) > k then
11 popMax (R)

12 for v′ ∈ children (T, v) do
13 insert (Q, dX(q, v′), v′)

Algorithm 6.1: BranchAndBound (q, k, d(·, ·), T )

This priority search algorithm is common for many BVH data struc-

tures including kd-trees [26], orthant-trees (n-dimensional quadtrees),

ball-trees [70], etc.
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Let T be a BVH, q ∈ X be a query point, and v ∈ T be a vertex of

the T . We define dX(q, v) to be the normal Hausdorff distance

dX(q, v) = inf
x∈S(v)

dX(q, x).

Theorem 8. Given X,S,T ,q,dX as described, algorithm 6.1 is correct.

Proof. The proof is by contradiction. Assume that si is one of the k

nearest sites to q and that Algorithm 6.1 has terminated with si 6∈ R.

Let vi is the leaf node of T referencing si. Assume that vi was visited.

Then si was entered into R and must have been removed. This means

that k other sites were entered into R with distance less than dX(q, si).

Since each vertex is visited exactly once by construction, and vertices

reference disjoint subsets of S, this contradicts the fact that si is one

of the k nearest sites to q.

Now assume that vi was not visited. We know that dX(q, vi) ≤
dX(q, si). Furthermore we know that dX(q, vj) ≤ dX(q, vi) for all vj

in the ancestry of vi, up to the root v0. Since vi was not visited, this

means that either vi or one of its ancestry is in Q, so size (Q) > 0. Be-

cause the algorithm terminated both size (R) == k and minKey (Q) ≥
maxKey (R) must be true. However, since vi or one of its ancestry is in

Q, minKey (Q) ≤ dX(q, vi), and because vi is one of the k nearest points

to q, maxKey (R) ≥ dXq, vi. And thus we have arrived at a contradic-

tion.

The branch-and-bound priority search algorithm is common to other

spatial indices, notably tesselations. A tesselation is a graph data struc-

ture, where each vertex represents some compact, connected subset

of X. The vertices are disjoint except at a common boundary, i.e.,

λ (S (vi) ∩ S (vj)) = 0, and the vertices form cover ofX, i.e., ∪
vi∈V

S (vi) =

X.

Vertices vi, vj are connected by an edge in the graph if S (vi) ∩
S (vj) 6= ∅. Each vertex vi in the graph references the subset of sites Si

which lie in S (vi), i.e., Si = S (vi) ∩ S.

The priority search algorithm may be applied to tesselations by

replacing children (·, v) with neighbors (·, v), and adding additional

accounting to avoid multiple visits to a cell (algorithm 6.2).

Note that q and dX(q, ·) together define both an orientation and

an ordering on the graph. Algorithm 6.2, enumerates cells of the tes-
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1 initialize Q as a min-priority queue
2 initialize R as a max-priority queue
3 v0 ← cellContaining (G, q)
4 insert (Q, (0, v0))
5 while size (Q) > 0 and
6 size (R) < k or minKey (Q) < maxKey (R) do
7 (·, v)← popMin (Q)
8 for x ∈ sites (v) do
9 insert (R, dX(q, x), x)

10 if size (R) > k then
11 popMax (R)

12 for v′ ∈ neighbors (G, v) do
13 if notMarked (v′) then
14 mark (v′)
15 insert (Q, dX(q, v′), v′)

Algorithm 6.2: BranchAndBound (q, k, d(·, ·), G)

selation under this topological ordering. Common tesselations include

the Delaunay Triangulation and its dual the Voronoi Diagram [6]. Also,

note that the leaves of a kd-tree or an orthant tree form a tesselation,

and in fact algorithm 6.1 on these hierarchies will expand leaf nodes in

the same order as would algorithm 6.2 on the tesselation of the leaves

nodes.

Let G be a tesselation of X indexing S, and q a query point. Also,

let Xd = {x ∈ X | dX(q, x) ≤ d} be the sublevel set of dX(q, ·) on X.

Let X and dX(q, ·) be such that Xd0 ⊆ Xd1 for all d0 ≤ d1, and Xd is

connected for all d ∈ R.

Theorem 9. Given X,S,G, q, dX as described, algorithm 6.2 is correct.

Proof. Proof sketch. The proof follows from the fact that cells of the

tessellation are expanded in topological order. The set of cells that

have been expanded at every iteration forms a connected subset of the

metric space. Furthermore, every unexpanded cell sharing a bound-

ary of this connected subset is in Q. Thus the sublevel set of dX at

minKey (Q) is fully contained in the set of expanded cells, and all un-

evaluated sites must be further away than minKey (Q). If R contains

k sites and maxKey (R) < minKey (Q) then they must be the k nearest

sites to the query.

Note that the correctness of the priority search algorithm for bound-

ing volume hierarchies depends only on the ability to evaluate the Haus-
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dorff distance of the query point to a vertex volume in the hierarchy.

Correctness for tesselations also requires that the distance function sat-

isfies a notion of at least directional continuity.

6.2 Indexing Sn

We are concerned with the problem of providing an efficient search

index for points distributed over an n-sphere,

Sn =
{
x ∈ Rn+1 |x>x = 1

}
,

under the orthodromic (great-circle distance) metric. The distance be-

tween two points (x,y) ∈ Sn is defined as the length of the shortest arc

along Sn connecting x to y:

dS(x,y) = cos−1
(
x>y

)
. (6.1)

We present two options: hyper-rectangular BVH of Rn+1 (i.e., kd-

tree or orthant tree), and a Voronoi Diagram of Sn.

Figure 6-1: The orthodromic or great-
circle distance between two points on S2

6.2.1 Hyper-rectangular BVH of S2

Let X ⊂ Sn be a set of k > n+ 1 points. Furthermore, let the distance

between two points (x,y) ∈ Sn be defined as the orthodromic distance
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between the points, equation (6.1). We may utilize a hyper-rectangular

bounding volume hierarchy of Rn+1 if we provide the Hausdorff distance

kernel

dS(q, v) = inf
x∈S(v)∩Sn

dS(q,x).

Thus, dS(q, v) = dS(q,x∗) where x∗ is the point in S (v)∩Sn which

minimizes dS(q,y). We may simplify the derivation by noting that x∗
also minimizes the function 1 − q>x. Thus we seek the solution the

following optimization problem:

minimize q − q>x

subject to 1− x>x = 0,

a0 ≤ x0 ≤ b1,

. . .

an+1 ≤ xn+1 ≤ bn+1,

where a and b are the min and max-extents of the hyper-rectangle

S (v). This problem may be solved by combinatoral expansion of the

active constraint set. For each constraint of i of v, at the optimal solu-

tion, either the min-extent is active (xi = ai), the max-extent is active

(xi = bi), or neither is active. There are 3n possible combinations of

active constraints at the optimal solution. For a particular combination

of active constraints, if the solution provided that constraint set also

satisfies all non-active constraints, we say that the solution is feasible.

Thus the procedure is to compute x∗j assuming a given constraint set,

j ∈ 1 . . . 3n, and then compute x∗ as the minimum of feasible x∗j .

For a given assumed active constraint set, we may solve the opti-

mization problem by forming the augmented cost function

J(x) =
(
1− q>x

)
+ λ

(
1− x>x

)
.

The optimal solution then is found where ∂J/∂xi = 0 for all inactive
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constraints i, and ∂J/∂λ = 0.

∂J

∂xi
= −qi − 2λxi = 0, (6.2)

∂J

∂λ
= 1− x>x = 0. (6.3)

Substituting equation (6.2) into equation (6.3), we find

λ2 =
1

4

( ∑
i inactive q

2
i

1−∑j active x
2
j

)
. (6.4)

From equation (6.4) we find two solution from λ (one positive, one

negative), which we may then substitute into equation (6.2) to find

xi = −qi/2λ. This gives us two candidates for x∗j . For each, we evaluate

aj ≤ xj ≤ bj for all inactive constraints j, and if all are satisfied we

mark the candidate feasible. We then take from these up to 2·3n feasible

candidates for x∗ the one with minimum distance.

6.2.2 Voronoi Diagram of Sn

Let X ⊂ Sn be a set of k > n + 1 points in general position (i.e., no

n + 1 points of X lie in the same hyperplane). Furthermore, let the

distance between two points (x, y) ∈ Sn be defined as the orthodromic

distance between two points: dS(x, y) = cos−1(x · y). Finally, consider

the convex-hull of X in Rn+1, and let T be the surface triangulation of

the convex hull.

Theorem 10. T is the Delaunay Triangulation of X under dS(·, ·).

Proof. We prove by contradiction. Let σ ∈ T be a simplex of the sur-

face triangulation of conv (X), σ = conv (x0 . . . xd−1). Let (n̂σ, dσ) be

the normal and offset of the hyperplane coincident to σ, with n̂ oriented

away from the origin, i.e., conv (X) ⊂ {x | n̂σ · x ≤ dσ}. Let xσ be the

unique point on Sd−1 satisfying n̂σ · xσ > dσ, and d(xσ, xi) = rσ, for

all (i) ∈ 0 . . . d− 1. We call rσ the circumradius of σ, and xσ the cir-

cumcenter. Also, assume that there exists y ∈ X \σ with d(xc, y) < rσ.

The set
{
x |x ∈ Sd−1, d(xc, x) < rσ

}
is equal to the intersection of Sd−1

and the half-space {x | n̂σ · x > dσ} with X. If y exists then this set is

non-empty, which is a contradiction.
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Thus, for all surface simplices σ, of the hull triangulation, with

circumcenter xσ and circumradius rσ, X contains no point y with

d(xσ, y) ≤ rσ other than x ∈ σ.

Because simplices of T satisfies a notion of Delaunay for orthodromic

distances, we may the dual of T as a Voronoi Diagram of X under

this distance metric. In particular, we may apply algorithm 6.2 to the

Delaunay graph. Thus we may build and maintain a Voronoi diagram

of X ⊂ Sn by building and maintaining the Convex Hull of X in Rn+1

using, e.g. [18].

6.3 Indexing SO(3)

We may utilize the results of the previous section to build an index

(either a BVH or a tesselation) for rigid body orientations, represented

as unit quaternions, where the distance between two orientations is

the angle of the smallest rotation between the two orientations. There

are, however, a few caveats: the angle of this rotation is two times the

angle between unit quaternions, and the space of unit quaternions is a

double cover of SO(3). We may address both facts by simply evaluating

dS(q, v) and dS(−q, v) and taking the minimum of the two.

6.4 R3 × SO(3)
Equipped with the ability to index SO(3) we may now address point

indices of rigid body configurations under distance metrics which inte-

grate the Euclidean distance in R3 and the geodesic distance in SO(3)

(such as a weighted norm of the two). We may unify the two spaces into

a single seven dimensional kd-tree as in [105]. Figure 6-2 illustrates the

runtime of algorithm 6.1 for k-nn queries with k = 10 on point sets of

various size, where points are distributed uniformly over R3 × SO(3).

Runtime results are shown for two implementations: a brute force search

(bf) and a scheduled kd-tree in which cells are divide at the centroid of

the longest (weighted) side (skd) [26]. Each data point is the averaged

wall-clock runtime of 30 queries drawn at random from a uniform dis-

tribution. The distance function is a weighted 1-norm of the product
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space:

dX((x0,q0), (x1,q1)) = ||x1 − x0||+ w · cos−1
(
2(q>0 q1)2 − 1

)
.
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Figure 6-2: Runtime for 10-nearest neighbor queries in R3 × SO(3). (left) is in a
linear scale and (right) is log-log.

The results in figure 6-2 demonstrate that the seven dimensional

kd-tree is an effective proximity index for rigid body configurations un-

der this distance metric. We see that the cost of brute force evaluations

of the Hausdorff distance to a hyper-rectangle does induce some signif-

icant overhead: the time to evaluate the distance to a hyper rectangle

is approximately 81x the cost of evaluating the distance to a point.

However we see that this overhead is marginalized quite quickly and

the kd-tree becomes faster after about 2000 points.

6.5 Dubins Vehicles

As shown at the beginning of this chapter, priority searching on spatial

indices is correct even for distance functions which are not metrics,

provided that we may compute the Hausdorff distance of a query point

to a bounding volume node. In this section we derive this distance for

a Dubins vehicle under the shortest path distance and for a hyper-

rectangular volume of the configuration space.

A Dubins vehicle takes configurations from R2×S1, however the ve-

hicle is not free to move arbitrarily through configuration space. Rather
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it is dynamically constrained with dynamicsẋẏ
θ̇

 =

cos θ

sin θ

0

u1 +

 0

0
1/R

u2, (6.5)

where u1 is the velocity and u2 is the turning rate. We may generate

plans for a Dubins vehicle in a sampling-based planner using as a local

steering function the shortest path between any two Dubins states. It is

known that the shortest path between any two states takes is composed

of three or fewer segments where each segment is either a full left turn,

a full right turn, or a straight segment [97].

Let H by a hyper rectangle of the state space, as defined by its min

and max-extents a = (xa, ya, θa) and b = (xb, yb, θb). Given a query

point q = (xq, yq, θq) the point x∗ = (x∗, y∗, θ∗) ∈ H nearest the query

is given by the solution to the following minimization problem:

minimize dD(q,x),

subject to xa ≤ x ≤ xb,

ya ≤ y ≤ yb,

θa ≤ θ ≤ θb.

The Hausdorff distance then is given by d(q,x∗). We may solve this

optimization problem as with the shortest arc distance on Sn by com-

binatoral expansion of the constraint set and shortest path primitives.

For each constraint, at the optimal solution x∗, either the min-extent is

active, the max-extent is active, or neither is active. There are 33 = 27

possible combinations of active constraints. For a particular combina-

tion of active constraints one or more of the six primitive solution types

must be considered. If a primitive solution x∗j satisfies all non-active

constraints for a particular assumed set of active constraints, then we

say that the solution is feasible. x∗ is then found by taking the minimum

of all feasible solutions.

In the following subsections we enumerate the possible active con-

straint sets and derive the set of potentially feasible optimal paths given

the active constraints.

We will use the abreviations L for a full left turn, R for a full right
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turn, and S for a straight segment, so the designation LSR, for exam-

ple, signifies a Dubins path with a full left turn followed by a straight

segment and then a full right turn. The geometry of the Dubins vehicle

state is depicted in figure 6-3, where r is the minimum turning radius

corresponding to a maximum turning rate u2. In many cases it is easier

to work with the geometry of the optimal path components. We denote

the center of the ith arc segment as ci = (xc,i, yc,i). We may also refer

to the angular coordinate of the vehicle with respect to the circle of

radius r around ci. Angular coordinates at points of interest are shown

in figure 6-4 and labeled αi.

x

y

o

Figure 6-3: Geometry of a Dubins state
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Figure 6-4: Geometries of Dubins paths. ci is the center of the i’th segment if the
segment is an arc. l1 is the length of the straight segment if it is part of the path.
αi is the angular coordinates of the start or end of an arc segment with respect to
the circle which the arc follows.

6.5.1 0 active constraints

If there are no active constraints than the solution path is a degenerate

zero length path and it is feasible if q ∈ H.
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6.5.2 1 active constraint, x or y

If there is a single active constraint for either x or y, then there are

four cases to consider. The shortest path to the constraint will start

with an arc segment as all optimal paths do, so we consider both an

initial path of L and an initial path of R. The procedure for the two

cases are symmetric so we consider only an initial arc segment of type

L. Let c0 = (x0, y0)) be the center of the initial arc, and α0 the inital

angular coordinate of the vehicle on the circle coincident to the arc.

Let the constraint be y = ya. If ya < y0, the path follows nominally

follows L until α1 = π, and then switches to a straight segment until

reaching y = ya. If ya > yc the path nominally follows L until α1 = 0,

and then switches to a straight line segment. If the path reaches ya

before reaching α1 then there is no straight line segment. These three

cases are illustrated in figure 6-5.

c0

ya

c0 c0

l 1

l 1

Figure 6-5: One active constraint in either x or y has
solution primitive L,R,LS, or RS.

Figure 6-6: Two active constraints specifying x and y
yields either LS or RS solutions.

128



6.5.3 1 active constraint, θ

The optimal path is a single arc segment. We evaluate both the dis-

tance of an L segment and an R segment required to achieve a terminal

orientation of θ, and take the minimum of the two.

6.5.4 2 active constraints, x and y

The optimal path is either RS or LS. Several constrained points (x, y)

are illustrated in figure 6-6 along with the RS and LS candidate to

reach each point. Note that if (x, y) lies inside the circle coincident to

either the L arc or the R arc than that solution is infeasible and the

only solution to consider is the alternate solution.

6.5.5 2 active constraints, x or y and θ

In this case all six solution classes are valid (LSL,RSR,LSR,RSL,LRL,RLR).

Because half of these are symmetric, we will only consider three of them

here. Without loss of generality, let y = ya be the active constraint. For

a given solution class, say LSL, the initial circle is fixed in the plane,

and the final circle is fixed in y but free to slide along x. The value of x

which minimizes the length of the path must also minimize one of the

segments on the path. Thus we may evaluate the (up to) three values

of x that minimize each segment, and add those results to the list of

x∗ candidates.

c0

c2 c2 c2

Figure 6-7: LSL solutions for two active con-
straints including θ. There are up to three cases.
Each case to consider minimizes one of the three
segments.

Figure 6-7 shows the three solutions for LSL minimizing the final
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L, the S, and the initial L segments (in order from left to right). Note

that if θ0 is such that it points away from the constraint, the solution

minimizing the initial L is infeasible. Likewise if θ1 points towards c0,

then the solution minimizing the final L is infeasible.

c0

c2c2
c2

Figure 6-8: LSR solutions for two active constraints including θ. There are up to
three cases. Each case to consider minimizes one of the three segments.

Figure 6-8 shows the three solutions for LSR minimizing the final

R, the S, and the initial L segments (in order from left to right). Note

that, as with LSL, if θ0 is such that it points away from the constraint,

the solution minimizing the initial L is infeasible. Likewise if θ1 points

towards c0, then the solution minimizing the final L is infeasible.

Figure 6-9 shows the three solutions for LRL minimizing the initial

L, the R, and the final L segments (in order from left to right). Note

that if ya is sufficiently far from the query one or more of the solutions

may be infeasible.

c0c0

c2

c0

c1
c1

c1

c2 c2

Figure 6-9: LRL solutions for two active constraints including θ. There are up to
three cases. Each case to consider minimizes one of the three segments.
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6.5.6 3 active constraints

If there are three active constraints then the state is fully constrained

and the candidate solution is merely the Dubins shortest path to that

state. All such candidates are feasible.

6.5.7 Experiments

Figure 6-10 illustrates wall-clock query time of the Dubins kd-tree im-

plemented as described in this section. Points are drawn uniformly from

within a square in the plane with side length 100. The Dubins vehicle

is given a turning rate such that its minimum turning radius is 1. The

results shown are averaged over 30 queries, selected uniformly at ran-

dom from the state space. We see that, despite the large number of

evaluations required to expand all possible solution paths, the kd-tree

proves to be an effective index. There is indeed overhead in using the

kd-tree as it is initially slower than a brute force search, but we see that

it becomes faster for database sizes larger than about three thousand

points.
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Figure 6-10: Runtime for 10-nearest neighbor queries in R2 × S1 for a Dubins
vehicle. (left) is in a linear scale and (right) is log-log.
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Appendix A

GJK algorithm

The Gilbert, Johnson, Keerthi (GJK) algorithm [28] is a popular ef-

ficient algorithm for discrete collision checking used in many collision

checking implementations [20, 25, 72, 96]. Given two convex compact

subsets of Rn the algorithm determines if the set intersection is non-

empty.

The algorithm is straightforward to implement, and requires only

an efficient implementation of a support function. This appendix briefly

reviews the geometric interpretation of the algorithm.

Let XA,XB ⊂ Rn be two compact sets. The Minkowski sum XA+B =

XA ⊕XB is also a compact set defined as:

XA ⊕XB
4
= {x | ∃xA ∈ XA,xB ∈ XB x = xA + xB}

We use the notation XA−B = XA 	 XB to denote the Minkowski

sum of XA with the algebraic inverse of XB:

XA 	XB
4
= {x | ∃xA ∈ XA,xB ∈ XB x = xA − xB}

Lemma 14. If XA and XB have non-empty intersection, then the

Minkowski sum XA + XB contains the origin.

Proof. Let x ∈ XA, x ∈ XB be a point in the non-empty intersection

of XA and XB. Then, by definition 0 = x− x ∈ XA 	XB.

The GJK algorithm relies on this fact and iteratively searches the

XA	XB for the origin. If it can certify that the origin lies outside the

Minkowski sum, then the two sets have an empty intersection. Likewise
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if the origin is found inside the Minkowski sum, then the two sets have

a non-empty intersection.

However, rather than explicitly computing a representation of the

Minkowski sum the GJK algorithm relies on a support function to re-

turn the surface point in a particular search direction. Let v ⊂ Rn,

‖v‖ = 1 be a search direction. The support function support (XA,XB,v)

evaluates to the maximal point of the Minkowski sum in the direction

of v, by returning the maximal point in XA and −XB:

supportA	B (v)
4
= argmax

(xA,xB)∈XA×XB

(xA − xB) · v

Efficient implementations of support functions exist for many geo-

metric primitives as well as triangular meshes commonly used in 3D

graphics.

The GJK algorithm, given in algorithm A.1 attempts to discover

a (possibly degenerate) simplex interior to the Minkowski sum which

contains the origin. We define a simplex as the convex hull of a set of

k ≤ n+ 1 points in Rn.

1 v← −(xa − xb) ;

2 S ← {(xa − xb)} ;

3 while true do

4 (xa,xb)← supportA	B (v) ;

5 if (xa − xb) · v < 0 then

6 return (false,xa,xb) ;

7 S ← S ∪ (xa − xb) ;

8 if containsOrigin (S) then

9 return true

10 else

11 (v, S)← advanceSimplex (S)

Algorithm A.1: gjk (supportA	B,xa,xb)

Returns true if XA ∩ XB 6= ∅. Otherwise

returns false along with the last point pair

expanded in the search.

The containsOrigin (S) procedure returns true if the convex hull

of the point set S contains the origin. The advanceSimplex procedure

finds the point on the (closed) convex hull of S closes to the origin. It

then returns in S the set of points defining the sub-simplex in which
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the closes point lies (i.e., a point, line segment, triangle, etc.), as well

as a new search vector v in the direction of the origin from S.

The terminating criteria on line 5 may be interpreted as follows:

xab = xa − xb is a maximal point on the boundary of the Minkowski

sum in the direction of v. The entire set XA 	XB lies on one side of

the hyperplane coincident to xab and orthogonal to v. If xab · v < 0

then the origin lies on the other side of the hyperplane, and therefore

cannot lie inside the XA 	XB.

Figure A-1: Supporting hyperplanes of the GJK
output for a pair of separated polygons

The output of GJK also provides a conservative estimate of the

distance between the two volumes. Points xa and xb lie on the surface

of XA and XB respectively. Furthermore they are the furthest points

in the direction of v and −v respectively. The hyperplane normal to v

and coincident to xa, and the hyperplane normal to v and coincident to

xb are separated by a distance of (xb − xa) · v. Furthermore, the space

between them contains no point of XA or XB. Thus d(XA,XB) ≥
(xb − xa) · v.
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Appendix B

Fast indexing for support

functions in GJK

In this chapter we demonstrate how the support function of triangu-

lation meshes in 3D and polygons in 2D implicitly define a lower di-

mensional Voronoi diagram which may be used as a fast index for the

support procedure in GJK.

Consider first a convex polygon in 2D. For a given face, any point

along that face is maximal in the direction of the face normal. Consider

a pair of adjacent faces and the vertex that joins them. For any search

direction in the range bounded by the angles of the two face normals,

the vertex is the single maximal point in that direction.

Thus the angle of face normals divide up the unit circle into re-

gions for which a particular vertex is the support in that direction, as

illustrated in figure B-1. This emits a simple index for support vector

searches: find the angle of each face normal and store them in a sorted

array. Given a search direction, an O (log n) binary search will return

the interval containing the query, and thus the maximal vertex in that

direction.
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Figure B-1: Support set Voronoi dia-
gram for a polygon in 2D.

Note the similarity between this index and a Voronoi diagram on a

circle. If a search vector lies in the support region of a particular vertex

this is analogous to a query point falling within the Voronoi cell of a

site. This similarity readily extends to three dimensions as illustrated

in figure B-2.

Figure B-2: Support set Voronoi diagram for a polygon in 3D.

In three dimensions the generator site for each cell in the tessela-

tion is a vertex of the object. Vertices of the tesselation occur at the

intersection of the face normals with S2. The edges of the tesselation

are arcs on S2 joining two vertices of the tesselation that correspond to

adjacent faces in the object.

Because the direction index is equivalent to a 2D Voronoi diagram

we may utilize the theory of Voronoi diagrams to create an efficient

search algorithm: a tesellation walk takes O (
√
n) time, a hierarchy of

Voronoi diagrams takes O
(
log2 n

)
time, and a persistent search tree
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of the Voronoi diagram can be searched in O (log n) time (which is

optimal).
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