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Abstract A large number of studies have been reported on top-down influ-
ences of visual attention. However, less progress have been made in under-
standing and modeling its mechanisms. In this paper, we propose an approach
for learning spatial attention taking into account influences of physical ac-
tions on top-down attention. For this purpose, we focus on interactive visual
environments (video games) which are modest real-world simulations, where
a player has to attend to certain dimensions of visual stimuli and perform
actions to achieve a goal. The basic idea is to learn a mapping from current
mental state of the game player, represented by past actions and observations,
to its gaze fixation. A data-driven approach is followed where we train a model
from the data of some players and test it over a new subject. In particular,
two contributions this paper makes are 1) employing multi-modal informa-
tion including mean eye position, gist of a scene, physical actions, bottom-up
saliency, and tagged events for state representation; 2) analysis of different
ways of combining bottom-up and top-down influences. Comparing with other
top-down task-driven models and bottom-up spatio-temporal models, our ap-
proach shows higher NSS scores in predicting eye positions.
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Original Image Buttom-up Saliency Map

3D Driving School 18 Wheels of Steel Test Drive Unlimited

Fig. 1 Sample frames from our game stimuli and their corresponding BU saliency maps
[16]. Red diamond shows the maximum of the saliency map and blue circle is the actual eye
position. Left and bottom bars in frames are the pedal and wheel positions, respectively.
Actions are represented by numbers at the bottom. Attention is attracted to task-relevant
regions which do not agree with the BU saliency.

1 Introduction

The concept of saliency has attracted a lot of attention over the past several
years. Basically, it is a fast and low-cost way to select important image regions
or objects to pass to higher level processes.

The main concern in modeling saliency is how, when, and based on what,
to select salient image regions. It is often assumed that attention is attracted
by salient stimuli or events in the visual array [1,2]. While this is the case, it
is also known that a large portion of attentional behavior comes from ongoing
task inferences which dynamically change and are dependent on the algorithm
of the task. Understanding task influences on attention is conceptually hard
to frame. The biggest challenge comes from the fact that we don’t know much
about how humans do different complex tasks which seem to be necessary
for modeling top-down attentional influences. This has been at the focus of
artificial intelligence (AI) and cognitive science research for past 50 years.

However, we know to some extent about algorithms and attentional be-
haviors of some laboratory-scale stimuli and tasks. One solution when dealing
with complex problems is learning from data, experiences or history which
could be gathered from the behavior of other humans especially when the goal
is to explain human behavior.

There are already many button-up saliency models for static (still im-
ages) and spatio-temporal stimuli (videos). However, bottom-up models are
inflexible (Figure 1) and can account for only a small fraction of the observed
fixations in natural behavior [4–6]. Our goal in this study is to introduce a
top-down spatial attention model which could automatically direct gaze based
on task. Instead of trying to figure out an explicit algorithm for doing a task,
(e.g. designing a state space and mapping its states to actions and attended lo-
cations), we are following a data-driven approach which could easily be applied
to any task and situation.
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1.1 Bottom-up (BU) models

The bottom-up saliency assumption is based on the hypothesis that certain
features of the visual scene inherently attract gaze. That is, that vision is
essentially reactive and stimulus driven. Typically, multiple low-level visual
features such as intensity, color, orientation, texture, and motion are extracted
from an image at multiple scales. A saliency map is computed for each feature
and then they are normalized and combined in a linear or non-linear fashion
into a master saliency map that represents the conspicuity of each pixel [16].

Our work in this paper falls in the category of saliency models based on
machine learning approaches. Some models train a classifier to distinguish
fixated patches from random patches. Facing a scene they assign a value to
each patch that is the probability of that patch to be fixated. Kienzle et al.
[7] learned a model of saliency directly from human eye movement data. Their
model consists of a nonlinear mapping from a normalized image patch to a real
value, trained to yield positive values on fixated patches, and negative values
on randomly selected image patches. Judd et al. [8] used a SVM classifier
for an attention model based on low-, mid and high-level features calculated
by existing saliency methods. In modeling eye saccades of observers when
looking for a pedestrian in a scene, Ehinger et al. [26] showed that a model
of search guidance combining three sources: low level saliency, target features,
and scene context, outperforms models based on any of these single sources.
Vig et al. [9] used 3D spatio-temporal volumes from video for spatiotemporal
saliency modeling. Li et al. [10] proposed a multi tasking Bayesian approach
for combining bottom and top-down saliency components. Kimura et al. [11]
learned a dynamic Bayesian network (DBN) to predict the likelihood where
humans typically focus on a video scene. Chikkerur et al. [27] presented a
Bayesian model based on assumptions that the goal of the visual system is to
say what is where and visual processing happens sequentially.

1.2 Top-down (TD) models

The other main component of attention comes from top-down demands such
as knowledge of the task, emotions, expectations, predictions, etc. which are
embedded in a temporally extended task. Modeling top-down attention is hard
because 1) it is difficult to frame and conceptually define the problem 2) dif-
ferent tasks require different algorithms and 3) high inter-subject variability.
In this paper, we take another step in modeling top-down spatial attention
considering multi-modal information including physical actions.

Research on top-down attention dates back to the classic study by Yarbus
[3] which showed that gaze patterns are dependent on the asked question when
viewing a photo. Research on task-driven influences of gaze have been mostly
at the analysis level. It has been shown that the vast majority of fixations
are directed to task-relevant locations, and fixations are coupled in a tight
temporal relationship with other task-related behaviors such as reaching and
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grasping [12]. Furthermore, eye movements often provide a clear window to
the mind of an observer in a way that it is sometimes possible to infer how a
subject solves a particular task from the pattern of his/her eye movements for
tasks like “block copying“ [13] , “making tea“ [4] , “driving“ [14], etc.

In [15], Peters and Itti learned a mapping using gist of a scene to eye
fixation from data of subjects playing a video game. In [17], using this model
they showed that during the occurrence of an event (like hitting a target in
shooting games or accident in driving games) bottom-up cues are more impor-
tant than top-down cues. While this model is interesting, it does not benefit
from the real potential of interactive environments which are interactions via
physical actions. In our work, we follow a similar fashion by proposing a richer
state representation and propose a new approach to combine bottom-up and
top-down cues. In a related study, Navalpakkam and Itti [18] tried to build
a top-down model in conjunction with the saliency model in situations where
the algorithm for the task is at hand. Sprague and Ballard [19], proposed
a method based on reinforcement learning for learning visio-motor behaviors
and used their model to account for saccades in a side walking task.

1.3 Influence of action on attention

The integration between action and perception makes up one of the most im-
portant facets of everyday life. Many studies support the idea that perception
affects action (e.g. [20]). It has also been proposed that changes due to ac-
tions lead to corresponding changes in perception [20,21]. A good example of
interaction between actions and attentions is driving which also needs sophis-
ticated attentional behavior. In [23], authors showed that preparation of a
grasping movement affects detection and discrimination of visual stimuli. Our
work also borrows from the ideas of sensory-motor integration: The process by
which the sensory and motor systems communicate and coordinate with each
other (e.g. hand-eye coordination). The above statement is closely related to
the premotor theory of spatial attention which argues that the major function
of attentional selection is not only a reduction in the incoming information,
but rather to select an appropriate action on the basis of a specific stimulus
[22].

1.4 Our approach and contributions

We aim to learn top-down spatial attention (where to look) from visual in-
formation and physical actions recorded from human subjects playing video
games. The basic idea is to best estimate the mental state of the player and
map it to an eye fixation. For state estimation, we merged all information in-
cluding scene gist, physical actions, salient regions, and events. A classifier is
learned from this data and used to predict the eye fixations of another subject.

A central open question in saliency modeling is “how the bottom-up salient
and top-down task-driven stimuli are integrated in the course of a task”? We
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tackled this question by evaluating different ways of integrating BU and TD
attention components either in the decision space or at sensory level. Experi-
ments were performed using a driving task which is a daunting task demanding
high-level sensory-motor integration and attention/action coordination skills.
It has also been subject to several behavioral and computational modeling
studies (e.g. [14,25]).

Our model 1) is easily applicable to interactive visual environments when
subjects perform physical (motor) actions and visually attend; 2) has potential
applications in interactive computer graphics environments (“virtual reality“
or video games), flight and driving simulators (and assistants), as well as visual
prosthetic devices.

2 Psychophysics and eye tracking

To set a basis and benchmark for future research and large-scale quantita-
tive evaluation of studies on task-driven top-down saliency modeling, we have
collected a large scale dataset of videos along with eye tracking data and ac-
tions. Accompanying code in C++ and Matlab will be available on the web
to facilitate future research.

2.1 Data collection

Participants were 10 subjects between 18-25 years old with valid driving li-
cense and at least 2 years of driving experience. Experimental protocol was
approved by the anonymous university Institutional Review Board. Subjects
were compensated for their participation. Each subject played each of the 3
games: 3D Driving School (3DDS), 18 Wheels of Steel (18 WoS), Test Drive
Unlimited (TDU) (see Figure 1). There was a 5-min training session for each
game in which subjects were introduced to the goal of the game, rules, but-
tons, etc. After training, subjects played the game for another 5 minutes. At
the beginning of the test session, eye tracker was calibrated using 9-point cal-
ibration. Training and testing phases were from the same game but different
situations. Subject’s distance from screen was 130 cm yielding field of view of
43o×25o. The overall recording resulted in 2.5 hours of 156 GB video, 192,000
frames, 1,536,000 fixations, and 10,518 saccades.

Subjects played driving games on PC1 which had Windows XP running
the games. An array of wheel, pedal and other actions (signal, mirror, etc)
was logged with frequency of 62Hz. The frames were recorded on PC2 running
Linux Mandriva OS. Game stimuli were shown to the subject at 30Hz. This
machine sent a copy of each frame to LCD monitor and saved one copy to
the hard disk. PC2 also instructed the eye tracker (PC3) for recording eye
positions when watching the screen. PC2 had a dual- CPU processor and used
SCHED_FIFO scheduling to ensure microsecond accurate timing. Each subject’s
right eye position was recorded at 240 Hz with a hardware-based eye-tracking
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system (ISCAN Inc. RK-464). Subjects drove using the Logitech Driving Force
GT steering wheel, automatic transmission, brake and gas pedals, 11-inch
rubber-overmold rim, 900 degrees rotation (only 360 degrees; 180 left, 180
right; were used in experiments), Force Feedback, connected via USB to the
PC1.

2.2 Model-free analysis of the dataset

We were interested in two types of model-free analyses: 1) analysis of distri-
bution of saccades and fixations in order to find out which locations attract
subject’s attention; and 2) correlation among eye fixation and actions to be
used for eye movement prediction later.

Figure 2.a shows interesting (i.e task-relevant) locations for the 10 subjects
(each dot is a saccade) over 3DDS. For illustration purposes, only saccades are
shown since fixation maps are highly dense. Note that we are concerned with
fixations rather than saccades in the prediction part of this paper (one fixation
per frame). On 3DDS game, task-relevant regions are (see Figure 2.a rightmost
panel and Figure 1 leftmost panel): an arrow sign at the top-left indicating
direction, instruction command at top, instructor and rear-view mirror at the
top-right, horizontal view and road (middle), red light slightly above road, and
interior (speedometer) of the car at the bottom shown by blue ellipses. As it
shows, there is a strong horizontal bias in this task similar to free-viewing and
visual search tasks [8]. Profile of wheel vs. eye-y (image width) shows that
subjects viewed all vertical line when wheel was released (value of 127) which
is the case when they are driving straight or are stopped. There is a slight
tendency to look at the bottom when turning left or right. Wheel vs. eye-x
shows two main saccade directions 1) horizontal bias, and 2) diagonal which
means wheel toward right then saccade right and wheel toward left saccade to
the left. To further analysis the data we also tagged each frame of games based
on different events that might happen in driving. Some games did not have all
the events. Some events of each game could be found in Figure 4. For instance,
in “going straight” event, there is a horizontal and vertical bias (wheel vs. eye)
and subjects looked more at the center (center-bias) while looking around to
get important information (eye-x vs. eye-y). For ”turn right” event, there is
a rightward shift of fixations based on wheel (similarly for turn left). For
”red light” event, since task-driven influences are not much strong (stopping
situation), then subjects have time to look everywhere (less task demand).
Frequency of brake/gas is shown in right panels in Figure 2.b. There is a peak
at the center meaning that most of the time, both pedals are released. When
turning right, subjects pressed the gas more and pressed the brake more at
the red light.

To learn about the temporal relationship between eye and wheel position,
we plotted fixations (heatmaps) in steps of 32 of wheel position for all games
in Figure 3. Green circle shows the mean fixation position and vertical red line
is the normalized (linearly to its max) wheel position. It could be seen that
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a) Overall events (3DDS)

b) Event-based (3DDS)
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Fig. 2 a) Correlation between wheel and eye-x and eye-y saccade coordinates (left two
panels), and saccade positions (right panel) overall all events of 3DDS. b) Left 3 panels:
same as (a) for sample events. Right panel shows the frequency of pedal positions.

a linear relationship with the eye fixation holds for wheel positions between
64 to 192, but for extreme values it seems that wheel position leads slightly.
Temporal analysis along with tagging events, could help to build a fixation
prediction model provided that the event could be predicted correctly.

Figure 4, shows the average number of saccades per frame for events of
all three games. It shows more saccades happen in ”red light” and ”mistakes”
events and less in ”turning” and ”going straight”. This along with sparseness
of saccades/fixations for an event indirectly is a measure of how demanding
is a behavior (event) and could be used as a cue for weighting top-down and
bottom-up saliency maps.

3 Learning task-dependent spatial map

In what follows, we explain our model for learning task-dependent, top-down
influences on eye position. First, in the training phase, we compiled a training
set containing feature vectors and eye positions corresponding to individual
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Fig. 4 Average number of saccades per frame for each event. Error bars are standard
deviations.

frames from several video game clips which were recorded while observers
interactively played the games. Two approaches were followed. In the first
approach called “decision combination method“, individual predictors were
learned by mapping a feature vector describing state or scene to corresponding
fixation of that frame. We also tried to find a best predictor by combining
the outputs of these predictors by adding or multiplying their outputs. In
the second approach, ”feature combination method”, all feature vectors were
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combined in a single vector in a hope that it might give a better scene/state
description. Then a mapping is learned from this vector to fixations.

3.1 Training

Let St be the state of a player at time t defined as St = [b, Lt−m, ...Lt−1, Lt]
as a history of past scene representations where Lt = [Gt, Bt, At, Et] is the
information at time t. b is a scalar bias value, Gt is the gist of the scene, Bt is
the raw bottom-up saliency map, At is the associated action for frame t and
Et is the labeled event. m is the depth of history. When a task is Markovian,
all information regarding state is available at the current time (i.e m = 0). We
are interested in finding a mapping F from St to Pt+1 = [xt+1, yt+1], the eye
position at time t+1. Over task T , assume q subjects have done the task. We
collected a dataset D = {M,N} where M is a n×|S| matrix of feature vectors
and N is the n× |P | matrix of eye positions. n is the size of pairs of features
to eye fixations from q − 1 subjects. A classifier is learned from this data and
is tested over the remaining q − th subject in a leave-one-out approach.

In the decision combination approach, we combine decisions of predictions
based on different features. That is, saliency map at time t, would be a function
G of different F mappings, (each F could be considered as a single behavior).
This arbitration mechanism, G, itself is task dependent and tells how different
top-down factors should be integrated. Here, we tried two simple integration
functions: addition and multiplication. As it has been claimed that final behav-
ior is a combination of pure bottom-up and top-down influences, we considered
pure bottom-up map Bt as an individual predictor as well.

In the feature combination approach, we started with a simple classifier F0

by only considering the bias term b and gradually added more features to it
to build more predictive classifiers {F1,F2, ...}.

Assuming a linear relationship between feature vectors and eye fixations,
we solve the equation M×W = N . Solution to this equation is: W = M+×N ,
where M+ is the pseudo inverse of matrix M . When feature vector is b, the
solution (predicted map) is simply the average of all eye position vectors in
N . This classifier is called mean eye position (MEP). This way, we are solving
a linear regression classifier with the least squares method. We used SVD to
find the pseudo inverse of matrix M . An important point here is that we
set eigenvalues smaller than half of the biggest eigenvalue to zero to avoid
numerical instability.

Vector P which is eye position over the 640×480 image is downsampled to
20×15 and transformed into a 1×300 vector with a 1 at the actual eye position
and zeros elsewhere. In testing phase, in order to predict the eye position for
a new frame of a subject first, a feature vector (as above) is extracted and
then a saliency map is generated by applying the learned mapping. Maximum
of this map could be used to direct attention. In combination (addition and
multiplication), first saliency maps are linearly normalized and combined to
form a new saliency map.
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3.2 Features

Mean eye position(MEP). MEP is the prediction when distribution of fixa-
tions is available. In dynamic environments used in this paper, since frames are
generated dynamically and there are few fixations per frame, aligning frames
(contrary to movies) is not possible. If a method could dynamically predict
eye movements in a frame by frame basis, then achieving a higher accuracy
than MEP is possible.

Gist of the scene (G). Gist is a very rough representation of a scene
and does not contain much details about individual objects or semantics but
can provide sufficient information for coarse scene discrimination (e.g., indoor
vs. outdoor). The pyramid-based feature vector (pfx) [24], relies on 34 feature
pyramids from the bottom-up saliency model: 6 intensity channels, 12 color
channels (first 6 red/green and next 6 blue/yellow color opponency), and 16
orientations. For each feature map there are 21 values that encompass average
values of various spatial pyramids: value 0 is the average value of the entire
feature map, values 1 to 4 are the average values of each 2 × 2 quadrant of
the feature map and values 5 to 20 are the average value for each of the 4× 4
grids of the feature map leading to overall of 34× 21 = 714 elements.

Bottom-up saliency map (B). This model includes 12 feature channels
sensitive to color contrast (red/green and blue/yellow), temporal luminance
flicker, luminance contrast, four orientations (0, 45, 90, 135), and four oriented
motion energies (up, down, left, right). After a center-surround difference op-
eration and across scale competitions, a unique saliency map is created and
subsampled to a 20× 15 feature vector which is then linearized to a vector of
1× 300 [16].

Physical actions (A). In the driving experiment, actions are a 22D fea-
ture vector containing wheel positions, pedals (brake and gas), left and right
signals, mirrors, left and right views, gear change, etc which are wheel buttons
subjects used while playing.

Labled events (E). Each frame of games was manually labeled belonging
to one of different events such as left turn, right turn, going straight, adjusting
left, adjusting right, stop sign, etc (Figure 4). Hence this is only a scalar
feature.

4 Model-based results

To quantify how well model predictions matched observers’ actual eye posi-
tions, we used the normalized scanpath saliency (NSS) metric, which is defined
as the response value at the human eye position, (xh, yh), in a model’s pre-
dicted gaze density map that has been normalized to have zero mean and unit
standard deviation.

In the first experiment, we trained the model over each separate game. Each
game segment has 8,000 frames, therefore in a driving game training was done
over 9 × 8, 000 frames and tested over remaining frames of the test subject.
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Figure 5.a shows NSS scores of models with single features and best answers
for both combination approaches for each individual game. Over three games,
decision combination approach resulted in higher NSS score. Saliency maps
learned from gist features and the raw BU map were the most informative
ones. Feature combination resulted in lower performance but still higher than
all other single predictors. In agreement with previous results [15], the BU raw
map resulted in the least performance (below 0.5) again indicating that BU
saliency does not account for task-driven fixations. High NSS score for gist
means that scene representation is a good predictor of state. However, our
models in all three games were significantly above using only gist. Using only
action features outperforms MEP and Gaussian models significantly indicating
influence of action on prediction of top-down map. Predictor based on event
feature was slightly lower than MEP but still better than Gaussian and BU
raw map. All models were significantly above chance.

High NSS score for Gaussian indicates high center-bias in these tasks and
could be further verified from mean heat maps (MEPs) in Figure 7. The fact
that data is center-biased (by design) makes outperforming the MEP difficult
(see Figure 7). The main reason for this is that a huge number of fixations
happen in the center. Given the high center bias, a predictor can only improve
its performance on the few samples that are off center.

In the second experiment, we trained the model over all games, each time
over 29 subjects and tested over the remaining subject. Results are shown in
Figure 5.b. Consistent with results in Figure 5.a, decision combination ap-
proaches led to higher NSS performance. NSS values for MEP, Gaussian, ac-
tion, event and gist in order are: 2.68, 1.96, 2.72, 2.61, and 2.93. Our results
for addition, multiplication and Feature Combination are 3.16, 3.08, and 2.96,
respectively which are significantly higher (paired t-test, p < 0.05) across fixa-
tions. It shows that our approach have more prediction power compared with
previous models [15,16]. Action features alone are significantly higher than
MEP and Gaussian. In feature combination approach, adding action and event
features to the state reprsentation improved the performance.

Figure 6 shows sample frames from three games along with the correspond-
ing predicted saliency maps from the various models. Output of the bottom-up
saliency map (BU raw) show spread activity with a weak maximum at the ac-
tual eye position. Predicted saliency maps by our models show dense activity
at task relevant locations thereby narrowing attention and leading to higher
NSS score. It seems that combined maps in general are more capable of find-
ing the task-relevant regions. These maps change per frame as opposed to the
static MEP and Gaussian.

5 Discussion and Conclusion

We analyzed the influence of action on driving task and proposed general
methods for using it as an eye movement predictor. This approach performs
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Fig. 5 NSS scores of different models with actual recorded eye positions (single features
and combinations). a) model tarined over each individual game, b) model tarined over all
games. A larger NSS score means a better fit. Each bar represents mean s.e.m. across all
80,000 fixations for each game. “&“ sign means that final maps were combined (decision
combination) and “-“ sign indicated that features were combined (feature combination).
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diamond: maximum of each map, blue circle: actual eye position for that frame. Gist×BU
is the point-wise product of BU predicted and gist models.



14 Ali Borji et al.

3D Driving School 18 Wheels of Steel Test Drive Unlimited

M
e

a
n

 E
y
e

 P
o

s
it
io

n
M

e
a

n
 B

U
 S

a
lie

n
c
y

a)

b)

Fig. 7 a) Mean eye position maps, b) mean bottom-up saliency maps for three games. BU
saliency maps have stable white regions which creates false positives over many frames.

better when attention is more influenced by motor actions. Results show that
combining decisions works better than combining features.

History depth (m) was set to 0 in the experiments, since higher history
depths were not helpful. One reason might be that performance in eye fixation
prediction in our data is not limited in gist classification, since gist over a
single frame is already a good predictor. The performance at the other hand
seems to be more limited by the correlation among subjects at looking at the
same spots for a same scene. The higher the correlation, the better learning
and prediction.

A big issue in saliency modeling (either BU or TD) is handling center-
bias. Most of the available datasets are center-biased meaning that a large
proportion of fixations happen to be in the center of the image. For example,
available still images shows photographer bias when photographers intention-
ally put interesting eye catching objects in the center [8]. Similarly, game
designers dynamically change the viewpoint in order to put the needed ob-
ject (main character, road, etc) at the center. This contaminates the scores.
Gathering a less center-biased dataset over movies or interactive natural se-
tups would be very helpful for fair evaluation of top-down models. Another
problem is being able to predict the eye fixation at the frame (millisecond)
level. For instance, we know that subjects when approaching red light, might
look at the red sign at one point but predicting the exact occurence time is
very subjective and dependent on instantanous task demands. Therefore, some
high level knowledge about the task seems to be necessary.

For future investigation, we are going to build more effective learning sys-
tems and classifiers that have more generalization capabilities (SVM, RBF
networks, ...). Here, we also tried kNN classifiers but results were almost the
same as regression. Also, recent video processing and analysis approaches (seg-
mentation, action recognition, etc) might be interesting. Here we followed a
data-driven approach. One promising extension would be trying to infer some
high-level knowledge or behaviors from data similar to [19].
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