
Multi-resolution Path Planning: Theoretical Analysis, Efficient

Implementation, and Extensions to Dynamic Environments

Raghvendra V. Cowlagi and Panagiotis Tsiotras

Abstract— A multi-resolution path planning algorithm based
on the wavelet transform of the environment has been reported
previously in the literature. In this paper, we provide a proof
of completeness of this algorithm. In addition, we present
an implementation of this algorithm that reuses information
obtained in previous iterations to perform subsequent iterations
more efficiently. Finally, we extend this path planning algorithm
to dynamic environments by presenting a simple scheme for
updating the wavelet transform coefficients to reflect changes
in the environment.

I. INTRODUCTION

Motion planning for autonomous mobile vehicles is the

problem of finding control inputs that enable the vehicle’s
motion to satisfy some pre-assigned task [1], [2]. Due to

its inherent complexity, the motion planning problem is

usually solved over two levels of hierarchy. The higher
level, called the geometric path planning level, deals with

obstacle avoidance by finding an obstacle-free path from the

initial point to the destination. The lower layer deals with
the kinematical and dynamical constraints of the vehicle by

generating a feasible reference trajectory based on the path

found by the geometric planner.
Geometric path planning based on cell decompositions [1,

Ch. 5] is a widely used technique that involves partitioning
the environment into convex, non-overlapping regions called

cells. A graph is then associated with the cell decomposition,

where each obstacle-free cell is represented by a node in
the graph, and the geometric adjacency relationships of the

cells are represented by edges. A path in this graph then

corresponds to a sequence of obstacle-free cells from the
initial cell to the goal cell.

In this paper, we discuss a geometric path planning scheme
based on multi-resolution cell decompositions. The quadtree

method [3]–[5], which employs dyadic recursive decompo-

sitions, is one of the most extensively used multi-resolution
cell decomposition techniques. Other path planning schemes

using multi-resolution cell decompositions have been pro-
posed in [6]; [7] (triangular cells); [8] (receding horizon

path planning using multi-resolution estimates of object

locations); [9] (multi-resolution potential field); and [10]
(hierarchy of imaginary spheres encapsulating the robot, for

collision avoidance).

References [11], [12] report a new hierarchical path plan-
ning algorithm using multi-resolution cell decompositions

obtained via the wavelet transform of the obstacle space.
We describe this algorithm in greater detail in subsequent

R. V. Cowlagi is a Ph.D. candidate at the School of Aerospace Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332, USA. e-mail:
rcowlagi@gatech.edu

P. Tsiotras is with the Faculty of Aerospace Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, USA. e-mail: tsiotras@gatech.edu

sections of this paper. Other applications of the wavelet

transform to multi-resolution path planning schemes appear
in [13]–[15].

This work extends the wavelet-based path planning

scheme of [11] with three new results: first, we provide
a proof of completeness of (a slightly modified version)

the path planning algorithm in [11]; second, we provide

a method to efficiently recompute the multi-resolution cell
decomposition and its associated topological graph by suit-

ably modifying the graph computed in the previous iteration

(as opposed to computing it from scratch at each iteration,
as is done [11], [12]); and third, we provide a method to

efficiently update the wavelet coefficients to match changes
in the environment.

In the next section, we provide a cursory and informal

introduction to the wavelet transform; for further details the
reader may consult, for instance, [16].

A. Multi-resolution Cell Decompositions

Multi-resolution analysis of a scalar function involves the

construction of a hierarchy of approximations of the function
by projecting it onto a sequence of nested linear spaces. In

the context of the wavelet transform, these linear spaces are

the spans of translated and scaled versions of two functions
called, respectively, the scaling function and mother wavelet.

The discrete wavelet transform of a function F ∈ L2(R) (or,

in the 2-D case, a function F ∈ L2(R2)) then refers to two
collections of scalars, called, respectively, the approximation

coefficients and the detail coefficients, defined, respectively,
as the inner products of F with translated and scaled versions

of the scaling function and the mother wavelet.

To apply the discrete wavelet transform for the multi-
resolution analysis of the obstacle space, we define an

image as the pair (R,F), where R ⊂ R2 is a compact,

square region and F : R → R+ is an intensity map1.

We assume that R =
[

0, 2D
]

×
[

0, 2D
]

, with D ∈ Z.
We also assume that the image intensity map F is known

at a finite maximum resolution jmax > −D, i.e., the

function F is piecewise constant over each of the square
cells

[

2−jmaxk, 2−jmax(k + 1)
]

×
[

2−jmaxℓ, 2−jmax(ℓ+ 1)
]

,

k, ℓ = 0, 1, . . . , 2D−jmax − 1.

A cell decomposition C of an image is a finite col-
lection of disjoint, convex subsets Cn of R called cells,

such that
⋃NC

n=1 Cn = R, and F is constant over the

cell Cn, for each n = 1, 2, . . . , NC , where NC ∈ N. In
this paper, we consider square cells, and we denote by

C(j, k, ℓ) a cell of size 2−j units, with its center at the

1In the context of path planning, an image may represent, for instance, a
terrain elevation map, or a risk measure of the environment [11].

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 1384

point (2−jk+2−j−1, 2−jℓ+2−ℓ−1). The collection of cells

Cj
def
=

{

C(j, k, ℓ) : k, ℓ = 0, 1, . . . , 2D−j − 1
}

is a uniform

cell decomposition of the image (R,F) at resolution level j.

We associate with the cell decomposition Cjmax
a graph

Ḡ
def
= (V̄ , Ē), such that each node in V̄ corresponds to a

unique cell in Cjmax
. Two nodes in V̄ are adjacent if the

corresponding cells in Cjmax
are geometrically adjacent2. The

edge set Ē consists of all pairs (ū, v̄), where ū, v̄ ∈ V̄
are adjacent nodes. We use cell(ū; Cjmax

) to denote the cell

in Cjmax
corresponding to the node ū ∈ V̄ ; conversely,

we denote by node(C; Ḡ) the node in V̄ corresponding to
the cell C ∈ Cjmax

. Finally, we use (x(ū), y(ū)) for the

coordinates of the center of the cell corresponding to node

ū. We introduce an edge cost function ḡ : Ē → R+,

which assigns to each edge of Ḡ a non-negative cost of

transitioning this edge. For given initial and terminal nodes

ūS, ūG ∈ V̄ , a path π̄(ūS, ūG)
def
= (ūπ̄

0 , ū
π̄
1 , . . . , ū

π̄
P̄
) in Ḡ

is such that ūπ̄
k ∈ V̄ , (ūπ̄

k−1, ū
π̄
k) ∈ Ē, k = 1, . . . , P̄ , with

ūπ̄
0 = ūS, ūπ̄

P̄
= ūG, and ūπ̄

p 6= ūπ̄
r , for p, r ∈ {0, . . . , P̄},

with p 6= r. For brevity, and when there is no ambiguity,

henceforth we will suppress the arguments in π̄. The cost of

a path π̄ is defined as J̄ (π̄)
def
=

∑P̄

k=1 ḡ((ū
π̄
k−1, ū

π̄
k)). The

path planning problem is to find a path π̄∗(ūS, ūG) such that

J̄ (π̄∗) 6 J̄ (π̄) for every path π̄ in Ḡ.

Algorithms such as Dijkstra’s algorithm and the A∗ al-

gorithm [2] can efficiently solve the path planning problem
described above. However, the graph Ḡ associated with large

environments (i.e., with D large) consists of a very large

number of nodes. For practical, real-time applications, the
execution of standard search algorithms on the graph Ḡ may

be time-consuming; it may also be unnecessary, because the

vehicle’s path needs to be known accurately only in the
immediate vicinity of the vehicle. In light of this observation,

[11] proposes a path planning algorithm based on multi-

resolution cell decompositions, constructed as follows.

Let a coarse resolution level jmin ∈ Z be specified, and

for j > jmin, let ajmin,k,ℓ and dij,k,ℓ (i = 1, 2, 3) be the 2-
D discrete wavelet transform coefficients of the map F . Let

A
def
= {(jm, km, ℓm)} be a set of triplets of integers such

that jm > jmin, m ∈ N. An approximation (R,Fmr) is the

image obtained by the coefficients ajmin,k,ℓ and d̂ij,k,ℓ, where

d̂ij,k,ℓ
def
=

{

dij,k,ℓ i = 1, 2, 3; (j, k, ℓ) ∈ A,
0 otherwise.

In what follows, we will refer to the approximation Fmr of
F by its associated set of detail coefficients A. Each approx-

imation Fmr uniquely corresponds to a cell decomposition

Cmr that consists of cells of different sizes. We associate
with Cmr a graph G = (V,E) such that each node in V
corresponds to a unique cell in Cmr. Each node u ∈ V also

corresponds to a set W (u, V)
def
= {w̄u

0 , w̄
u
1 , . . . , w̄

u
S(u)} ⊂ V̄ ,

such that {W (u, V)}u∈V is a partition of V̄ . The multi-

resolution cell decomposition graph G approximates the
graph Ḡ by representing each set of nodes W (u, V) ⊂ V̄
with a single node u ∈ V . For the Haar wavelet, it can be

2Here we assume 4-connectivity, i.e., cells with two vertices in common
are said to be adjacent. This assumption implies that |Ē| < 4|V̄ |.

S G

0

0

20

20

40

40

60

60

80

80

100

100

120

120

(a) Intermediate iteration

S G

0

0

20

20

40

40

60

60

80

80

100

100

120

120

(b) Terminal iteration

Fig. 1. Illustration of the path planning algorithm.

shown that for u ∈ V ,

Fmr(cell(u; Cmr)) =
1

S(u) + 1

S(u)
∑

m=0

F (cell(w̄u
m; Cjmax

)).

(1)

Finally, two nodes u, v ∈ V are said to be adjacent in G,

i.e., (u, v) ∈ E, if and only if there exist ū ∈ W (u, V) and

v̄ ∈ W (v, V) such that (ū, v̄) ∈ Ē.

II. MULTI-RESOLUTION PATH PLANNING

Informally, the multi-resolution path algorithm of [11]

operates as follows: at each iteration, a multi-resolution cell

decomposition is constructed. This decomposition retains
high resolution in the immediate vicinity of the vehicle’s

current location, and approximates the environment in re-

gions farther away. A standard search algorithm may then
be executed quickly on the graph G because |V | ≪ |V̄ |.

Figure 1(a) illustrates an intermediate iteration in the path

planning algorithm: the black colored cells indicate the opti-
mal path found at that iteration, while the blue colored cells

indicate the path recorded until that iteration. Figure 1(b)

illustrates the final step, with a cell decomposition consisting
of high resolution cells in the vicinity of the goal. The blue

cells indicate the path found by the algorithm from the initial

node to the goal node.

1385

Next, we present a modification of the multi-resolution
path planning algorithm of [11], and we prove that this

modified algorithm is complete. To this end, we assume that

the environment consists of free space and insurmountable
obstacles, i.e., F (cell(ū; Cjmax

)) = 0 if ū represents free

space, and F (cell(ū; Cjmax
)) = M if ū represents an obstacle,

where M ≫ |V̄ |. We define the transition cost of an edge

(ū, v̄) ∈ Ē by

ḡ((ū, v̄)) = F (v̄) + 1, (ū, v̄) ∈ Ē. (2)

To the multi-resolution approximation of the environment
constructed at iteration n of the algorithm, we let A(n)
denote the associated set of detail coefficients, Cmr(n) de-

note the associated multi-resolution cell decomposition, and
G(n) = (V (n), E(n)) denote the associated topological

graph. We define the goal node uG,n ∈ V (n) as the (unique)

node that satisfies ūG ∈ W (uG,n, V (n)).
For each node ū ∈ V̄ , the proposed algorithm maintains

an estimate J(ū) of the least cost of any path in Ḡ from

the node ū to the goal node ūG, and a record K(ū) of the

least cost of any path in Ḡ from the initial node ūS to the
node ū. The algorithm also associates with each node ū ∈ V̄
another node B(ū) ∈ V̄ called the backpointer of ū. At each

iteration, the algorithm performs a computation (specifically,
in Line 17 or Line 19 of procedure MAIN below) whose

result is a unique node in V̄ . We refer to this computation as
a visit to this node, and we denote by ūn the node visited by

the algorithm at iteration n ∈ N, with ū0
def
= ūS. Let un

def
=

node(cell(ūn; C
mr(n));G(n)), i.e., un is the node in V (n)

corresponding to the cell at the finest resolution represented

by the node ūn ∈ V̄ .
A path πn(un, uG,n) = (uπn

0 , uπn

1 , . . . , uπn

P (n)) in G(n)

is such that uπn

p 6= node(cell(B(ūn); C
mr(n));G(n)), and

uπn

p 6= wm for each p ∈ {0, . . . , P (n)}, and for each
m = 0, 1, . . . , n − 1, where wm ∈ V (n) is the unique

node that satisfies ūm ∈ W (wm, V (n)). Note that this

definition precludes cycles in the path in G(n) obtained by
the concatenation of the path (w0, w1, . . . , wn−1) with πn.

The cost Jn(πn) of the path πn(un, uG,n) is

Jn(πn)
def
=

P (n)
∑

m=1

gn((u
πn

m−1, u
πn

m)). (3)

The transition cost function gn : E(n)→ R+ in (3) is

gn(u, v)
def
= Mδ(Fmr(Cv)−M) + |W (v, V (n))|, (4)

where (u, v) ∈ E(n), Cv def
= cell(v; Cmr(n)), and δ(x) = 1

if x = 0 and δ(x) = 0 otherwise. Note that, by (4), the cost

of an obstacle-free path in G(n) is less than or equal to the
number |V̄ | of nodes in the graph Ḡ, and hence a path πn

in G(n) is obstacle-free if and only if Jn(πn) < M.
The algorithm associates with each node ū ∈ V̄ a

binary value VISITED(ū), which records whether the node
ū has previously been visited by the algorithm, i.e., at

any iteration of the algorithm’s execution, and for any

ū ∈ V̄ , VISITED(ū) = 0 indicates that the algorithm
has never visited ū in any previous iteration, whereas

VISITED(ū) = 1 indicates that the algorithm has visited ū
at least once during previous iterations. The algorithm also

maintains a cumulative cost J̄ (π̄) of the path π̄(ūS, ūn) in
Ḡ. Finally, to construct approximations that retain the detail

coefficients in a “window” centered at the agent’s location,

we introduce a function ̺ : Z → N that associates with each
resolution j the size of the “window” at that resolution. The

multi-resolution path planning algorithm is then described
as follows.

procedure MR-Approx(ū)

1: A ←
{

dij,k,ℓ : jmin 6 j < jmax, i = 1, 2, 3,

⌊2jx(ū)⌋ − ̺(j) 6 k 6 ⌊2jx(ū)⌋+ ̺(j),

⌊2jy(ū)⌋ − ̺(j) 6 ℓ 6 ⌊2jy(ū)⌋+ ̺(j)
}

.

procedure Main()

1: π̄ ← ūS, ū0 ← ūS, n ← 0, reachedGoal← 0, J̄ (π̄) ←
0

2: For each ū ∈ V̄ , VISITED(ū)← 0
3: while !reachedGoal and J̄ (π̄) < M and J(ūn) < M

do

4: A(n)← MR-APPROX(ūn),
5: G(n)← MR-GRAPH(A(n))
6: if VISITED(ūn) = 1 then

7: π∗
n ← argmin {Jn(π) : π obstacle-free in G(n)},

subject to Jn(π
∗
n) > J(ūn) + 1

8: J̄ (π̄)← K(ūn)
9: else

10: π∗
n ← argmin {Jn(π) : π obstacle-free in G(n)}

11: K(ūn)← J̄ (π̄)
12: VISITED(ūn)← 1
13: if π∗

n does not exist then

14: if ūn = ūS then

15: Report failure
16: else

17: ūn+1 ← B(ūn)
18: else

19: ūn+1 ← node(cell(u
π∗

n

1 ;G(n)); Ḡ)
20: B(ūn)← ūn−1

21: J(ūn)← Jn(π
∗
n)

22: reachedGoal← (J(ūn) = 0),
23: π̄ ← (π̄, ūn)
24: J̄ (π̄)← J̄ (π̄) + ḡ(ūn, ūn+1)
25: n← n+ 1
26: if J̄ (π̄) > M or J(ūn) > M then

27: Report failure

Before proving the completeness of the preceding algo-

rithm, we make a few comments regarding its execution.

Remark 1: The constrained optimization problem in

Line 7 can be solved by an algorithm that finds the k shortest
paths in a graph. Such algorithms have been reported, for

instance, in [17]. We implicitly assume that the k shortest

paths will be of strictly increasing costs. This assumption is
not required for the algorithm’s successful execution, but it

enables a concise statement of the algorithm.

Remark 2: In [18], we describe in detail the proce-

dure MR-GRAPH used in Line 4.

Remark 3: Due to Line 8, the cost of “back-tracking” is

not added to the cumulative cost J̄ (π̄). Also, it follows from
(3) and Line 21 that J(ū) = 0 if and only if ū = ūG.

We associate with each path πn(un, uG,n) in G(n) the set

1386

Wn(πn) defined by

Wn(πn)
def
=

P (n)
⋃

m=0

W (uπn

m , V (n)). (5)

The algorithm is said to meet a setback at iteration n if there

exists no obstacle-free path πn(un, uG,n) in G(n) satisfying

Wn(πn) ⊆ Wn−1(π
∗
n−1). We are now ready to state and

prove the main result of this section.

Proposition 4: The proposed algorithm is complete: if

there exists an obstacle-free path in Ḡ from ūS to ūG, then

the algorithm finds an obstacle-free path in a finite number
of iterations. Otherwise, the algorithm reports failure after a

finite number of iterations.
Proof: Note that because the set of nodes in V̄

is finite, it follows by Proposition A.4 that the algorithm
terminates after a finite number N ∈ N of iterations. To show

completeness, first suppose that there exists an obstacle-free
path in Ḡ from ūS to ūG. We consider several cases.

First, suppose that the algorithm never visits any node in

V̄ more than once, and that the algorithm does not meet any

setbacks. By Proposition A.3, J(ūn−1) − J(ūn) > 1 and
the sequence J(ūn) decreases strictly monotonically. Since

J(ūn) > 0 for each n ∈ N, and since J(ū1) is finite (by

Corollary A.2), there exists Q 6 N , such that J(ūn) = 0
for each n > Q. It follows by Line 22 that the algorithm

terminates after Q iterations, and since J(ūQ) = 0, the
algorithm visits the goal node ūG at iteration Q.

Next, suppose that the algorithm visits some nodes in

V̄ multiple times and that the algorithm never meets any

setbacks. Note that the number of multiply visited nodes is
finite because the algorithm terminates in a finite number

of iterations. Then either of the following statements hold:

(a) the algorithm terminates at iteration Q 6 N such that
ūQ is a multiply visited node, or (b) there exists Q < N
such that for each n = Q + 1, Q + 2, . . . , the node ūn

is visited exactly once by the algorithm. If Statement (a)

holds, then ūQ 6= ūG due to by Lines 3 and 22, which in

turn implies that the algorithm reports failure in Line 15. It
follows by Line 14 that ūQ = ūS. Then, by Proposition A.1

and Proposition A.5, there exists no admissible path in Ḡ
from ūS to ūG, which is a contradiction. On the other hand,
if Statement (b) holds, then by the monotonicity arguments

in the preceding paragraph, the algorithm visits the goal in

a finite number of iterations after iteration Q.
Next, suppose that the algorithm never visits any node

in V̄ more than once, and suppose that the algorithm meets

some setbacks. The number of setbacks met by the algorithm
is finite because the algorithm terminates in a finite number

of iterations. Then either of the following statements hold:

(c) the algorithm terminates at iteration Q 6 N such that
the algorithm meets a setback at iteration Q or (d) there

exists Q < N such that for each n = Q + 1, Q + 2, . . . ,
such that the algorithm does not meet any setbacks after
iteration Q. Statement (c) leads to the same contradiction

that follows Statement (a), whereas Statement (d) leads to

the same conclusion that follows Statement (b) above.
Finally, suppose that the algorithm visits some nodes in V̄

multiple times and that algorithm meets some setbacks. We

may combine the arguments in the two preceding paragraphs

to either conclude that the algorithm visits the goal in a finite
number of iterations, or to arrive at the contradiction that

there exists no obstacle-free path in Ḡ from ūS to ūG.

Now consider the case when there exists no obstacle-free

path in the graph Ḡ from the initial node ūS to the goal

node ūG. The set of nodes V̄ is finite, hence it follows by
Proposition A.4 that the algorithm terminates after a finite

number of iterations. Suppose, for the sake of contradiction,

that the algorithm erroneously finds a path π̄ from the initial
node ūS to the goal node ūG. Then J̄ (π̄) > M , since π̄
is not obstacle-free. It follows by Line 24 that J̄ (π̄) > M
at some intermediate iteration of the algorithm. However,
by Line 3, the algorithm terminates whenever J̄ (π̄) > M ,

thus leading to a contradiction. Thus, the algorithm does not

erroneously find a path from the node ūS to the node ūG if
no obstacle-free path exists, and by Line 26, it reports failure

in this case.

III. EFFICIENT CONSTRUCTIONS OF THE GRAPHS G(n)

In this section, we describe a method to obtain A(n)
efficiently by adding and removing elements from A(n−1).
Specifically, we first determine the elements of the sets

B1
def
= A(n) ∩ Ac(n − 1) and B−1

def
= A(n − 1) ∩ Ac(n),

and then evaluate A(n) = A(n − 1) ∪ B1\B−1. In light

of the definition of A(n) in the procedure MR-Approx, we
observe that 2jmaxx(ū) = ⌊2jmaxx(ū)⌋+ d and 2jmaxy(ū) =

⌊2jmaxy(ū)⌋+ d, where d
def
= 2−jmax−1 for ū ∈ V̄ . It can be

shown that

⌊2jx(ūn+1)⌋ = ⌊⌊2jx(ūn)⌋+ 2j−jmax∆x + rjx⌋, (6)

⌊2jy(ūn+1)⌋ = ⌊⌊2jy(ūn)⌋+ 2j−jmax∆y + rjy⌋, (7)

where rjx
def
= 2j−jmax

(

⌊2j−jmaxx(ūn)⌋+ d
)

− ⌊2jx(ūn)⌋.
The elements of the sets B1 and B−1 are then determined

from (6)-(7) as follows. We define the scalar Dx as

Dx
def
=







−1, 0 > 2j−jmax∆x + rjx,

0, 0 6 2j−jmax∆x + rjx < 1,
1, 1 6 2j−jmax∆x + rjx,

(8)

and similarly for Dy . We then define the sets Bj,x
m by

Bj,x
m

def
=

{

(j, k, ℓ) : k = ⌊2jx(ūn)⌋+mDx,

⌊2jy(ūn)⌋ − ̺(j) 6 ℓ 6 ⌊2jy(ūn)⌋+ ̺(j)
}

,

where m ∈ {−1, 1}, and the sets Bj,y
m , analogously. Then

the sets B−1 and B1 are given by the following relation

Bm =
⋃

α={x,y}

⋃

jmin6j<jmax

Bj,α
m , m ∈ {−1, 1}. (9)

The modified procedures for determining the elements of

the set A(n) and the elements of the cell decomposition
Cmr(n) are then described as follows.

procedure Mod-MR-Approx(A(n− 1))

1: Compute B−1 and B1 with (9)

2: A(n)← A(n) = A(n− 1) ∪ B1\B−1

procedure Mod-MR-Graph(Cmr(n− 1),B−1,B1)

1: Cmr
−1 ← ∅, Cmr

1 ← ∅

1387

2: for all (j, k, ℓ) ∈ B1 do

3: Cmr
1 ← Cmr

1 ∪ {C(j + 1, k̂, ℓ̂) : 2k 6 k̂ 6 2k +
1, 2ℓ 6 ℓ̂ 6 2ℓ+ 1}

4: Cmr
−1 ← Cmr

−1 ∪ {C(ĵ, k̂, ℓ̂) : k̂ = ⌊2ĵ−jk⌋, ℓ̂ =

⌊2ĵ−jℓ⌋, jmin 6 ĵ 6 j}
5: for all (j, k, ℓ) ∈ B−1 do

6: Cmr
−1 ← Cmr

−1 ∪ {C(j + 1, k̂, ℓ̂) : 2k 6 k̂ 6 2k +

1, 2ℓ 6 ℓ̂ 6 2ℓ+ 1}
7: Cmr

1 ← Cmr
1 ∪ {C(j, k, ℓ)}

8: Cmr(n)← Cmr(n− 1) ∪ Cmr
1 \C

mr
−1

The advantage of computing A(n) using the modified

procedure MOD-MR-APPROX instead of the procedure MR-

APPROX arises from the fact that the number of elements
in the set A(n) is O(¯̺2), whereas the numbers of el-

ements in the sets B−1 and B1 are both O(¯̺), where

¯̺
def
= maxjmin6j6jmax

{̺(j)}. This observation also elicits

the advantage of computing Cmr(n) via procedure MOD-

MR-GRAPH: the approach of directly computing3 from
A(n) executes in O(¯̺2) time, because O(¯̺2) iterations of

the constant-time operations similar to those described in

Lines 3-4 of procedure MOD-MR-GRAPH are performed.
On the other hand, the procedure MOD-MR-GRAPH exe-

cutes in O(¯̺) time, because O(¯̺) iterations of the constant-

time operations in Lines 3-4 and Lines 6-7 are performed.

Remark 5: The graph G(n) is obtained from the graph
G(n − 1) by adding and deleting a relatively small number

of nodes and edges. In light of this observation, the operation

of finding the shortest path in G(n) may be performed
using the so-called incremental algorithms [19], which reuse

information about a previously known shortest path to find

a new shortest path corresponding to changes in the graph.

Table I shows the results of evaluating through numerical

simulations the ratio of the execution time required by
the combination of the procedures MR-APPROX and MR-

GRAPH to the execution time required by the combination of

the procedures MOD-MR-APPROX and MOD-MR-GRAPH

for computing the graph G(n). As predicted by the preceding

theoretical analysis, the execution time ratios increase as

the size ¯̺ of the high-resolution “window” increases. The
execution time ratios also increase with |V̄ | = 22D, because

we assume jmin = −D. The execution time ratios in Table I

were computed by averaging over 30 simulations, for each
row of data in Table I.

Table II shows the results of evaluating through numerical

simulations the ratio of the execution time of the entire path

planning algorithm using procedures MR-APPROX and MR-
GRAPH to the execution time of the entire path planning

algorithm using procedures MOD-MR-APPROX and MOD-

MR-GRAPH. The multi-resolution path planning algorithm
with the modified procedures of construction of A(n) and

G(n) executes up to 10 times faster.

3The elements of Cmr(n) can be determined directly by Lines 2- 4 of
the procedure MOD-MR-GRAPH after replacing B1 in Line 2 with A(n)
and after appropriate initialization of Cmr

1
; see Ref. [18] for details.

TABLE I

NUMERICAL COMPARISONS OF EXECUTION TIMES ILLUSTRATING

EFFICIENT COMPUTATION OF A AND G

2D ¯̺ Average exec.
time ratio

2D ¯̺ Average exec.
time ratio

128 4 8.0671 256 15 13.446
128 6 8.3114 256 30 21.135
128 15 12.552 512 15 18.886
256 4 9.9418 512 30 28.351

TABLE II

NUMERICAL COMPARISONS OF EXECUTION TIMES ILLUSTRATING

BENEFITS IN OVERALL PATH PLANNING

2D ¯̺ Sample exec.
time ratio

2D ¯̺ Sample exec.
time ratio

128 4 6.7002 256 15 7.9145
128 6 10.163 512 4 8.0774
256 6 7.6615

IV. PLANNING IN DYNAMIC ENVIRONMENTS

The path planning algorithm described in Section II and

the modifications of the algorithm described in Section III
assume a static environment, i.e., that the map F does not

change. In this section, we describe an extension to the

algorithm described in Section II that accounts for changes
in the values of F .

In the context of the wavelet-based path planning al-

gorithm, changes in the environment can be incorporated
efficiently by updating the wavelet transform coefficients of

F without recalculating all the coefficients. In what follows,
we demonstrate a simple and efficient procedure for updating

the wavelet transform coefficients.
Let F and F̃ denote, respectively, the original and the

changed intensity maps. For the sake of simplicity, we

assume that F̃ differs from F only in the value at (κ, λ),
κ, λ ∈ {0, 1, . . . , 2D−jmax − 1}, i.e.,

F̃ (k, ℓ) =

{

F (k, ℓ), k 6= κ or ℓ 6= λ,
F (k, ℓ) + ε, k = κ and ℓ = λ,

where ε 6= 0 is a known scalar. For each jmin 6 j 6

jmax, k, ℓ = 0, 1, . . . , 2D−j , we define a scaled average

intensity F by F(j, k, ℓ)
def
=

∑

(k̂,ℓ̂)∈K×L F (k̂, ℓ̂), where

K
def
=

[

2−jk, 2−j(k + 1)
)

, and L
def
=

[

2−jℓ, 2−j(ℓ+ 1)
)

We may similarly define the scaled average intensity F̃

corresponding to the intensity map F̃ , and denote by ǫ0j,k,ℓ
the difference F̃(j, k, ℓ) − F(j, k, ℓ), for jmin 6 j 6 jmax,

k, ℓ = 0, 1, . . . , 2D−j . Also, we denote by ǫij,k,ℓ the dif-

ference d̃ij,k,ℓ − dij,k,ℓ, for i = 1, 2, 3, where d̃ij,k,ℓ are the

wavelet transform detail coefficients of the new intensity map
F̃ . It can be shown that









ǫ0j,k,ℓ
ǫ1j,k,ℓ
ǫ2j,k,ℓ
ǫ3j,k,ℓ









= E











ǫ0
j+1,k̂,ℓ̂

ǫ0
j+1,k̂,ℓ̂+1

ǫ0
j+1,k̂+1,ℓ̂

ǫ0
j+1,k̂+1,ℓ̂+1











, (10)

where E ∈ R4×4 is a constant, known matrix. For each

jmin 6 j 6 jmax, k ∈ {2⌊2jκ⌋, 2⌊2jκ⌋ + 1}, and ℓ ∈

1388

{2⌊2jλ⌋, 2⌊2jλ⌋+ 1} we may write

ǫ0j,k,ℓ =

{

2jε, k = ⌊2j+1κ⌋ and ℓ = ⌊2j+1λ⌋
0, otherwise.

(11)

Equation (10) may be evaluated by substituting values in

the right hand side using (11) to obtain the values of ǫij,k,ℓ,
(i = 1, 2, 3), which are the differences between the wavelet
transform detail coefficients of F̃ and F . Equation (11) may

be used to directly evaluate the approximation coefficients

ãjmin,k,ℓ corresponding to F̃ , since ãjmin,k,ℓ = F̃(jmin, k, ℓ)
and ajmin,k,ℓ = F(jmin, k, ℓ), i.e., ãjmin,k,ℓ − ajmin,k,ℓ =
ǫ0jmin,k,ℓ

.

The coefficient update schemes (10)-(11) are particularly

beneficial when the number of cells for which the values of

F changes is small compared to the total number of cells.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have extended the results of [11], by

proposing a modification of the original multi-resolution

path planning algorithm, and have proved its completeness.
In addition, we have presented computational procedures

for efficient implementation of the algorithm, supported

by numerical simulation results that illustrate the benefits
of these procedures. Finally, we have presented a simple

scheme for updating the wavelet transform coefficients of the

map representing the environment (e.g., the obstacle space)
stemming from small changes in the map. This scheme

enables the application of the multi-resolution path planning

algorithm to dynamic environments.

Acknowledgement: This research was supported in part

by NASA (award no. NNX08AB94A).

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] H. Samet, “The quadtree and related hierarchical data structures,”
Computing Surveys, vol. 16, no. 2, pp. 187–260, June 1984.

[4] S. Kambhampati and L. S. Davis, “Multiresolution path planning for
mobile robots,” IEEE Journal of Robotics and Automation, vol. RA-2,
no. 3, pp. 135–45, September 1986.

[5] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-based path
planning algorithm for a mobile robot,” Journal of Robotic Systems,
vol. 7, no. 4, pp. 555–74, 1990.

[6] S. Behnke, “Local multiresolution path planning,” Lecture Notes in
Artificial Intelligence, vol. 3020, pp. 332–43, 2004.

[7] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path
planning by path graph optimization,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 33, no. 1, pp. 121–127, January 2003.

[8] R. J. Prazenica, A. J. Kurdila, R. C. Sharpley, and J. Evers, “Multires-
olution and adaptive path planning for maneuver of micro-air-vehicles
in urban environments,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, San Francisco, CA, 2005, pp. 1–12.

[9] C.-T. Kim and J.-J. Lee, “Mobile robot navigation using multi-
resolution electrostatic potential field,” in 32nd Annual Conference
of IEEE Industrial Electronics Society, 2005, IECON 2005, 2005.

[10] B. J. H. Verwer, “A multiresolution workspace, multiresolution con-
figuration space approach to solve the path planning problem,” in
Proceedings of the 1990 IEEE International Conference on Robotics
and Automation, 1990, pp. 2107–12.

[11] P. Tsiotras and E. Bakolas, “A hierarchical on-line path planning
scheme using wavelets,” in Proceedings of the European Control
Conference, Kos, Greece, July 2–5 2007, pp. 2806–2812.

[12] D. Jung, “Hierarchical path planning and control of a small fixed-
wing UAV: Theory and experimental validation,” Ph.D. dissertation,
Georgia Institute of Technology, 2007.

[13] D. K. Pai and L.-M. Reissell, “Multiresolution rough terrain motion
planning,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 1, pp. 19–33, February 1998.

[14] L. Carrioli, “Unsupervised path planning of many asynchronously self-
moving vehicles,” in IEEE/RSJ International Workshop on Intelligent
Robots and Systems IROS ‘91, 1991, pp. 555–59.

[15] B. Sinopoli, M. Micheli, G. Donato, and T. J. Koo, “Vision based
navigation for an unmanned aerial vehicle,” in Proceedings of 2001
IEEE Conference on Robotics and Automation, 2001, pp. 1757–64.

[16] R. M. Rao and A. S. Bopardikar, Wavelet Transforms - Introduction
to Theory and Applications. Addison-Wesley, 1998.

[17] U. Huckenbeck, Extremal Paths in Graphs. Berlin, Germany:
Akademie Verlag, 1997.

[18] R. V. Cowlagi and P. Tsiotras, “Beyond quadtrees: Cell decompositions
for path planning using the wavelet transform,” in Proceedings of the
46th IEEE Conference on Decision and Control, New Orleans, LA,
12–14 Dec. 2007, pp. 1392–1397.

[19] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic
search in AI,” Artificial Intelligence Magazine, vol. 25, pp. 99–112,
2004.

APPENDIX

Proposition A.1: Let ū ∈ V̄ , and A = MR-APPROX(ū).
Let Cmr and G = (V,E) be, respectively, the multi-resolution
cell decomposition and the topological graph associated with

A. If there exists an obstacle-free path in Ḡ from ū to

ūG, then there exists an obstacle-free path in G from u
def
=

node(cell(ū; Cmr);G) to uG, where uG ∈ V is the unique

node that satisfies ūG ∈ W (uG, V).
Proof: Let π̄(ū, ūG) = (ūπ̄

0 , ū
π̄
1 , . . . , ū

π̄
P̄
) be an

obstacle-free path in Ḡ from ūπ̄
0 = ū to ūπ̄

P̄
= ūG.

For each m = 0, 1, . . . , P̄ , there exists a unique Um ∈
{W (u, V)}u∈V such that ūπ̄

m ∈ Um. Let wm ∈ V be

such that Um = W (wm, V). Because π̄ is a path in Ḡ,

(ūπ̄
m−1, ū

π̄
m) ∈ Ē for each m = 1, 2, . . . , P̄ , and it follows

that either Um−1 = Um, or (wm−1, wm) ∈ E. Thus, the

path π(u, uG)
def
= {uπ

0 , u
π
1 , . . . , u

π
P }, where P ≤ P̄ , is a path

in G.

To show that the path π is also obstacle-free in G, we note

that since π̄ is obstacle-free in Ḡ, F (ūπ̄
m) = 0, for all m =

0, 1, . . . , P̄ . It follows from (1) that Fmr(cell(uπ
m; Cmr)) <

M for each m = 0, 1, . . . , P , and from (3)-(4) that J(π) <
M , i.e., π is an obstacle-free path.

Corollary A.2: If there exists an obstacle-free path in Ḡ
from the initial node ūS to the goal node ūG, then the cost
of the initial path π∗

0 computed by the algorithm is finite.

Proof: By Proposition A.1, if there exists an obstacle-
free path in Ḡ from ū to ūG, then there exists an obstacle-

free path π∗
0(uS, uG,0) in G(0) from the node uS

def
=

node(cell(ūS; Cjmax
);G(0)) to the node uG,0, where uG,0 ∈

V (0) is the unique node that satisfies ūG ∈W (uG,0, V (0)).
Because π∗

0 is obstacle-free, J0(π
∗
0) < M , i.e., J0(π

∗
0) is

finite.

Proposition A.3: Suppose that the algorithm does not

meet a setback at iteration n ∈ N of its execu-
tion, and also suppose that VISITED(ūn) = 0. If

there exists a path in the graph G(n) from the node

un = node(cell(ūn; C
mr(n));G(n)) to the node uG,n, then

J(ūn−1) − J(ūn) > 1, where uG,n ∈ V (n) is the unique

node that satisfies ūG ∈ W (uG,n, V (n)).

Proof: Let π∗
n(un, uG,n) = (u

π∗

n

0 , u
π∗

n

1 , . . . , u
π∗

n

P (n))

denote the optimal path in the graph G(n) computed by

1389

the algorithm at Line 10. First, suppose that the cell de-
composition Cmr(n) is identical to the cell decomposition

Cmr(n − 1) (in particular, uG,n−1 = uG,n). If there ex-

ists a path in G(n) from un to uG,n, then there exists
an optimal path in G(n) from un to uG,n because G(n)
is finite. Then, by Bellman’s principle of optimality, the

path π∗
n−1(un−1, uG,n−1) = (u

π∗

n−1

0 , u
π∗

n−1

1 , . . . , u
π∗

n−1

P (n−1)),
computed at iteration n−1 of the algorithm, contains the path

π∗
n, with P (n) = P (n−1)−1, and u

π∗

n

m−1 = u
π∗

n−1

m for each

m = 1, 2, . . . , P (n), and hence Jn(π
∗
n) 6 Jn−1(π

∗
n−1).

Next, suppose that the cell decomposition Cmr(n) is

not identical to the cell decomposition Cmr(n − 1). Let
πn(un, uG,n) and πn−1(un−1, uG,n−1) be paths in the

graphs G(n) and G(n − 1) respectively. If Wn(πn) ⊆
Wn−1(πn−1), then due to the second term in the right
hand side of (4), Jn(πn) 6 Jn−1(πn−1). In particular, if

Wn(π
∗
n) ⊆ Wn−1(π

∗
n−1), then Jn(π

∗
n) 6 Jn−1(π

∗
n−1).

Now supposeWn(π
∗
n) *Wn−1(π

∗
n−1). Let πn(un, uG,n)

be any path in G(n) from un to uG,n satisfying Wn(πn) ⊆
Wn−1(π

∗
n−1). There exists at least one such path πn in G(n)

because the algorithm does not meet a setback at iteration

n. By the arguments in the preceding paragraph, Jn(πn) 6
Jn−1(π

∗
n−1). Furthermore, because π∗

n is an optimal path in

G(n) from un to uG,n, Jn(π
∗
n) 6 Jn(πn), and it follows

that Jn(π
∗
n) 6 Jn−1(π

∗
n−1).

Finally, note that the cell corresponding to the first node

u
π∗

n

0 ∈ V (n) in the path π∗
n is the same as the cell

corresponding to the second node u
π∗

n−1

1 ∈ V (n − 1) in

π∗
n−1, and furthermore, this cell corresponds to the node

ūn ∈ V̄ . Then J(ūn−1)−J(ūn) = Jn−1(π
∗
n−1)−Jn(π

∗
n) >

ḡ(ūn−1, ūn) = 1, by (2).

Proposition A.4: Let ū be an arbitrary node in V̄ . Then

either the algorithm never visits ū or the algorithm visits ū
finitely many times.

Proof: Suppose, for the sake of contradiction, that the

algorithm visits the node ū ∈ V̄ infinitely many times at
iterations n1, n2, . . . , nk . . ., i.e., ūn1

= ūn2
= . . . = ū.

By Line 7, J(ūnk
)− J(ūnk−1

) > 1, and hence there exists

N ∈ N, such that J(ūnN
) > M . It follows by Line 3 that

the algorithm terminates in at most nN iterations, leading to

a contradiction.

Proposition A.5: Let π∗
n(un, uG,n) = (u

π∗

n

0 , . . . , u
π∗

n

P (n))
be the path found by the algorithm either at Line 7 or Line 10

at iteration n ∈ N, and suppose there exists an obstacle-free

path in Ḡ from ūn to ūG that is contained within the set
Wn(π

∗
n). Then the algorithm does not visit the node ūn at

any future iteration.

Proof: Suppose, for the sake of contradiction, that there

exists ℓ > 1 such that the algorithm visits node ūn again at it-

eration n+ℓ, i.e., ūn = ūn+ℓ and ūn+1 = ūn+ℓ−1. Then, due
to the definition of admissible paths in the graphs G(n+ k),
k ∈ N, which precludes cycles, there exists m < ℓ such that
for each k = m,m+1, . . . , ℓ, the algorithm executes Line 17

at iteration n + k, i.e. ūn+k+1 = B(ūn+k). In particular,

for k = ℓ − 1, ūn+ℓ = ūn = B(ūn+ℓ−1) = B(ūn+1).
Note that, by Lines 17 and 13 and by Proposition A.1,

ūn+ℓ = B(ūn+ℓ−1) implies either that there exists no path

in Ḡ from ūn+ℓ−1 = ūn+1 to ūG, or that every obstacle-free

path in Ḡ from ūn+ℓ−1 to ūG contains B(ūn+ℓ−1) = ūn.
Recall now that the cell corresponding to the second node

in the path π∗
n is a cell at the finest resolution jmax, and

hence, W (u
π∗

n

1 , V (n)) = ūn+1. Then, by (5) and by the

stated hypothesis, it follows that there exists an obstacle-
free path π̄(ūn, ūG) = (ūπ̄

0 , . . . , ū
π̄
P̄
) in Ḡ from ūn to ūG

such that ūπ̄
1 = ūn+1. Thus, there exists an obstacle-free

path in Ḡ from ūn+1 to ūG that does not contain ūn: in
particular, (ūπ̄

1 , . . . , ū
π̄
P̄
) is such a path. The implication of the

preceding paragraph contradicts this observation, and hence,

the supposition that there exists ℓ > 1 such that ūn = ūn+ℓ

is false, i.e., the algorithm does not visit the node ūn at any

future iteration.

1390

