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Abstract— This paper proposes a filtering algorithm applica-
ble to a large class of continuous-time, continuous-state stochas-
tic dynamical systems. The proposed approach is largely in-
spired by recent advances in asymptotically-optimal sampling-
based motion planning algorithms such as PRM∗ and RRT∗.
It is based on an incremental construction of a sequence of
Markov chain approximations constructed in such a way that
they satisfy certain local consistency conditions. We prove that
the trajectories of these Markov chains converge in distribution
to the trajectories of the original stochastic system and that the
optimal filter calculated on these Markov chains converges to
the optimal nonlinear continuous time filter. Simulations verify
the convergence of the discrete approximations to the original
stochastic system. Finally, a number of examples are provided
that show the performance of the filtering algorithm.

I. INTRODUCTION

Stochastic filtering, initially developed in the works of
Wiener and Kolmogorov, is an essential problem in systems
and control theory. Among the main results in this area is
the Kalman filter, which has dominated signal processing and
optimal state estimation of linear systems for decades now.
Non-linear filtering methods like Extended Kalman filter, and
the Unscented Kalman filter [1] have been introduced to
expand its applicability. This family of algorithms is however
limited to systems with Gaussian additive noise and Gaussian
conditional densities.

In many real problems, nonlinearities and non-Gaussian
noise prevents us from getting closed form expressions for
the optimal filter. The seminal paper by Gordon, Salmond
and Smith [2] introduced the bootstrap filter which forms the
basis for a class of general filters known as sequential Monte-
Carlo methods [3]. They utilize a large number of random
samples (called as particles) to represent arbitrary posterior
distributions and are propagated in time using importance
sampling techniques. The crucial aspect of particle filtering is
estimating a good posterior to sample from. Techniques like
resampling posterior [4] to reduce variance of particles and
adaptive sampling [5] result in the algorithm being flexible
and applicable to a wide class of nonlinear and non-Gaussian
models. On the other hand, it is necessary to tune the filtering
algorithm to the given problem for robust performance [6].

Continuous time filtering algorithms have also received
wide attention in literature, starting from the Kalman-Bucy
filter for continuous time linear systems with Gaussian ad-
ditive noise. More recent results on continuous time particle
filters are inspired by weak approximations of solutions
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of stochastic differential equations (SDEs) and come with
explicit rates of convergence [7]. On a related note, the
solution of a SDE can also be approximated by a set of
ordinary differential equations to perform filtering as shown
in [8]. Elsewhere, branching and interacting particle systems
in continuous time have also been applied to the nonlinear
filtering problem [9]. Numerical solutions to the partial
differential equations arising from the Zakai equation and the
Kushner-Stratonovich equation have been used to perform
continuous time nonlinear filtering [10]. These applications
of these algorithms are however limited due to computational
intractability or non-recursive nature.

The primary motivation of this paper was to take steps
towards creating a general filtering algorithm but eliminate
the need to tune it to different systems. In particular, we focus
on the continuous time nonlinear filtering problem in our for-
mulation. Our results draw inspiration from two main areas.
Firstly, we are interested in the Markov chain approximation
approach, developed by Kushner [11], that has been proposed
as a method to generate discrete approximations of ordinary
SDEs with continuous representations of states, controls, and
observations. The method is, in principle, applicable to a
wide class of problems in optimal stochastic control [11] and
optimal estimation [12], but its applications in the literature
are scarce, possibly due to the computational complexity of
a priori discretization of continuous spaces.

In a different context, the curse of dimensionality has been
shown to be inevitable in robot motion planning problems,
i.e., the problem of finding a dynamically feasible trajectory
around obstacles so as to reach a goal region is PSPACE-
hard [13]. Yet, algorithms with probabilistic guarantees such
as Probabilistic RoadMaps (PRM) [14] or the Rapidly-
exploring Random Tree (RRT) [15] have been shown to
work quite effectively in returning a feasible solution in high-
dimensional configuration spaces by effectively discretizing
the said space based on random sampling. In [16], two
novel motion planning algorithms were proposed under the
name of PRM∗ and RRT∗, which are shown to be both
computationally efficient and asymptotically optimal. In par-
ticular, the RRT∗ algorithm has been successfully applied to
many challenging motion planning problems involving high-
dimensional configuration spaces [17], complex dynamical
systems [18]. Similar sampling techniques were also used to
generate MDPs for stochastic optimal control [19].

We leverage these recent results in asymptotically opti-
mal motion planning algorithms and apply them to con-
struct incrementally refined Markov chain approximations of
stochastic systems. The key idea behind this construction is
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to discretize time and state space at a rate similar to that
of PRM∗ and the RRT∗ algorithms, and get the transition
probabilities of the chain using local consistency ideas of
the Markov chain approximation method. We prove that
the trajectories of these successive approximations converge
in distribution to the trajectories of the original stochastic
dynamical system. We propose an algorithm to solve the
nonlinear optimal filtering problem using these approxima-
tions and also provide an example of maximum a posteriori
trajectory estimation. The resulting algorithms draw their
features from both motion planning and Markov chain ap-
proximation method and are, (i) fairly general, i.e., designed
for a large class of stochastic dynamical systems, (ii) easy
to implement even for complex dynamical systems and (iii)
do not need to be explicitly tuned for different problems or
for platforms with different computational capabilities due
to their incremental nature.

This paper is organized as follows. The continuous-time
nonlinear filtering problem for a stochastic dynamical system
is defined in Section II. Section III is devoted to some pre-
liminary background and results. The construction of Markov
chain approximations is presented in Section IV. Section V
gives details of the application of these Markov chains for
filtering. Convergence proofs for the proposed algorithms
are outlined in Section VI. Experimental comparisons are
reported and discussed in Section VII. We provide a novel
direction for future work in Section VIII.

II. PROBLEM DEFINITION

Let R denote the set of real numbers and Rn×k denote the
set of all n × k real valued matrices. Consider a stochastic
differential equation of the form

dx(t) = f(x(t)) dt+ F (x(t)) dw(t), x(0) = x0, (1)

where (i) x(t) ∈ Rd for all t ≥ 0, (ii) f : Rd → Rd,
F : Rd → Rd×k are Borel-measurable functions, (iii)
the stochastic process {w(t) : t ≥ 0} is the standard
k-dimensional Brownian motion, and the random variable
x0 is bounded with probability one. A solution to the
differential form presented in Equation (1) is a stochastic
process {x(t) : t ≥ 0} that constitutes a solution to the
following integral equation:

x(t) = x0 +

∫ t

0

f(x(τ))dτ +

∫ t

0

F (x(τ)) dw(τ), ∀ t ≥ 0,

where the second term on the right hand side is the usual
Itô integral [20]. We tacitly assume throughout the paper
that the functions f(·) and F (·) are bounded and continuous
functions to guarantee weak existence and weak uniqueness
for the solutions of Equation (1).

In the standard nonlinear filtering problem [11], [20] one
attempts to estimate the process {x(t); t ≥ 0} using data
available till time t, defined by Yt := {y(s) : s ≤ t}, where
{y(t) : t ≥ 0} is a solution to the stochastic differential
equation of the form

dy(t) = g(x(t)) dt+G(x(t))dv(t), (2)

where g : Rd → Rm and G : Rd → Rm×l are Borel-
measurable functions, and {v(t) : t ≥ 0} is a l-dimensional
Brownian motion independent of the stochastic process
{x(t) : t ≥ 0}. Similarly, we assume that the functions
g(·) and G(·) are bounded and continuous to guarantee weak
existence and weak uniqueness of solutions to Equation (2).
As in [11], we formulate the problem such that the system
evolves inside a compact subset, denoted by S, of Rd. The
process is stopped if it hits the boundary of S. That is, define

τ := inf{s : x(s) /∈ So},
where, So denotes the interior of S. Then, the definition of
the problem is given as follows.

Problem 1 Given a set Yt := {y(s) : s ≤ t} of observations
generated by process (2), find an estimate x̂(t) such that (i)
E[‖x(t)− x̂(t)‖2] is minimized and (ii) the random variable
x̂(t) is square integrable and Ht-measurable, where Ht is
the σ-algebra generated by Yt.

It is well known that the error-minimizing state estimate x̂(t)
based on observations Yt is,

x̂(t) = E[x(t) | Yt].
In fact, this equation forms the basis of the Fujisaki-
Kallianpur-Kunita equation of filtering theory [20]. Let us
also note that the solution of the filtering problem can be
given by a representation as follows [21]. If x̃(t) is a process
with the same distribution as that of x(t) but independent of
(x(t), y(t)), and φ(·) is any continuous real-valued function,
then the solution of the filtering problem is,

E[φ(x(t)) | Yt] =
E[R(t)φ(x̃(t)) | Yt]

E[R(t) | Yt]
, (3)

where

R(t) = exp

[∫ t

0

g(x̃(s))T dy(s)− 1

2

∫ t

0

|g(x̃(s))|2ds
]
.

Essentially, in our approach, the Markov chain approximation
method generates a process x̃(t) which has the same law as
the original process x(t). Equation (3) which is really the
limiting version of Bayes’ rule then gives the optimal filter.

III. PRELIMINARIES

A. Discrete Markov Chains

A Markov chain is denoted by the tuple M = (S, P ),
where S ⊂ S is a finite set of states and P (· | ·) : S × S →
R≥0 is a function that denotes the transition probabilities,
i.e., the function P (z | z′) is the probability that the next
state is z given that the current state is z′. As a conditional
probability mass function, P satisfies

∑
z∈S P (z | z′) = 1 for

all z′ ∈ S. The trajectory of a Markov chain starting from
an initial state z0 is denoted by the sequence {ξi : i ∈ N}
of random variables that satisfy (i) ξ0 = z0 and (i) P(ξi+1 =
z | ξi = z′) = P(z | z′) for all z, z′ ∈ S and all n ∈ N.

B. Optimal Filter on a Markov chain

The optimal filtering problem for a discrete Markov chain
is very similar to Problem 1. Given a Markov chain M =
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(S, P ) and a set Yk = {yi : i = 1, 2, . . . , k} of discrete-time
observations coming from an equation of the form yk =
g(ξk) + G(ξk)ṽ, where, ṽ is unit-variance white Gaussian
noise, we can calculate the conditional distribution φk(z) =
P(ξk = z |Yk) to be

φn(z) =
∑
z′∈S

P(ξn = z, ξn−1 = z′ |Yn),

which can be written using recursive Bayes’ rule as

φn(z) = η
∑
z′∈SP(yn | ξn = z, ξn−1 = z′) ×

P(ξn = z | ξn−1 = z′) φn−1(z′), (4)

where η is a normalization constant and φ0(z) is the initial
distribution of states. Note that the probability P(yn | ξn =
z, ξn−1 = z′) becomes P(yn | ξn = z) under our observation
equation. This formulation is similar to estimation on Hidden
Markov Models [22] except for the fact that observations
come from an observation space instead of a finite set. So
long as we can calculate P(yn | ξn = z), the same formulae
hold. Also note that the observations in Equation (2) are
often approximated [12] by discretizing them at times kδ as

yk = g(x(kδ))δ +G(x(kδ))[v(kδ)− v(kδ − δ)],
which is the conventional discrete observation model

yk = g̃(xk) +G(xk) ṽk,

with g̃(xk) = g(x(kδ)) δ and ṽk = v(kδ)− v(kδ− δ) being
the white Gaussian noise constructed from the continuous
time Brownian motion v(t). Note that ṽk need not be
Gaussian noise in the above equation. v(t) however needs
to be Brownian motion to formally guarantee existence and
uniqueness of solution to Equation (2).

C. The Markov Chain Approximation Method

Let M = (S, P, T ) be a Markov chain where T is the set
of functions ∆t : S → R>0 that associate a time interval
to each state in S. The function ∆t is called the function
of interpolating times, or a holding time for short. Roughly,
∆t(z) is the time that the chain spends at state z, before
making another transition. Given an initial state z0 ∈ S, let
{ξi; i ∈ N} denote the trajectory of the the Markov chainM
starting from z0. ξ(·) is the continuous-time interpolation of
such trajectories under holding times ∆t i.e.,

ξ(τ) = ξi for all τ ∈ [ti, ti+1),

where ti =
∑i
j=1 ∆t(ξj). For any realization ξ(t, ω) of the

stochastic process {ξ(t); t ∈ R≥0}, the function ξ(·, ω) is
continuous from the left and has limits from the right. i.e.,
ξ(t, ω) ∈ Dd[0,∞). Hence, ξ can be thought of as a random
mapping that takes values in the function space Dd[0,∞).

Given a continuous time interpolation, we can come up
with conditions under which the trajectories of a sequence
of Markov chains converge to the trajectories of the original
process described by Equation (1). Let {Mn;n ∈ N}, where
Mn = (Sn, Pn, Tn), denote a sequence of Markov chains.
For each n ∈ N, let {ξni ; i ∈ N} be the trajectory of Mn

with initial state distributed according to some distribution
πn. The sequence of Markov chains {Mn;n ∈ N} is said

to be locally consistent with the original system described
by Equation (1) if the following criteria are satisfied for all
z ∈ S.

◦ lim
n→∞

∆tn(z) = 0, (5)

◦ lim
n→∞

E[ξni+1 − ξni | ξni = z]

∆tn(z)
= f(z), (6)

◦ lim
n→∞

Cov[ξni+1 − ξni | ξni = z]

∆tn(z)
= F (z)F (z)T . (7)

As stated in the following theorem, under mild techni-
cal assumptions, local consistency implies the convergence
of continuous-time interpolations of the trajectories of the
Markov chain to the trajectories of the stochastic dynamical
system described by Equation (1).

Theorem 2 (Theorem 10.4.1 in [11]) Assume that f(·)
and F (·) are bounded and continuous. Let {Mn;n ∈ N} be
a sequence of Markov chains that are locally consistent with
stochastic dynamical system described by Equation (1). For
each n ∈ N, let {ξn(t); t ∈ R≥0} denote the continuous-time
interpolation to the trajectory of Mn. Then, (ξn(·)) has a
subsequence that converges in distribution to (x(·)) that
satisfies

x(t) = x0 +

∫ t

0

f(x(s))ds+

∫ t

0

F (x(s)) dw(s),

where x0 is distributed according to limn→∞ πn, πn being
the prior distribution of the initial state on Mn.

Example Consider the system dx = −x dt+σ dw on some
bounded interval of S ⊂ R≥0 with a regular discretization
of distance h. In this example, any state x in the Markov
chain is only connected with its neighbors x− h and x+ h.
Roughly, the Markov chain transitions to the right using only
diffusion whereas it uses both drift and diffusion to go left.

P (x+ h |x) =
σ2/2

c
and P (x− h |x) =

σ2/2 + hx

c
These transition probabilities sum up to 1, i.e., c = (σ2 +
hx). Finally, local consistency conditions are satisfied if we
choose ∆th = c−1h2.

IV. CONSTRUCTION OF APPROXIMATING CHAINS

This section describes some primitive procedures and the
algorithm for the construction of discrete Markov chains.

A. Primitive procedures

a) Sampling: The Sample procedure returns states
sampled independently and uniformly from S ⊂ Rd.

b) Neighboring states: Given z ∈ S and a finite set
S ⊆ S of states, the procedure Near(z, S) returns the set of
all states that are within a distance of r = γ (log n/n)1/d

from z, i.e.,

Near(z, S) =

{
z′ ∈ S, z′ 6= z : ‖z′ − z‖ ≤ γ

(
logn
n

)1/d
}

where n = |S|, d = dim(S) and γ > 0 is a constant that will
be specified in Section VI. Given a state z ∈ S, let Znear
be the set of states returned by Near(z, S).
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c) Time Intervals: Given a state z ∈ S, the procedure
ComputeHoldingTime(z, S) returns a holding time

∆t(z) = r2

‖F (z)FT (z)‖2+r‖f(z)‖2 ,

where r is as given in the procedure Near(z, S). The
expression of ∆t(z) is motivated by ∆t = distance

average velocity

and ensures that the system approximately remains within a
ball of radius r centered at z after traveling for time ∆t(z).
As seen from the local consistency conditions, we only need
∆t(z) → 0 which happens as r → 0 i.e., n → ∞ making
the exact expression is quite flexible.

d) Transition Probabilities: Local consistency condi-
tions translate into a linear program for finding the transition
probabilities. However, we can also use a local Gaussian to
get the probabilities as follows. Given a state z ∈ S and a fi-
nite set Znear ⊂ S, the ComputeTransProb(z, Znear,∆t(z))
returns a function p(· | z) which is computed as follows.
Let Nµ,Σ(·) denote the density of the (possibly multivariate)
Gaussian distribution with mean µ and variance Σ. Define the
transition probabilities as p(z′ | z) = η Nµ,Σ(z′) where µ =
z + f(z)∆t(z) and Σ = F (z)F (z)T∆t(z) and the constant
η ensures

∑
z′∈Znear

p(z′ | z) = 1. Lemma 3 in Section VI
proves that this satisfies local consistency conditions in the
limit.

B. Incremental construction of the Markov chain

Algorithm 1 uses the procedures described above to gener-
ate the Markov chain. In particular, once it has a chainMn,
it adds the (n+ 1)th sample to create a more refined chain
Mn+1. Algorithm 1 thus creates the sequences of Markov
chains upon which we perform filtering.

Algorithm 1: Incremental Markov chain Construction
1 n← 0;
2 while n < N do
3 z ← Sample();
4 Sn ← Sn−1 ∪ {z};
5 (Sn, Pn, Tn)←

ConnectState(z, (Sn, Pn−1, Tn−1));
6 Znear ← Near(z, Sn);
7 for znear ∈ Znear do
8 (Sn, Pn, Tn)←

ConnectState(znear, (Sn, Pn, Tn));

9 n← n+ 1;

10 return (SN , PN , TN );

Algorithm 2: ConnectState(z, (S, P, T ))

1 ∆t(z)← ComputeHoldingTime(z, S);
2 Znear ← Near(z, S);
3 P (· | z)← ComputeTransProb(z, Znear,∆t(z));
4 T (z)← ∆t(z);
5 return (S, P, T );

C. Batch construction of the Markov chain

If N samples are drawn before-hand instead of sampling
incrementally, we can get rid off lines 6-8 in Algorithm 1.
The holding times ∆t(z) are then a function of the final

N . Let us call this version the “batch construction” of the
Markov chain. We will use it as an intermediate step in the
proof for the incremental algorithm.

Algorithm 3: Batch Markov chain construction
1 n← 0;
2 while n < N do
3 z ← Sample();
4 S ← S ∪ {z};
5 n← n+ 1;

6 for z ∈ SN do
7 (SN , PN , TN )←

ConnectState(z, (SN , PN , TN ));

8 return (SN , PN , TN );

D. Computational complexity

The Near procedure takes worst case O(log n) time using
approximate nearest neighbor algorithms [23]. Note that the

expected number of samples in a ball of radius γ
(

logn
n

)1/d

is O(log n). Hence, the ComputeTransProb procedure takes
O(log n) time. The complexity of ConnectState is thus
O(log n) and it executes for an expected O(log n) samples in
lines 7-8. Thus, the computational complexity of creating the
incremental Markov chain in Algorithm 1 is O(n (log n)2).
This reduces to O(n log n) if we sample the states before-
hand as in Algorithm 3.

V. FILTERING ON MARKOV CHAIN APPROXIMATIONS

We use Equation (4) to propagate estimates on the Markov
chain constructed in Section IV. This requires that we know
the single step transition probabilities, i.e., roughly, the
holding times of all states need to be the same. This section
details the construction of such a Markov chain.

We use the Markov chain obtained in Section IV with
holding times ∆t(z), possibly different for different z ∈ S
along with a discretization δ of the time axis to obtain a
modified chain Mδ

n = (Sn, Pn, δ) so that the holding time
of every state is δ. This corresponds to augmenting the state-
space with a time dimension. Given a state z ∈ Sn and a
finite set Znear ⊂ Sn, the ComputeTransProb procedure is
replaced by a new ComputeTransProbTime(z, Znear,∆t, δ)
that returns a probability density function over Tδ × Znear,
where Tδ = {0, δ, 2δ, . . . , }. This probability density is
denoted by pδ(· | kδ, z) defined for z ∈ S and k ∈ {1, 2, . . . }.
Let p(· | z) = ComputeTransProb(z, Znear,∆t(z)) be com-
puted as described in Section IV-A. Then, pδ(· | kδ, z) is
constructed from p(· | z) as,

1− pδ
(
kδ + δ, z | kδ, z

)
=

δ

∆t(z)

pδ
(
kδ, z | kδ, z′

)
1− pδ

(
kδ + δ, z | kδ, z

) = p(z | z′) (8)

A short calculation verifies that Equations (8) also satisfy the
local consistency conditions and the modified Markov chain
can be used for filtering using Equation (4).
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Equation (8) suggests that δ ≤ minz∈Sn ∆t(z). If the
Markov chain is obtained from Algorithm 3, we fix a
δ = minz∈Sn ∆t(z) and modify the transition probabilities
of every state z ∈ Sn using Equations (8). On the other
hand, if the Markov chain is being constructed incrementally
using Algorithm 1, we cannot fix such a δ because ∆t(z)
is decreasing as n → ∞. Instead, we incrementally reduce
the time discretization as δnew = δcurrent/2 and recalculate
probabilities for all states in Sn every time we add a new
state zn+1 that has ∆t(zn+1) ≤ δcurrent. Since δ ∼ ∆t(z) =
O(( logn

n )2/d) from Section IV-A, the two successive values
of n, n1, and n2 when we have to recalculate the probabilities
are exponentially increasing i.e., n2 ∼ n12d/2 which gives
an amortized complexity of O(n(log n)2).

Let us note a few features of the modified Markov chain.
For a time-homogeneous SDE, the transition probabilities are
dependent only on the state and not on any particular time.
Hence, it is not necessary to compute the transition proba-
bilities for each time in Tδ separately in the implementation.
The filtered estimate calculated using Equation 4 converges
to the optimal continuous-time filtered estimate as δ → 0 and
n →∞. We prove this in Section VI. Also, if observations
are discrete with an interval ∆, choose δ to be a factor of
∆ along with the constraint that δ ≤ minz∈Sn ∆t(z) while
getting Mδ

n from Mn and propagate Equation (4) without
the observation probability ∆/δ times before incorporating
a new observation.

VI. ANALYSIS

The theorems in this section operate along with Theorem
2 to prove that the approximation generated by Algorithm 1
converges, in some suitable sense to the original process
described by Equation (1). In particular, they prove that the
sequence of Markov chains {Mn;n ∈ N} can be generated
incrementally using uniform random sampling.

Lemma 3 The Gaussian approximation presented in the
ComputeTransProb procedure satisfies the local consis-
tency conditions given in equations (6) and (7).

Proof: Let φ(x(t)) denote the probability density
without observations of the stochastic dynamics given in
Equation (1). The Fokker-Plank equation can then be used
to compute this density as,
∂

∂t
φ(x(t)) =

[
− ∂

∂x
f(x) +

1

2

∂

∂x
F (x)FT (x)

]
φ(x(t))

The solution for small times ∆t can then be written to obtain
[24],

P (x′, t+ ∆t |x, t) =

1√
2πF (x)FT (x)∆t

exp

(
−1

2

[x′ − x− f(x, t)∆t]2

F (x)FT (x)∆t

)
The Gaussian for the transition probabilities in the
ComputeTransProb procedure is thus the small time so-
lution of the Fokker-Planck equation. Also, it can be proved
that the number of samples in the neighborhood of every
sample (in every grid cell Gn(i) of Theorem 4 to be precise)

is increasing [16], i.e. the small time solution of the Fokker-
Plank equation becomes exact as n→∞.

Theorem 4 The Markov chain (Sn, Pn, Tn) returned by Al-
gorithm 3 is locally consistent with the stochastic dynamical
system described by Equation 1, with probability one.

Proof: The transition probabilities are consistent by
Lemma 3. Hence, we only need to prove that using Algo-
rithm 3, every state has non-zero probability of transition to
another state, i.e. every state is connected to at least one other
state or that the Markov chain is irreducible. The analysis
here is similar to the analysis in [16], [19].

For each n ∈ N, divide the state space S into grid cells
with side length γ

2 (log n/n)1/d as follows. Define the grid
cell Gn(i) for i ∈ Zd as

i

(
γ

2

log n

n

)1/d

+

[
−1

4
γ

(
log n

n

)1/d

,
1

4
γ

(
log n

n

)1/d
]d
,

where [−a, a]d denotes the d-dimensional cube with side
length 2 a centered at the origin. Hence, the expression
above translates the d-dimensional cube with side length
γ
2 (log n/n)1/d to the point with coordinates i γ2 (log n/n)1/d.
Let Kn denote the indices of set of all cells that lie
completely inside the state space S, i.e., Kn = {i ∈ Zd :
Gn(i) ⊆ S}.

We claim that for all large n, all grid cells in Kn contain
at least one vertex of Sn. Given an event A, let Ac denote its
complement. Let An,k denote the event that the cell Gn(k)
contains a vertex from Sn. Then, for all k ∈ Kn,

P
(
Acn,k

)
=

(
1− (γ2 )−d

µ(S)

log n

n

)n
≤ exp

(
−((

γ

2
)d/µ(S)) log n

)
= n−( γ2 )d/µ(S),

where µ(S) denotes Lebesgue measure assigned to S . Let
An denote the event that all cells Gn(i) contain at least one
vertex of Sn. Then,

P(Acn) = P
((⋂

k∈Kn
An,k

)c)
= P

(⋃
k∈Kn

Acn,k

)
≤
∑

k∈Kn
P
(
Acn,k

)
= |Kn|n−( γ2 )d/µ(S),

where the first inequality follows from the union bound
and |Kn| denotes the cardinality of the set Kn. Merely
calculating the maximum number of cubes that can fit into
S, the latter quantity can be bounded by

|Kn| ≤
µ(S)

(γ2 )d logn
n

=
µ(S)

(γ2 )d
n

log n
.

Hence,

P (Acn) ≤ µ(S)

(γ2 )d
n

log n
n−( γ2 )d/µ(S)

≤ µ(S)

(γ2 )d
n1−( γ2 )d/µ(S),

which is summable for all γ > 2 (2µ(S))1/d. Hence, by
the Borel-Cantelli lemma, the probability that Acn occurs
infinitely often is zero, which implies that the probability
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that An occurs for all large n is one. Since the radius of
the ball in the procedure Near is γ( logn

n )1/d, every state
z is connected to at least one other state. Finally, since,
∆t(z) → 0 as n → ∞ we have proved that Algorithm 3
is locally consistent.

Theorem 5 Incremental construction of the approximating
chain using Algorithm 1 is also locally consistent for large
n, with probability one.

Proof: The proof of connectivity of the Markov chain is
the same as the proof of Theorem 4 whereas Equations (6)-
(7) are satisfied for any state z ∈ ∪i∈NSi by Lemma 3. We
only to show that Equation (5) is satisfied, i.e, ∆t(z) for any
state z that is added to the Markov chain at some iteration,
say i, goes to zero. Note that, calling ConnectState on an
existing state always results in reduction of ∆t(z) because n
is increasing. We thus essentially prove that z is reconnected
to its neighbors (which are changing with n) infinitely often.

Fix some iteration i and some state z ∈ Si. Let An, defined
for all n > i, denote the event that the state z belongs to
Near(zn, Sn) of the newly node zn at iteration n. It is thus
inside the ball of volume γd( logn

n ) centered at zn. Hence,
P(An) = γd

µ(S) ( logn
n ). Since

∑
P(An) = ∞ and the event

An is independent from Ai for all i 6= n, Borel-Cantelli
lemma implies that P(lim supn→∞An) = 1. Hence, any
state z is reconnected infinitely often, with probability 1.

Theorems 2, 4, and 5 imply that the trajectories of the suc-
cessive Markov chains (Sn, Pn, Tn) converge in distribution
to the trajectories of the system described by Equation (1).

Theorem 6 (see Theorem 4.1 in [12]) For any continuous
real-valued function φ(·), for any T < ∞, if ξn(·) is a
sequence which converges in distribution to the solution to
Equation (1) i.e., x(t), as n → ∞ and is independent of
(x(t), y(t)), then,

lim
n→∞

sup
t≤T

∣∣∣E[φ(ξn(t)) | Yt]− E[φ(x(t)) | Yt]
∣∣∣ = 0.

The above theorem coupled with the formula given in
Equation (3) proves that the filtered density calculated on
the Markov chain Mδ

n converges to the optimal nonlinear
filtering density as n→∞ and δ → 0.

VII. EXPERIMENTS

This section is devoted to experiments using the algorithms
proposed in this paper.

A. Convergence of trajectories
We can numerically verify the results of Theorems 4 and

5 by a Monte-Carlo simulation. Since the distributions of
trajectories converge, the distribution of states at any fixed
time t also converges. Also, by definition, the moments of
the distributions of states at any time t converge, which we
will verify. Consider a 2-dimensional single integrator with
drift but no observations,

dx1 = −1

2
x1 dt+ 0.03 dw1

dx2 = −x2 dt+ 0.03 dw2 (9)

104 105

Number of samples

0.020

0.025

0.030

0.035

0.040

0.045
1st moment

(a)

104 105

Number of samples

0.016

0.018

0.020

0.022

0.024

0.026

0.028
2nd moment

(b)

Fig. 2: Figure (a) shows |E[ξn(T )]−E[x(T )]| versus the number
of samples n while Figure (b) shows a similar plot for the 2nd

moment, i.e. |E[ξn(T )2]− E[x(T )2]|

Figure 1 simulates 50, 000 trajectories of the Markov chain
and the actual system dynamics until a time T = 2 secs and
looks at the distribution of states at five specific time instants.
We can also compare the moments of the distribution of the
states x(T ) and xMarkov(T ) for different number of states
in the Markov chain. Figure 2 shows the convergence of the
error in moments calculated over 50, 000 trajectories with
increasing number of states in the Markov chain ranging
from 1, 000 to 100, 000.

B. Filtering

We compare the proposed filter with other filtering algo-
rithms like EKF and particle filter on a number of examples
in this section.

Consider a drifting ship [25] confined to move within a
disc of radius 9 units. A large force fi(x(t)) acts on the ship
to make it move inwards if it is moving outwards when it
goes out of this disc as shown in Equation (10). The ship
is like a 2-dimensional double integrator with forces f1(x),
f2(x) with observations being range and heading as given
in Equation (11). Figures 3 shows that the tracking error is
similar to that of the particle filter.

fi(x(t)) =
−50xi√
x2

1 + x2
2

I{√x2
1+x2

2≥9}I{x1x3+x2x4≥0}

dx1 = x3 dt+ e dw1

dx2 = x4 dt+ e dw2

dx3 = f1(x) dt+ e dw3

dx4 = f2(x) dt+ e dw4 (10)

dy1 = [x2
1 + x2

2]1/2dt+ e1 dv1

dy2 = tan−1(x2/x1)dt+ e2 dv2 (11)

Next, we consider a noisy Van der Pol oscillator given by
Equation (12). This system is highly non-linear with a stable
limit cycle for µ > 0.

dx1 = x2 dt+ e1 dw1

dx2 = [−x1 + µ x1 (1− x1
2)] dt+ e2 dw2

dy = x1 dt+ e3 dv (12)

The last equation is the scalar observation equation and
µ = 2. Figure 4 shows the performance of the sampling
filter on this system. Note that this system is typically hard
for the EKF which accumulates linearization error due to
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(b) 10, 000 samples
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(c) 40, 000 samples

Fig. 1: Scatter plots show the distribution of states (x1, x2) of the Markov chain at five specific time instants t ∈ {0, 0.3, 0.5, 1.0, 2.0}
secs. Translucent ellipses are 3σ ellipses from the simulation of the stochastic system as given in Equation (9). The dotted blue and red
lines show the means of the actual and Markov trajectories respectively for t ∈ [0, 2] secs. The mean trajectories converge i.e. the first
moment of the distribution converges as more samples are added. The variance shown as a scatter plot also converges. Both the Markov
chain and the original system are started from the nearest state to (0.8, 0.8) in Sn.
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(a) x1(t)
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filter
kf
pf

(b) x2(t)

Fig. 3: Filter estimate for the drifting ship in Equation (10) with
e = 0.3, e1 = 0.03 and e2 = 0.03. The EKF error is very large
near (0, 0), when the observation nonlinearity is large. The average
estimated state error i.e., E[ 1

T

∫ T
0
‖x − x̂‖dt] is 5.02 × 10−3 for

the HMM filter, 5.2 × 10−3 for the particle filter both with 100
particles (see Section VII-C) and 1.36× 10−2 for the EKF.

0.2 0.4 0.6 0.8 1.0
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x1(t)

sys
filter
kf
pf

(a)
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x2(t)

sys
filter
pf

(b)

Fig. 4: x1(t) and x2(t) for a Van der Pol oscillator. Mean error of
the estimate averaged over 100 runs was 0.1816 for the proposed
filter with 100 particles and 0.1849 for the particle filter with 100
particles. The EKF estimate for x2(t) completely diverges.

varying time scales and, predictably, the EKF estimate of
x2(t) completely diverges. The proposed filter took 0.2 secs
to execute while the PF took 0.013 secs for 100 samples
with similar average error. This example shows that the
proposed filter performs as well as other filters both in terms
of estimate and is also computationally tractable.

Next we compare these filters on a modified version
of a parameter estimation problem from [26] as given in

2 4 6 8 10
t(s)

0.0

0.1

0.2

0.3

0.4

0.5

x(t)

sys
filter
pf

(a)

2 4 6 8 10
t(s)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

φ(t)

sys
filter
pf

(b)

Fig. 5: x(t) and φ(t) for the parameter estimation problem with
σx = 0.1, σv = 0.1 and σφ = 0.1. Average state error over 100
Monte-Carlo runs was 1.44 for the proposed filter whereas it was
1.878 for the particle filter with 100 samples for both.

Equation (13). The parameter we are estimating is φ = 0.5.

dx = x cos(2πφx) dt+ σx dw1

dφ = 0 dt+ σφ dw2

dy = x dt+ σv dv. (13)

To begin with, it is only known that φ ∼ N (0.8, 1). Append
the state-space with φ and inject small noise dw2 into
its dynamics for estimation. This is a hard problem for a
particle filter because the conditional density of φ given
data is not in the exponential family [26] which makes
resampling difficult. Figure 5 shows an example run with
the particle filter using multinomial sampling. The proposed
filter consistently ends up with lower estimation error.

C. Implementation details

Heuristics specific to the filtering problem applied to our
Markov chain construction can vastly improve the com-
putational complexity in practice. As proposed in Algo-
rithms 1 and 3, we sample the bounded state-space uniformly.
Roughly, this results in the convergence rate depending upon
the size of state-space. In order to avoid this, we can concen-
trate the samples around the estimated posterior to create the
Markov chain. In the examples given in Section VII-B, the
mean and variance of the prior (assumed to be Gaussian)
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are propagated for a time δ to get the posterior which is
used to concentrate samples. We now show an application to
the MAP decoding problem where we can directly use the
incremental Markov chain without this heuristic.

D. Maximum a posteriori (MAP) trajectory

We will look at discrete time MAP trajectory estimation
(decoding) in this section. Given observations till a time t
denoted as Yt = {y1, y2, . . . , yt}, it finds the most probable
trajectory x̂t = {x1, . . . , xt} i.e.,

x̂t = arg max
ξ

P(ξt |Yt)

For a Markov chain Mδ
n = (Sn, Pn, δ), the Viterbi algo-

rithm [27] gives the most probable trajectory after t observa-
tions. The incremental Markov chain for filtering constructed
in Section V can be used directly in the Viterbi algorithm.
The observation probability in this case is given as, P(yk | z)
for z ∈ Sn which can be obtained from the observation
model. Figure 6 shows the decoded trajectory for x1(t) of
a 2D linear system with dynamics dx1 = −x1dt + σdw1

and observations dy1 = x1dt + γdv1. The corresponding
equations of x2(t) are similar.

0.0 0.5 1.0 1.5 2.0
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

x
(t

)

1, 000 samples

sys
decode

(a)

0.0 0.5 1.0 1.5 2.0
t(s)

0.0

0.2

0.4

0.6

0.8

x
(t

)

20, 000 samples

sys
decode

(b)

Fig. 6: Decoded trajectories with σ = 0.1 and γ = 0.1. Total
error between the actual and estimated trajectory, calculated as,∫ T
0
‖x(t)−x̂(t)‖22 dt is 11.34×10−3 with 1, 000 samples in Figure

(a) whereas it is 3.3× 10−3 with 20, 000 samples in Figure (b).

VIII. CONCLUSION

We proposed the Markov chain approximation method as
a way to generate a completely discrete approximation for
a large class of continuous time, continuous state stochastic
systems. The crucial idea of this paper is that this method
not only provides state estimates but also generates a rich
approximation for the whole dynamical system along with
it. The algorithms proposed here can generate this approxi-
mation in an incremental fashion and hence are amenable to
practical applications. These algorithms were applied to the
nonlinear optimal filtering problem and experiments show
that they compare favorably to the state of the art. There
are straightforward applications to a number of related state-
estimation problems such as smoothing and MAP decoding,
the latter we demonstrate in this paper. Directions for future
work include creating discrete approximations of POMDPs
that can be solved relatively easily to converge to an opti-
mal policy for the general continuous time POMDP in an
incremental manner.
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