
Probabilistically-sound and Asymptotically-optimal Algorithm for
Stochastic Control with Trajectory Constraints

Vu Anh Huynh Emilio Frazzoli

Abstract— In this paper, we consider a class of stochastic
optimal control problems with trajectory constraints. As a
special case, we can constrain the probability that a sys-
tem enters undesirable regions to remain below a certain
threshold. We extend the incremental Markov Decision Process
(iMDP) algorithm, which is a new computationally-efficient
and asymptotically-optimal sampling-based tool for stochastic
optimal control, to approximate arbitrarily well an optimal
feedback policy of the constrained problem. We show that
with probability one, in the presence of trajectory constraints,
the sequence of policies returned from the algorithm is both
probabilistically sound and asymptotically optimal. We demon-
strate the proposed algorithm on motion planning and control
problems subject to bounded collision probability in uncertain
cluttered environments.

I. INTRODUCTION

Planning and controlling dynamical systems in uncertain
environments is a fundamental and essential problem in
several fields, ranging from autonomous urban navigation,
robotics [1], [2] to management science, economics, finance
[3], [4] and healthcare [5], [6]. Given a system with dynamics
described by a controlled diffusion process, the stochastic
control problem is to find an optimal feedback policy to
optimize an objective function.

It is well known that closed-form or exact algorith-
mic solutions for general continuous-time, continuous-space
stochastic optimal control problems are computationally
challenging [7]. Thus, many approaches have been pro-
posed to investigate approximate solutions. Deterministic
approaches such as discrete Markov Decision Process ap-
proximation [8], [9] and solving the associated Hamilton-
Jacobi-Bellman PDE [10]–[12]) have been proposed, but
the complexities of these approaches scale poorly with the
dimension of the state space. Remarkably, as noted in [7],
[13], [14], randomized algorithms provides a possibility to
alleviate the curse of dimensionality by sampling the state
space while assuming discrete control inputs.

Sampling-based algorithms can also be traced back to
research in deterministic motion planning, which has been
conducted in parallel with the stochastic optimal control
research [15]–[17]. The deterministic motion planning prob-
lem aims to find a sequence of inputs that drives a system
with noise-free dynamics from its initial condition to a goal
region, while avoiding collision with obstacles. Sampling-
based algorithms such as the Rapidly-exploring Random Tree
(RRT) [16] and its asymptotically-optimal version RRT∗ [17]

The authors are with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, MA 02139. {vuhuynh, frazzoli}@mit.edu

have been shown to be very effective for computing solutions
to deterministic path planning in robotics on several plat-
forms [1], [18]. This class of algorithms computes open-loop
plans in the obstacle-free space by constructing exploring
trees that require exact point-to-point steering from an initial
state to a goal region. As a result, these algorithms are not
aware of inherent uncertainty in system dynamics even when
the system constantly re-plans after being out of its open-loop
plans due to the underlying process noise. Therefore, RRT-
like algorithms are not suitable for the purpose of stochastic
optimal control.

Very recently, a novel computationally-efficient sampling-
based algorithm called the incremental Markov Decision
Process (iMDP) algorithm has been proposed to provide
asymptotically-optimal solutions to a broad class of chal-
lenging stochastic optimal control problems [19]. Unlike
exploring trees in RRT-like algorithms, the iMDP algorithm
uses a different structure to address the difficulty caused
by process noise. In particular, a sequence of finite-state
Markov Decision Processes (MDPs) are generated to con-
sistently approximate the original continuous-time stochastic
dynamics. The finite models serve as incrementally refined
models of the original problem. Consequently, distributions
of approximating trajectories and control processes returned
from these finite models approximate arbitrarily well distri-
butions of optimal trajectories and optimal control processes
of the original problem.

Compared to other algorithms for stochastic optimal con-
trol [8], [10]–[14], [20], the iMDP algorithm is the first
practical algorithm that handles continuous time, continuous
space as well as continuous control space. The enabling tech-
nical ideas lie in novel methods to compute Bellman updates.
Moreover, the algorithm guarantees convergence to globally
optimal solutions while maintaining low time and space
complexity in the following sense. When the optimization
over the continuous control space in the Bellman equation
can be solved exactly, the sequence of computed approximate
cost-to-go for each finite-state MDP converges almost surely
to the optimal cost-to-go of the original continuous problem.
When the mentioned optimization is solved by sampling
controls, the above convergence happens in probability.

Although the iMDP algorithm provides asymptotically-
optimal solutions to a single objective function, in practice,
we are often concerned with several aspects of control
policies represented by multiple functions of the controlled
trajectories. For instance, an autonomous car aims to reach a
goal with minimum time and at the same time minimize
the risk of collision with obstacles. An effective way to

model this situation is to optimize one of the functions and
set the remaining functions within some accepted ranges as
additional constraints. A possible method for solving the
mentioned constrained optimization is to use the Lagrangian
approach [21]–[23]. This approach requires numerical pro-
cedures to compute Lagrange multipliers before obtaining a
policy, which is often computationally demanding for high
dimensional systems.

In this paper, we formulate the stochastic optimal con-
trol problem with additional trajectory constraints that are
expressed in terms of expected functions of the controlled
trajectories. We extend the iMDP algorithm to solve the
constrained optimization incrementally in order to provide
anytime solutions after a small number of iterations. When
more computing time is allowed, the proposed algorithm
refines the solution quality in an efficient manner.

We note that trajectory constraints considered in this paper
encode a large set of performance measures for a given
policy. As a special case, we can constrain the probability
that a system driven by a policy enters undesirable regions
such as obstacles to remain below a certain threshold from
any starting state in the state space. In this context, the
considered problem is related to chance-constrained opti-
mization in some previous works such as [24]–[26]. Our
work, however, differs from these works in several aspects
as follows.

First, in [24], [25], the authors consider discrete-time
stochastic models constrained by bounded collision prob-
ability from a particular starting state and construct de-
terministic approximation by sampling entire trajectories
from that state. In contrast, we compute the probability of
collision induced by anytime feedback policies by building
locally consistent transition probabilities. The advantage of
our method is that the proposed algorithm constructs not
only the optimal cost-to-go function but also the collision
probability function over the entire state space under an
anytime policy. Thus, the policy is feasible if the collision
probability function is uniformly bounded by the specified
threshold. As a result, there are regions in the state space
where the associated collision probabilities are very small
compared to the threshold, and therefore, the algorithm is
able to find more aggressive controls in these regions.

Second, while the work presented in [26] can be used to
compute an upper bound of collision probability for a given
control policy, we present here a computationally-efficient
algorithm that finds an asymptotically-optimal feedback pol-
icy and at the same time respects the collision probability
constraint in a suitable sense.

The main contribution of this paper is an algorithm
that guarantees probabilistically-sound and asymptotically-
optimal solutions to the stochastic optimal control problem in
the presence of trajectory constraints. That is, all constraints
are satisfied with probability one, and the objective function
is minimized as the number of iterations approaches infinity.
We also show stronger results than those presented in [19],
which assert the almost-sure convergence of approximating
control policies to a globally optimal policy of the continuous
problem even when the Bellman update equation is solved by

sampling controls. We demonstrate the effectiveness of the
proposed algorithm on motion planning and control problems
subject to bounded collision probability in uncertain cluttered
environments.

This paper is organized as follows. A formal problem def-
inition is given in Section II. The extended iMDP algorithm
is described in Section III. The analysis of the proposed
algorithm is presented in Section IV. We present simulation
examples and experimental results in Section V and conclude
the paper in Section VI.

II. PROBLEM DEFINITION

In this section, we present a generic stochastic optimal
control formulation with definitions and technical assump-
tions as discussed in [19], [27]. We also explain how to
formulate trajectory constraints.

Stochastic Dynamics: Let dx, du, and dw be positive
integers. Let S be a compact subset of Rdx , which is the
closure of its interior So and has a smooth boundary ∂S.
Let a compact subset U of Rdu be a control set. The state of
the system at time t is x(t) ∈ S, which is fully observable
at all times.

Suppose that a stochastic process {w(t); t ≥ 0} is a dw-
dimensional Brownian motion on some probability space. Let
a control process {u(t); t ≥ 0} be a U -valued, measurable
process also defined on the same probability space such that
the pair (u(·), w(·)) is admissible [19]. Let Rdx×dw denote
the set of all dx by dw real matrices. We consider systems
with dynamics described by the controlled diffusion process:

dx(t) = f(x(t), u(t)) dt+ F (x(t), u(t)) dw(t),∀t ≥ 0 (1)

where f : S × U → Rdx and F : S × U → Rdx×dw
are bounded measurable and continuous functions as long
as x(t) ∈ So. The initial state x(0) is a random vector
in S. We assume that the matrix F (·, ·) has full rank. The
continuity requirement of f and F can be relaxed with mild
assumptions [19], [28].

We are interested in weak sense existence and weak
sense uniqueness of solutions to Eq. 1, which assert the
existence and uniqueness of the stochastic process x(·) via
the existence and uniqueness of its probability distribution.
As discussed in [19], [28], due to the boundedness of the
set S, and the definition of the functions f and F in Eq. 1,
we have a weak solution to Eq. 1 that is unique in the weak
sense [29].

Policy, Cost-to-go Function and Trajectory Constraints:
Markov controls are controls that depend only on the current
state, i.e., u(t) is a function only of x(t), for all t ≥ 0. A
function µ : S → U represents a Markov policy, which is
known to be admissible with respect to the process noise
w(·). Let Π be the set of all such policies. We define the
first exit time Tµ : Π→ [0,+∞] under policy µ as

Tµ = inf
{
t : x(t) /∈ So and Eq. 1 and u(t) = µ(x(t))

}
.

In other words, Tµ is the first time that the trajectory of the
dynamical system given by Eq. 1 with u(t) = µ(x(t)) hits
the boundary ∂S of S. The random variable Tµ can take
value ∞ if the trajectory x(·) nevers exit So.

The expected cost-to-go function under a policy µ is a
mapping from S to R defined as

Jµ(z) = Ez
[∫ Tµ

0

αt g
(
x(t), µ(x(t))

)
dt+ h(x(Tµ))

]
,

where Ez denotes the conditional expectation given x(0) =
z, g : S × U → R and h : S → R are bounded measurable
and continuous functions, called the cost rate function and
the terminal cost function, respectively, and α ∈ [0, 1) is the
discount rate. We further assume that g(x, u) is uniformly
Hölder continuous in x with exponent 2ρ ∈ (0, 1] for all
u ∈ U . That is, there exists some constant K > 0 such that

|g(x, u)− g(x′, u)| ≤ K||x− x′||2ρ2 , ∀x, x′ ∈ S.

We consider additional trajectory constraints under a pol-
icy µ of the form Cµ(z) ∈ Γ for all z in S where

Cµ(z) = Ez
[∫ Tµ

0

βt r
(
x(t), µ(x(t))

)
dt+ k(x(Tµ))

]
,

and Γ ⊂ R is some pre-specified accepted range. In the above
definition, r : S × U → R and k : S × U → R are bounded
measurable, continuous functions, and the discount rate β is
also in [0, 1). We note that the discontinuity of g, h, r and k
can be treated as in [19], [28]. For simplicity, we consider
one trajectory constraint in this paper, and handling multiple
trajectory constraints is exactly the same.

Intuitively, the above constraint enforces the expected
value, which is evaluated based on criteria encoded by r(·, ·)
and k(·), over the distribution of controlled trajectories under
the policy µ to be within Γ. Thus, the above formulation can
be used to specify a broad set of constraints. For instance,
in the context of autonomous cars, due to process noise,
there may be a positive probability of collision for a given
policy. When Γ = (0, 0.001], r(x, u) = 0 for all x and
u, and k(x) = 1 for x ∈ Xobs and 0 otherwise where
Xobs ⊂ ∂S is the obstacle region, for large discount rate
β ∈ [0, 1), the trajectory constraint specifies (arbitrarily well)
the probability that the trajectory x(·), starting from any state,
collides with obstacles is less than or equal to 0.1 percent.

The optimal cost-to-go function J∗ : S → R is defined
for all z ∈ S as follows:

J∗(z) = inf
µ∈Π

Jµ(z) subject to Cµ(z) ∈ Γ and Eq. 1.

A policy µ∗ is called optimal if Jµ∗ = J∗. For any ε > 0, a
policy µ is called an ε-optimal policy if ||Jµ − J∗||∞ ≤ ε.

We call a sampling-based algorithm probabilistically-
sound if the probability that the solution returned by the algo-
rithm is feasible approaches one as the number of samples
increases. In addition, we call a sampling-based algorithm
asymptotically-optimal if the sequence of solutions returned
from the algorithm converges to an optimal solution in a
suitable sense as the number of samples approaches infinity.
Solutions returned from algorithms with the above properties
are thus called probabilistically sound and asymptotically
optimal.

In this paper, we consider the problem of computing
the optimal cost-to-go function J∗ and an optimal policy
µ∗ if obtainable. Our approach, outlined in Section III,
approximates the optimal cost-to-go function and an optimal
policy in an anytime fashion using an incremental sampling-
based algorithm that is both probabilistically-sound and
asymptotically-optimal.

III. ALGORITHM

In this section, we first overview the Markov chain ap-
proximation technique and then present the extended iMDP
algorithm.

A. Markov Chain Approximation

A discrete-state Markov decision process (MDP) is a tuple
M = (X,A,P,G,H) where X is a finite set of states, A is
a set of actions that is possibly a continuous space, P (· | ·, ·) :
X × X × A → R≥0 is the transition probability function,
G(·, ·) : X × A → R is an immediate cost function, and
H : X → R is a terminal cost function. From an initial state
ξ0, under a sequence of controls {vi; i ∈ N}, the induced
trajectory {ξi; i ∈ N} is generated by following the transition
probability function P .

The Markov chain approximation method approximates
the continuous dynamics in Eq. 1 using a sequence of
MDPs {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and a sequence
of holding times {∆tn}∞n=0 that are locally consistent. In
particular, we construct Gn(z, v) = g(z, v)∆tn(z), Hn(z) =
h(z) for each z ∈ Sn and v ∈ U . We also require that
limn→∞ supi∈N,ω∈Ωn ||∆ξ

n
i ||2 = 0 where Ωn is the sample

space of Mn, ∆ξni = ξni+1 − ξni , and
• For all z ∈ S, limn→∞∆tn(z) = 0,
• For all z ∈ S and all v ∈ U :

lim
n→∞

EPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= f(z, v),

lim
n→∞

CovPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= F (z, v)F (z, v)T .

The main idea of the Markov chain approximation ap-
proach for solving the original continuous problem is to
solve a sequence of control problems defined on {Mn}∞n=0

as follows. A policy µn is a function that maps each state
z ∈ Sn to a control µn(z) ∈ U . The set of all such policies
is Πn. We define tni =

∑i−1
0 ∆tn(ξni) for i ≥ 1 and tn0 = 0.

Given a policy µn, the (discounted) cost-to-go due to µn is:

Jn,µn(z) = EzPn

[
In−1∑
i=0

αt
n
i Gn(ξni , µn(ξni)) + αt

n
InHn(ξnIn)

]
,

where EzPn denotes the conditional expectation given ξn0 =
z under Pn, and {ξni ; i ∈ N} is the sequence of states of
the controlled Markov chain under the policy µn and In
is termination time defined as In = min{i : ξni ∈ ∂Sn}
where ∂Sn = ∂S ∩Sn. The continuous trajectory constraint
is similarly approximated as Cn,µn(z) ∈ Γ where

Cn,µn(z) = EzPn

[
In−1∑
i=0

βt
n
i Rn(ξni , µn(ξni)) + βt

n
InKn(ξnIn)

]
,

where Rn(x, v) = r(z, v)∆tn(z), Kn(z) = k(z) for z ∈ Sn
and v ∈ U .

The optimal cost function, denoted by J∗n, satisfies

J∗n(z) = inf
µn∈Πn

Jn,µn(z) subject to Cn,µn(z) ∈ Γ, ∀z ∈ Sn.

An optimal policy, denoted by µ∗n, satisfies Jn,µ∗n(z) =
J∗n(z) for all z ∈ Sn. For any ε > 0, µn is an ε-optimal
policy if ||Jn,µn − J∗n||∞ ≤ ε.

The extension of iMDP outlined below is designed to
compute the sequence of optimal cost-to-go {J∗n}∞n=0, the
sequence of anytime control policies {µn}∞n=0 as well as
the induced trajectory-constraint values {Cn,µn(z)}∞n=0 in
an efficient iterative procedure.

B. Extension of iMDP
Before presenting the details of the algorithm, we discuss

a number of primitive procedures. More details about these
procedures can be found in [19], [27].

1) Sampling: The Sample() and SampleBoundary() pro-
cedures sample states independently and uniformly from the
interior So and the boundary ∂S, respectively.

2) Nearest Neighbors: Given z ∈ S and a set Y ⊆ S
of states. For any k ∈ N, the procedure Nearest(z, Y, k)
returns the k nearest states z′ ∈ Y that are closest to z in
terms of the Euclidean norm.

3) Time Intervals: Given a state z ∈ S and a number
k ∈ N, the procedure ComputeHoldingTime(z, k)
returns a holding time computed as follows:

ComputeHoldingTime(z, k) = γt

(
log k
k

)θςρ/dx
, where

γt > 0 is a constant, and ς, θ are constants in (0, 1) and
(0, 1] respectively. The parameter ρ ∈ (0, 0.5] defines the
Hölder continuity of the cost rate function g(·, ·) as in
Section II.

4) Transition Probabilities: Given a state z ∈ S, a subset
Y ∈ S, a control v ∈ U , and a positive number τ describing
a holding time, the procedure ComputeTranProb(z, v, τ, Y)
returns (i) a finite set Znear ⊂ S of states such that the
state z + f(z, v)τ belongs to the convex hull of Znear and
||z′− z||2 = O(τ) for all z′ 6= z ∈ Znear, and (ii) a function
p that maps Znear to a non-negative real numbers such that
p(·) is a probability distribution over the support Znear. It is
crucial to ensure that these transition probabilities result in
a sequence of locally consistent chains in the algorithm.

There are several ways to construct such transition prob-
abilities. One possible construction by solving a system
of linear equations can be found in [28] and is pre-
sented in [19], [27]. We can also compute the transi-
tion probabilities using local Gaussian distributions. We
choose Znear = Nearest(z + f(z, v)τ, Y, s) where s =
Θ(log(|Y |)). Let Nm,σ(·) denote the density of the (pos-
sibly multivariate) Gaussian distribution with mean m and
variance σ. Define the transition probabilities as follows:
p(z′) =

Nm,σ(z′)∑
y∈Znear

Nm,σ(y) , where m = z + f(z, v)τ and

σ = F (z, v)F (z, v)T τ . This expression can be evaluated
easily for any fixed v ∈ U . As |Znear| approaches infinity,
the above construction satisfies the local consistency almost
surely.

Algorithm 1: iMDP()
1 (n, S0, J0, µ0,∆t0)← (1, ∅, ∅, ∅, ∅);
2 while n < N do
3 (Sn, Jn, Cn, µn,∆tn)←

(Sn−1, Jn−1, Cn−1, µn−1,∆tn−1);

// Add a new state to the boundary
4 zs ← SampleBoundary();
5 (Sn, Jn(zs), Cn(zs), µn(zs),∆tn(zs))←

(Sn ∪ {zs}, h(zs), k(zs), ∅, 0) ;

// Add a new state to the interior
6 zs ← Sample();
7 znearest ← Nearest(zs, Sn, 1);
8 if (xnew, unew, τ)← ExtendBackwards(znearest, zs, T0) then
9 znew ← xnew(0);

10 cost = τg(znew, unew) + ατJn(znearest);
11 consV alue = τr(znew, unew) + βτCn(znearest);

// Discard if constraint value not in Γ
12 if consV alue 6∈ Γ then
13 continue ;

14 (Sn, Jn(znew), Cn(znew), µn(znew),∆tn(znew))←
(Sn ∪ {znew}, cost, consV alue, unew, τ) ;

// Perform Ln ≥ 1 updates
15 for i = 1→ Ln do

// Choose Kn = Θ
(
|Sn|θ

)
< |Sn| states

16 Zupdate ← Nearest(znew, Sn\∂Sn,Kn) ∪ {znew};
17 for z ∈ Zupdate do
18 Update(z, Sn, Jn, µn,∆tn);

19 n← n+ 1;

5) Backward Extension: Given T > 0 and two states
z, z′ ∈ S, the procedure ExtendBackwards(z, z′, T) returns
a triple (x, v, τ) such that (i) ẋ(t) = f(x(t), u(t))dt and
u(t) = v ∈ U for all t ∈ [0, τ], (ii) τ ≤ T , (iii) x(t) ∈ S for
all t ∈ [0, τ], (iv) x(τ) = z, and (v) x(0) is close to z′. If no
such trajectory exists, then the procedure returns failure. We
can solve for the triple (x, v, τ) by sampling several controls
v and choose the control resulting in x(0) that is closest to
z′.

6) Sampling and Discovering Controls: The procedure
ConstructControls(k, z, Y, T) returns a set of k controls
in U . We can uniformly sample k controls in U . Alterna-
tively, for each state z′ ∈ Nearest(z, Y, k), we solve for
a control v ∈ U such that (i) ẋ(t) = f(x(t), u(t))dt and
u(t) = v ∈ U for all t ∈ [0, T], (ii) x(t) ∈ S for all
t ∈ [0, T], (iii) x(0) = z and x(T) = z′.

The iMDP algorithm is presented in Algorithms 1-3.
The algorithm incrementally refines a sequence of finite-
state MDPs Mn = (Sn, U, Pn, Gn, Hn) and the associated
holding time function ∆tn that consistently approximates the
system in Eq. 1. In particular, given a state z ∈ Sn and
a holding time ∆tn(z), we define the stage-cost function
Gn(z, v) = ∆tn(z)g(z, v) for all v ∈ U and terminal-
cost function Hn(z) = h(z). Similarly, we define the
trajectory-constraint stage-cost Rn(z, v) = ∆tn(z)r(z, v),
and trajectory-constraint terminal-cost Kn(z) = k(z). We
also associate with z ∈ Sn a cost value Jn(z), a control
µn(z), and trajectory-constraint value Cn(z). The functions
Jn and Cn are referred to as cost value function and

Algorithm 2: Update(z ∈ Sn, Sn, Jn, µn,∆tn)
1 τ ← ComputeHoldingTime(z, |Sn|);

// Sample or discover Mn = Θ(log(|Sn|)) controls
2 Un ← ConstructControls(Mn, z, Sn, τ);
3 for v ∈ Un do
4 (Znear, pn)← ComputeTranProb(z, v, τ, Sn);
5 J ← τg(z, v) + ατ

∑
y∈Znear

pn(y)Jn(y);
6 C ← τr(z, v) + βτ

∑
y∈Znear

pn(y)Cn(y);

// Improved cost and feasible constraint
7 if J < Jn(z) and C ∈ Γ then
8 (Jn(z), Cn(z), µn(z),∆tn(z))← (J,C, v, τ);

Algorithm 3: Policy(z ∈ S, n)
1 znearest ← Nearest(z, Sn, 1);
2 return µ(z) = (µn(znearest),∆tn(znearest))

constraint value function over Sn respectively.
Initially, an empty MDP model is created. In every main

iteration of Algorithm 1, we construct a finer model based
on the previous model. In particular, a state is sampled from
the boundary of the state space (Lines 4-5). Subsequently,
another state, zs, is sampled from the interior of the state
space S (Line 6). The nearest state znearest to zs (Line 7) in
the previous model is used to construct a new state znew by
using the procedure ExtendBackwards at Line 8. Unlike
the original version of iMDP [19], we only accept znew

if an estimate of the associated constraint value belongs to
the feasible set Γ (Line 13). This modification enables the
sampling process to focus more on the state space region
from which trajectories are likely to be feasible. Accepted
new states are added to the state set, and their associated
cost value Jn(znew), constraint value Cn(znew), and control
µn(znew) are initialized at Line 14.

We then perform Ln ≥ 1 updating rounds in each iteration
(Lines 16-18). In particular, we construct the update-set
Zupdate consisting of Kn = Θ(|Sn|θ) states and znew where
|Kn| < |Sn|. For each of state z in Zupdate, the procedure
Update as shown in Algorithm 2 implements the following
Bellman update:

Jn(z) = min
v∈U(z)

{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]},

where

U(z) = {v ∈ U |Rn(z, v)+β∆tn(z)EPn [Cn−1(y)|z, v] ∈ Γ}.

The details of the implementation is as follows. A
set of Un controls is constructed using the procedure
ConstructControls where |Un| = Θ(log(|Sn|)) at Line 2.
For each v ∈ Un, we construct the support Znear and
compute the transition probability Pn(· | z, v) consistently
over Znear from the procedure ComputeTranProb (Line 4).
The induced constraint values and cost values for the state
z and controls in Un are computed at Lines 6-5. We finally
choose the best control in Un that yields the smallest updated
cost value and feasible constraint value (Line 8). As the
current control may be still the best control compared to

other controls in Un, in Algorithm 2, we can re-evaluate the
cost value and the constraint value with the current control
µn(z) over the holding time ∆tn(z) by adding the current
control µn(z) to Un. Essentially, we perform asynchronous
policy evaluation to compute the constraint value function
and perform asynchronous value iteration to compute the
cost value function.

C. Feedback Control

We can perform a Bellman update based on the approx-
imated cost-to-go Jn (using the stochastic continuous-time
dynamics) to obtain a policy control for any n. However,
we will discuss in Theorem 2 that the sequence of µn also
approximates arbitrarily well an optimal control policy. In the
following paragraph, we present an algorithm that converts
a policy for a discrete system to a policy for the original
continuous problem.

For each n ∈ N, the control policy µn generated by
the iMDP algorithm is used for controlling the original
system described by Eq. 1 using the procedure described in
Algorithm 3. This procedure computes the state inMn that is
closest to the current state of the original system and applies
the control attached to this closest state over the associated
holding time.

D. Complexity

The time complexity per iteration of the implementation
in Algorithms 1-2 is O

(
|Sn|θ(log |Sn|)2

)
. The processing

time from the beginning until the iMDP algorithm stops
after n iterations is thus O

(
|Sn|1+θ(log |Sn|)2

)
. We note that

when the procedure ComputeTranProb compute transition
probabilities by solving a system of linear equations, the
time complexity per iteration would be O

(
|Sn|θ log |Sn|

)
,

leading to total processing time O
(
|Sn|1+θ log |Sn|

)
[19].

The space complexity of the iMDP algorithm is O(|Sn|)
where |Sn| = Θ(n) due to our sampling strategy.

IV. ANALYSIS

In this section, we present main results on the performance
of the extended iMDP algorithm with brief proofs. More
detailed proofs can be found in [27].

We first review the following key results of the approxi-
mating Markov chain method when no additional trajectory
constraints are considered [28]. Local consistency implies
the convergence of continuous-time interpolations of the
trajectories of the controlled Markov chain to the trajectories
of the stochastic dynamical system described by Eq. 1.
Furthermore, the sequence of optimal cost-to-go of discrete
MDPs converges uniformly to the optimal cost-to-go of the
original problem. Previous results in [19] show that Jn
returned from the iMDP algorithm converges pointwise to
J∗ in probability. That is, we are able to compute J∗ in an
incremental manner without directly computing J∗n .

Now, in the presence of additional trajectory constraints,
let (Mn = (Sn, U, Pn, Gn, Hn),∆tn, Jn, Cn, µn) denote
the MDP, holding times, cost value function, constraint value
function, and policy returned by Algorithm 1 at the end n
iterations. As shown in [19], [27], the sequence of MDPs

{Mn}∞n=0 and holding times {∆tn}∞n=0 returned from the
iMDP algorithm are locally consistent with the stochastic
differential dynamics in Eq. 1 almost surely. We assume
that optimal policies of the original continuous problem
are obtainable1. The next theorem asserts the probabilistic
soundness of the computed policies {µn}∞n=0 and the almost
sure pointwise convergence of Jn,µn to J∗. We note that
compared to previous results [19], while the uniform con-
vergence of Jn to J∗ happens in probability, the pointwise
convergence of Jn,µn to J∗ happens almost surely.

Theorem 1 Let Jn,µn be the cost-to-go function of the
returned policy µn on the discrete MDP Mn. Similarly,
let Cn,µn be the expected constraint value by executing the
returned policy µn on the discrete MDP Mn. Then, for all
z ∈ Sn, we have

lim
n→∞

|Jn,µn − J∗(z)| = 0 w.p.1.

Thus, for any n ∈ N and for any z ∈ Sn, {µn(z)}∞n=0

converges almost surely to µ∗(z) where µ∗ is an optimal
policy of the original continuous problem. Furthermore, for
all z ∈ Sn:

lim
n→∞

|Cn(z)− Cµ∗(z)| = 0 w.p.1,

lim
n→∞

|Cn,µn(z)− Cµ∗(z)| = 0 w.p.1.

As a corollary, Cµ∗(z) ∈ Γ w.p.1 for all z ∈ ∪∞n=0Sn. That
is, the sequence {µn}∞n=0 is probabilistically sound.

The almost sure pointwise convergence of Jn,µn to J∗ can
be proven similarly to Theorem 8 in [27]. The idea is that
from any state z ∈ Sn, it is possible to construct a sequence
of controls out of constructed controls from the procedure
ConstructControls that converges in distribution to the
optimal control process of the original continuous problem.
The almost sure pointwise convergence of Cn and Cn,µn to
Cµ∗ can be seen as a special case of the above discussion
where the control set at each z ∈ Sn contains only one
control µn(z).

The next theorem evaluates the quality of any-time control
policies returned by Algorithm 3.

Theorem 2 Let µn : S → U be the interpolated policy on
S of µn : Sn → U as described in Algorithm 3:

z ∈ S : µn(z) = µn(yn) where yn = argminz′∈Sn ||z
′−z||2.

Then there exists an optimal control policy µ∗ of the original
problem so that for all z ∈ S:

lim
n→∞

µn(z) = µ∗(z) w.p.1,

if µ∗ is continuous at z.

Proof: Fix n ∈ N, for all z ∈ S, and yn =
argminz′∈Sn ||z

′ − z||2, we have

µn(z) = µn(yn).

1Otherwise, an optimal relaxed control policy m∗ exists [28].

By Theorems 1, we µn(yn) converges to µ∗(yn) almost
surely where µ∗ is an optimal policy of the original con-
tinuous problem. Thus, for all ε > 0, there exists N such
that for all n > N :

||µn(yn)− µ∗(yn)||2 ≤
ε

2
w.p.1.

Under the assumption that µ∗ is continuous at z, and due
to limn→∞ yn = z almost surely, we can choose N large
enough such that for all n > N :

||µ∗(yn)− µ∗(z)||2 ≤
ε

2
w.p.1.

From the above inequalities, for all n > N :

||µn(yn)− µ∗(z)||2 ≤ ||µn(yn)− µ∗(yn)||2
+||µ∗(yn)− µ∗(z)||2 ≤ ε w.p.1.

Therefore,

lim
n→∞

||µn(z)− µ∗(z)||2 = lim
n→∞

||µn(yn)− µ∗(z)||2 = 0

happens with probability one.

V. EXPERIMENTS

In the following experiments, we used a computer with
a 2.0-GHz Intel Core 2 Duo T6400 processor and 4 GB
of RAM. We controlled a system with stochastic single
integrator dynamics to a goal region with free ending time
in a cluttered environment. The standard deviation of noise
in each direction is 0.2. The system stops when it collides
with obstacles. The cost function is the total energy spent to
reach the goal, which is measured as the integral of square
of control magnitude with discount rate α = 0.95. The
system pays the cost of −106 when reaching the goal region
Xgoal. The maximum velocity of the system is one. The
system stops when it collides with obstacles. At the same
time, we considered the trajectory constraint that expresses
the collision probability under the control policy (i.e. β =
0.9999, r(x, u) = 0 for all x ∈ S, u ∈ U , k(x) = 1 for
x ∈ Xobs and k(x) = 0 otherwise). In this context, we often
refer to constraint values as probability value.

We first set the upper value of the collision probability to
1.0, i.e. Γ = (0, 1.0]. Figures 1(a)-1(c) depict the policy, cost
value function, constraint value function (in log scale) after
4, 000 iterations for this case. As we can see, the computed
collision probability from the initial position is about 0.1, and
the computed cost value for the initial position is about 4×
10−5. Since there is actually no constraint on the probability
of collision with Γ = (0, 1], the system takes risks going
through the small gap between two obstacles to reach the
goal as fast as possible.

In practice, we are interested in very small collision prob-
ability. Thus, we then set Γ = (0, 0.001], which allows for
the maximum tolerated collision probability 0.1%. As above,
Figs. 1(d)-1(f) show the policy, cost value function, constraint
value function after 600 iterations iterations respectively after
about 2.8 seconds. From the plots, under the policy returned
by the algorithm, at the initial position, the computed cost
value is about 1× 10−6, and the computed collision proba-
bility is 0.0003. To achieve this low risk, the system takes

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Policy: 1.0, 4000 (95s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

x 105

(b) Cost: 1.0, 4000 (95s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−6

−5

−4

−3

−2

−1

0

(c) Collision Probability: 1.0, 4000 (95s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) Policy: 0.001, 600 (2.8s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

x 105

(e) Cost: 0.001, 600 (2.8s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

(f) Collision Probability: 0.001, 600 (2.8s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g) Policy: 0.001, 4000 (98s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

x 105

(h) Cost: 0.001, 4000 (98s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−6

−5

−4

−3

−2

−1

0

(i) Collision Probability: 0.001, 4000 (98s).

(j) Empirical trajectories for Fig. 1(a) (8.2%). (k) Empirical trajectories for Fig. 1(g) (0.07%).

0 500 1000 1500 2000 2500 3000 3500 4000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iteration index n

V
al
u
e

Collision Probability
Emperical Collision Probability
Constraint Threshold

(l) Computed and tested collision probabilities.

Fig. 1. A system with stochastic single integrator dynamics in a cluttered environment. The cost function is the total energy spent to reach the goal,
which is measured as the integral of square of control magnitude. The trajectory constraint expresses the probability of collision (with discount rate
β = 0.9999). Figures 1(a)-1(c) depict the policy, cost value function, constraint value function (in log scale) after 4, 000 iterations when the upper bound
of collision probability is 1.0(100%). The first number in the title is the constraint upper bound, and the second number is the number of iterations.
Similarly, Figures 1(d)-1(f) and Figures 1(g)-1(i) show the corresponding plots for the constraint upper bound 0.001(0.1%) after 600 iterations and 4, 000
iterations respectively. Figure 1(j) shows 10,000 empirical trajectories for the returned policy in Fig. 1(a). Collision-free trajectories are plotted in green, and
colliding trajectories are plotted in red. The empirical collision probability is 8.2%. Figure 1(k) shows 10,000 empirical trajectories for the returned policy
in Fig. 1(g) with the resulting empirical collision probability 0.07%. When Γ = (0, 0.001], in Fig. 1(l), constraint value function, constraint threshold, and
empirical collision probability over iterations are plotted on a semi-log graph where values are averaged from 50 trials. In each trial, empirical collision
probability is obtained using 10,000 tested trajectories and is plotted for every 100 iterations.

a longer route that stays away from the obstacles. Similarly,
Fig. 1(g)-1(i) present the corresponding plots after 4000
iterations. As we can see, the computed collision probability
(0.000938) for the initial position increases to allow for
smaller cost value (−2.8× 10−5) from the starting location.

Finally, we tested the empirical collision probability of
the returned policies compared to the computed probability
value. Figure 1(j) shows 10, 000 empirical trajectories for
the returned policy in Fig. 1(a) when Γ = (0, 1.0] where the
empirical collision probability is 0.082. Similarly, Fig. 1(k)
shows 10, 000 empirical trajectories for the returned pol-
icy in Fig. 1(g) when Γ = (0, 0.001] with the resulting
empirical collision probability 0.0007. Furthermore, when
Γ = (0, 0.001], we compare empirical collision probabilities
and computed collision probability from the initial position
over iterations on a semi-log graph in Fig. 1(l). In this plot,
values are averaged from 50 trials, and in each trial, empirical
collision probability is obtained using 10, 000 tested trajec-
tories. As we can see, the computed collision probability
approximates very well the actual collision probability when
we execute the returned policies. This observation agrees
with the probabilistic soundness property of the algorithm.

VI. CONCLUSIONS

We have introduced and analyzed the extension of the
incremental Markov Decision Process (iMDP) algorithm
for stochastic optimal control in the presence of additional
trajectory constraints. In particular, trajectory constraints
represent different aspects of controlled trajectories in terms
of expected costs. Thus, we solve the stochastic optimal
control with bounded collision probability as a special case.
The algorithm inherits the efficient computation from iMDP
to compute the expected costs using asynchronous policy
evaluations and value iterations. In addition, the algorithm
guarantees the probabilistic soundness and asymptotic op-
timality of computed feedback policies as the number of
iterations approaches infinity. In our future work, we plan
to implement the algorithm outlined in this paper on robotic
platforms for practical demonstration.

ACKNOWLEDGMENTS

This research was supported in part by the National
Science Foundation, grant CNS-1016213, and by the Army
Research Office, MURI grant W911NF-11-1-0046.

REFERENCES

[1] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. on Control Systems Technologies, vol. 17, no. 5,
pp. 1105–1118, 2009.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents), 2001.

[3] W. H. Fleming and J. L. Stein, “Stochastic optimal control, interna-
tional finance and debt,” Journal of Banking and Finance, vol. 28, pp.
979–996, 2004.

[4] S. P. Sethi and G. L. Thompson, Optimal Control Theory: Applications
to Management Science and Economics, 2nd ed. Springer, 2006.

[5] E. Todorov, “Stochastic optimal control and estimation methods
adapted to the noise characteristics of the sensorimotor system,”
Neural Computation, vol. 17, pp. 1084–1108, 2005.

[6] R. Alterovitz, T. Simon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with markov motion
uncertainty,” in in Robotics: Science and Systems III (Proc. RSS 2007.
MIT Press, 2008, pp. 246–253.

[7] V. D. Blondel and J. N. Tsitsiklis, “A survey of computational
complexity results in systems and control,” Automatica, vol. 36, no. 9,
pp. 1249–1274, 2000.

[8] C. Chow and J. Tsitsiklis, “An optimal one-way multigrid algorithm
for discrete-time stochastic control,” IEEE Transactions on Automatic
Control, vol. AC-36, pp. 898–914, 1991.

[9] R. Munos, A. Moore, and S. Singh, “Variable resolution discretization
in optimal control,” in Machine Learning, 2001, pp. 291–323.

[10] L. Grne, “An adaptive grid scheme for the discrete hamilton-jacobi-
bellman equation,” Numerische Mathematik, vol. 75, pp. 319–337,
1997.

[11] S. Wang, L. S. Jennings, and K. L. Teo, “Numerical solution
of hamilton-jacobi-bellman equations by an upwind finite volume
method,” J. of Global Optimization, vol. 27, pp. 177–192, November
2003.

[12] M. Boulbrachene and B. Chentouf, “The finite element approximation
of hamilton-jacobi-bellman equations: the noncoercive case,” Applied
Mathematics and Computation, vol. 158, no. 2, pp. 585–592, 2004.

[13] J. Rust, “Using Randomization to Break the Curse of Dimensionality,,”
Econometrica, vol. 56, no. 3, May 1997.

[14] ——, “A comparison of policy iteration methods for solving
continuous-state, infinite-horizon markovian decision problems using
random, quasi-random, and deterministic discretizations,” 1997.

[15] L. E. Kavraki, P. Svestka, L. E. K. P. Vestka, J. claude Latombe, and
M. H. Overmars, “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces,” IEEE Transactions on Robotics and
Automation, vol. 12, pp. 566–580, 1996.

[16] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[17] Karaman and Frazzoli, “Sampling-based algorithms for optimal mo-
tion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

[18] J. Kim and J. P. Ostrowski, “Motion planning of aerial robot using
rapidly-exploring random trees with dynamic constraints,” in ICRA,
2003, pp. 2200–2205.

[19] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-
based algorithm for stochastic optimal control,” in ICRA, 2012, pp.
2865–2872.

[20] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
IEEE Transactions on Automatic Control, vol. 40, pp. 1528–1538,
1995.

[21] P. Kosmol and M. Pavon, “Lagrange approach to the optimal control
of diffusions,” Acta Applicandae Mathematicae, vol. 32, pp. 101–122,
1993, 10.1007/BF00998149.

[22] ——, “Solving optimal control problems by means of general lagrange
functionals,” Automatica, vol. 37, no. 6, pp. 907 – 913, 2001.

[23] D. E. Kirk, Optimal Control Theory: An Introduction. Dover
Publications, Apr. 2004.

[24] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A proba-
bilistic particle-control approximation of chance-constrained stochastic
predictive control,” IEEE Transactions on Robotics, vol. 26, no. 3,
2010.

[25] A. G. Banerjee, M. Ono, N. Roy, and B. C. Williams, “Regression-
based LP solver for chance-constrained finite horizon optimal control
with nonconvex constraints,” in Proceedings of the American Control
Conference, San Francisco, CA, 2011.

[26] J. Steinhardt and R. Tedrake, “Finite-time regional verification of
stochastic nonlinear systems,” in Proceedings of Robotics: Science and
Systems, Los Angeles, CA, USA, June 2011.

[27] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-
based algorithm for stochastic optimal control,” arXiv:1202.5544v1
[cs.RO], 2012.

[28] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic
Control Problems in Continuous Time (Stochastic Modelling and
Applied Probability). Springer, Dec. 2000.

[29] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus
(Graduate Texts in Mathematics), 2nd ed. Springer, Aug. 1991.

