
Credible Autocoding of Convex Optimization
Algorithms

Timothy Wang1, Romain Jobredeaux1, Marc Pantel4, Pierre-Loic Garoche2,
Eric Feron1, and Didier Henrion3

1 Georgia Institute of Technology, Atlanta, Georgia, USA
2 ONERA – The French Aerospace Lab, Toulouse, FRANCE

3 CNRS-LAAS – Laboratory for Analysis and Architecture of Systems, Toulouse,
FRANCE

4 ENSEEIHT, Toulouse, FRANCE

Abstract. The efficiency of modern optimization methods, coupled with
increasing computational resources, has led to the possibility of real-time
optimization algorithms acting in safety critical roles. There is a consid-
erable body of mathematical proofs on on-line optimization programs
which can be leveraged to assist in the development and verification
of their implementation. In this paper, we demonstrate how theoreti-
cal proofs of real-time optimization algorithms can be used to describe
functional properties at the level of the code, thereby making it acces-
sible for the formal methods community. The running example used in
this paper is a generic semi-definite programming (SDP) solver. Semi-
definite programs can encode a wide variety of optimization problems
and can be solved in polynomial time at a given accuracy. We describe
a top-down approach that transforms a high-level analysis of the algo-
rithm into useful code annotations. We formulate some general remarks
about how such a task can be incorporated into a convex programming
autocoder. We then take a first step towards the automatic verification
of the optimization program by identifying key issues to be adressed in
future work.

Keywords: Control Theory, Autocoding, Lyapunov proofs, Formal Ver-
ification, Optimization, Interior-point Method, PVS, frama-C

1 Introduction

The applications of optimization algorithms are not limited to large scale, off-line
problems on the desktop. They also can perform in a real-time setting as part of
safety-critical systems in control, guidance and navigation. For example, modern
aircrafts often have redundant control surface actuation, which allows for recon-
figuration and recovery in case of emergency. The precise re-allocation of the
actuation resources can be posed, in the simplest case, as a linear optimization
problem that needs to be solved in real-time.

In contrast to off-line desktop optimization applications, real-time embedded
optimization code needs to satisfy a higher standard of quality, if it is to be used

2

within a safety-critical system. Some important criteria in judging the quality
of an embedded code include the predictability of its behaviors and whether or
not its worst case computational time can be bounded. Several authors includ-
ing Richter [21], Feron and McGovern [14][13] have worked on the certification
problem for on-line optimization algorithms used in control, in particular on
worst-case execution time issues. In those cases, the authors have chosen to
tackle the problem at a high-level of abstraction. For example, McGovern re-
examined the proofs of computational bounds on interior point methods for
semi-definite programming; however he stopped short of using the proofs to an-
alyze the implementations of interior point methods. In this paper, we extend
McGovern’s work further by demonstrating the expression of the proofs at the
level of the code for the certification of on-line optimization code. The utility
of such demonstration is twofold. First, we are considering the reality that the
verification of safety-critical systems is almost always done at the source code
level. Second, this effort provides an example output that is much closer to being
in an accessible form for the formal methods community.

The most recent regulatory documents such as DO-178C [24] and, in partic-
ular, its addendum DO-333 [25], advocate for the use of formal methods in the
verification and validation of safety critical software. However, complex computa-
tional cores in domain specific software such as control or optimization software
make their automatic analysis difficult in the absence of input from domain ex-
perts. It is the authors’ belief that communication between the communities of
formal software analysis and domain-specific communities, such as the optimiza-
tion community, are key to successfully express the semantics of these complex
algorithms in a language compatible with the application of formal methods.

The main contribution of this paper is to present the expression, formaliza-
tion, and translation of high-level functional properties of a convex optimization
algorithm along with their proofs down to the code level for the purpose of formal
program verification. Due to the complexity of the proofs, we cannot yet reason
about them soundly on the implementation itself. Instead we choose an interme-
diate level of abstraction of the implementation where floating-point operations
are replaced by real number algebra.

The algorithm chosen for this paper is based on a class of optimization meth-
ods known collectively as interior point methods. The theoretical foundation be-
hind modern interior point methods can be found in the works of Nemrovskii
et. al [17][18]. One key result is the self-concordance of certain barrier functions
that guarantees the convergence of a Newton iteration to an ε-optimal solution
in polynomial time. For more details on polynomial-time interior point methods,
readers can refer to [19].

Interior-point algorithms vary in the Newton search direction used, the step
length, the initialization process, and whether or not the algorithm can return
infeasible answers in the intermediate iterations. Some example search directions
are the Alizadeh-Haeberly-Overton (AHO) direction [1], the Monteiro-Zhang
(MZ) directions [16], the Nesterov-Todd (NT) direction [20], and the Helmberg-
Kojima-Monteiro (HKM) direction [8]. It was later determined in [15] that all

Credible Autocoding of Convex Optimization Algorithms 3

of these search directions can be captured by a particular scaling matrix in the
linear transformation introduced by Sturm and Zhang in [28]. An accessible
introduction to semi-definite programming using interior-point method can be
found in the works of Boyd and Vandenberghe [3].

Autocoding is the computerized process of translating the specifications of an
algorithm, initially expressed in a high-level modeling language such as Simulink,
into source code that can be transformed further into an embedded executable
binary. An example of an autocoder for optimization programs can be found
in the work of Boyd [12]. One of the main ideas behind this paper is that,
by combining the efficiency of the autocoding process with the rigorous proofs
obtained from a formal analysis of the optimization algorithm, we can create
a credible autocoding process [27] that can rapidly generate formally verifiable
optimization code.

In this paper, the running example is an interior point algorithm with the
Monteiro-Zhang (MZ) Newton search direction. The step length is fixed to be 1
and the input problem is a generic SDP problem obtained from system and con-
trol. The paper is organized as follows: first we introduce the basics of program
verification and semi-definite programming. We then introduce the example in-
terior point algorithm and discuss its known properties. We then give a manual
example of a code implementation annotated with the semantics of the opti-
mization algorithm using the Floyd-Hoare method [9]. Afterwards, we discuss
an approach for automating the generation of the optimization semantics and
the verification of the generated semantics with respect to the code. Finally, we
discuss some future directions of research.

2 Credible Autocoding: General Principles

In this paper, we lay the foundations of a credible autocoding framework for con-
vex optimization algorithms. Credible autocoding, analogous to credible compi-
lation from [22], is a process by which the autocoding process generates formally
verifiable evidence that the output source code correctly implements the input
model. An overall view of a credible autocoding framework is given in figure 1.
Existing work already provides for the automatic generation of embedded con-
vex optimization code [12]. Given that proofs of high-level functional properties
of interior point algorithms do exist, we want to generate the same proof that
is sound for the implementation, and expressed in a formal specification lan-
guage embedded in the code as comments. One of the key ingredients that made
credible autocoding applicable for control systems [26] is that the ellipsoid sets
generated by synthesizing quadratic Lyapunov functions are relatively easy to
reason about even at the level of the code. The semantics of interior point al-
gorithms, however, do not rely on simple quadratic invariants. The invariant
obtained from the proof of good behavior of interior point algorithms is gener-
ated by a logarithmic function. This same logarithmic function can also be used
in showing the optimization algorithm terminates in within a specified time. This
function, is not provided, is perhaps impossible to synthesize from using exist-

4

Fig. 1. Visualization of autocoding and verification process For Optimization Algo-
rithms

ing code analysis techniques on the optimization source code. In fact nearly all
existing code analyzers only handle linear properties with the notable exception
of [23].

3 Program Verification

In this section, we introduce some concepts from program verification. Readers
already familiar with Hoare logic and axiomatic semantics can skip ahead to the
next section.

3.1 Axiomatic Semantics

One of the classic paradigms in formal verification of programs is the use of
axiomatic semantics. In axiomatic semantics, the semantics or mathematical
meaning of a program is based on the relations between logic predicates that
hold true before and after a piece of code is executed. The program is said to
be partially correct if the logic predicates holds throughout the execution of the
program. For example, given the simple while loop program in figure 2, if we
assume the value of variable x belongs to the set [−1, 1] before the execution of
the while loop, then the logic predicate x*x<=1 holds before, during and after
the execution of the while loop. A predicate that holds before the execution of
a block of code is referred to as a pre-condition. A predicate that holds after
the execution of a block of code is referred to as a post-condition. Whether a
predicate is a pre or post-condition is contextual since it is dependent on the

Credible Autocoding of Convex Optimization Algorithms 5

1 while (x*x >0.5)

2 x=0.9*x;

3 end

Fig. 2. A while loop Program

block of code that it is mentioned in conjunction with. In other words, a pre-
condition for one line of code can be the post-condition for the previous line
of the code. A predicate that is preserved by a loop, i.e. holds before and after
each of its multiple executions is called an invariant. For example, the predicate
x*x<=1 is an invariant for the while loop. However the predicate x*x>=0.9
is not an invariant. Indeed it could be that it is true at the beginning of the
execution of the loop (say x =

√
0.9) and false after executing it (we would have

x = 0.9
√

0.9 which does not verify the invariant under consideration).
Invariants can be inserted into the code as comments. We refer to these com-

ments as code specifications or annotations. For example, inserting the predicate
x*x<=1 into the program in figure 2 results in the annotated program in fig-
ure 3. The pseudo Matlab specification language used to express the annotations
in figure 3 is modelled after the ANSI/ISO C Specification Language (ACSL [2]),
which is an existing formal specification language for C programs. Invariants
are denoted using the keyword loop invariant. Pre- and post-conditions are de-
noted respectively using ACSL keywords requires and ensures. The annotations
are captured within comments denoted by the Matlab comment symbol %%.
Throughout the rest of the paper, we use this pseudo Matlab specification lan-

1 %% loop i n v a r i a n t x∗x<=1;
2 while (x*x >0.5)

3 x=0.9*x;

4 end

Fig. 3. Axiomatic Semantics for a while loop Program

guage in the annotations of the example convex optimization program. Other
logic keywords from ACSL, such as exists, forall and assumes are also transferred
over and have their usual mathematical meanings.

3.2 Hoare Logic

We now introduce a formal system of reasoning about the correctness of pro-
grams, which follows the axiomatic semantics paradigm, called Hoare Logic [9].
The main structure within Hoare logic is the Hoare triple. Let P be a pre-
condition for a block of code C and let Q be a post-condition for C. The Hoare

6

triple denoted by {P}C {Q} expresses the claim that, assuming P holds before
the execution of C, then either Q will hold after its execution, or C will not
terminate: indeed Hoare triples are used to show partial correctness, and as such
have no regard for program termination in their original description.

Hoare logic includes a set of axioms and inference rules to reason about the
correctness of Hoare triples for various program structures of a generic imperative
programming language. Example program structures include loops, branches,
jumps, etc. In this paper, we only consider while loops. The Hoare logic axiom
for the while loop is

{P ∧B}C; {P}
{P}while B do C done {¬B ∧ P}

. (1)

Informally speaking, the axioms and inference rules should be interpreted as
follows: the formula above the horizontal line implies the formula below that
line. The rule in equation (1) expresses how, if predicate P is preserved by the
execution of C (whenever the loop condition B holds), then P will be a valid
loop invariant for the while loop that has C as its body. Such loop invariants
are called inductive invariants. Thus, to show the correctness of the annotation
in figure 3, we need to show that the predicate x*x<=1 is preserved at ev-
ery iteration of the loop (and holds initially). Axiomatic semantics also allow
predicates that are essentially assumptions about the state of the program. This
is especially useful in specifying properties about the inputs. For example, the
variable x in figure 3 is assumed to have a value between −1 and 1. The validity
of such a property cannot be proven since it is assumed. This type of property is
referred to as an assumption. In our example, the assumption x<=1 && x>=-1
is necessary to prove that x*x<=1 is an inductive invariant of the loop.

For this paper, we use some basic inferences rules from Hoare logic, which
are listed in table 1. The consequence rule in equation (2) is useful whenever a

{P1 ⇒ P2} , {P2}C {Q1} , {Q1 ⇒ Q2}
{P1}C {Q2}

(2)

{P}C1 {Q} ; {Q}C2 {W}
{P}C1;C2 {W}

(3)

{P}SKIP {P} (4)
{P [e/x]}x := expr {P} (5)

{P}x := expr {∃x0 (x = expr [x0/x]) ∧ P [x0/x] }
(6)

Table 1. Axiomatic Semantics Inference Rules for a Imperative Language

stronger pre-condition or weaker post-condition is needed. By stronger, we mean
the set defined by the predicate is smaller. By weaker, we mean precisely the op-
posite. The substitution rules in (5) and (6) are used when the piece of code under

Credible Autocoding of Convex Optimization Algorithms 7

analysis is an assignment statement. The weakest pre-condition P [x/expr] in (5)
means P with all instances of the expression expr replaced by x. For example,
given a line of code y=x+1 and a known weakest pre-condition x+1<=1, we can
deduct that y<=1 is a correct post-condition using the backward substitution
rule. Equation (5) is usually used to compute the weakest pre-condition from a
known post-condition. Alternatively the forward propagation rule in (6) is used
to compute the strongest post-condition. Note that, when x does not appear in
P in the substitution rule in equation (5), it simply becomes {P}x := expr {P}.
This is useful to propagate properties over parts of the code that do not affect
them.

3.3 Proof Checking

The utility of having the invariants in the code is that finding the invariants
is in general more difficult than checking that given invariants are correct. By
expressing and translating the high-level functional properties and their proofs
onto the code level in the form of invariants, we can verify the correctness of the
optimization program with respect to its high-level functional properties using
a proof-checking procedure i.e. by verifying each use of a Hoare logic rule.

4 Semi-Definite Programming and the Interior Point
Method

In this section, we give an overview of the Semi-Definite Programming (SDP)
problem. The readers who are already familiar with interior point method and
convex optimization can skip ahead to the next section. The notations used in
this section are as follows: let A = (ai,j)1≤i,j≤n, B ∈ Rn×n be two matrices

and a, b ∈ Rn be two column vectors. Tr (A) =

n∑
i=1

ai,i denotes the trace of

matrix A. 〈·, ·〉 denotes an inner product, defined in Rn×n × Rn×n as 〈A,B〉 :=
Tr
(
ATB

)
and in Rn × Rn as 〈a, b〉 := aTb. The Frobenius norm of A is defined

as ‖A‖F =
√
〈A,A〉. The symbol Sn denotes the space of symmetric matrices of

size n × n. The space of n × n symmetric positive-definite matrices is denoted
as Sn+ =

{
S ∈ Sn|∀x ∈ Rn \ {0}, xTSx > 0

}
. If A and B are symmetric, A ≺ B

(respectively A � B) denotes the positive (respectively negative)-definiteness of
matrix B−A. The symbol I denotes an identity matrix of appropriate dimension.

For X,Z ∈ Sn+, some basic properties of matrix derivative are
∂ Tr (XZ)

∂X
=

ZT = Z and
∂ det (X)

∂X
= det (X)

−1 (
X−1

)T
= det (X)

−1
X−1.

4.1 SDP Problem

Let n,m ∈ N, F0 ∈ Sn+, F1, F2, . . . , Fm ∈ Sn, and b =
[
b1 b2 . . . bm

]T ∈ Rm.
Consider a SDP problem of the form in equation (7). The linear objective func-
tion 〈F0, Z〉 is to be maximized over the intersection of positive semi-definite cone

8

{Z ∈ Sn|Z � 0} and a convex region defined by m affine equality constraints.

sup
Z

〈F0, Z〉,

subject to 〈Fi, Z〉+ bi = 0, i = 1, . . . ,m

Z � 0.

(7)

We denote the SDP problem in (7) as the dual form. Closely related to the
dual form, is another SDP problem as shown in (8), called the primal form. In
the primal formulation, the linear objective function 〈b, p〉 is minimized over all

vectors p =
[
p1 . . . pm

]T ∈ Rm under the semi-definite constraint F0+

m∑
i=1

piFi �

0. Note the introduction in (8) of a variable X = −F0 −
m∑
i=1

piFi such that

X � 0, which is not strictly needed to express the problem, but is used in later
developments.

inf
p,X

〈b, p〉

subject to F0 +

m∑
i=1

piFi +X = 0

X � 0.

(8)

We assume the primal and dual feasible sets defined as

Fp =

{
X|X = −F0 −

m∑
i=1

piFi � 0, p ∈ Rm

}
,

Fd = {Z|〈Fi, Z〉+ bi = 0, Z � 0}
(9)

are not empty. Under this condition, for any primal-dual pair (X,Z) that belongs
to the feasible sets in (9), the primal cost 〈b, p〉 is always greater than or equal
to the dual cost 〈F0, Z〉. The difference between the primal and dual costs for
a feasible pair (X,Z) is called the duality gap. The duality gap is a measure
of the optimality of a primal-dual pair. The smaller the duality gap, the closer
to optimal the solution pair (X,Z) is. For (8) and (7), the duality gap is the
function

G(X,Z) = Tr (XZ) . (10)

Indeed,

Tr (XZ) = Tr

((
−F0 −

m∑
i=1

piFi

)
Z

)
= −Tr (F0Z)−

m∑
i=1

pi Tr (FiZ)

= 〈b, p〉 − 〈F0, Z〉.

Finally, if we assume that both problems are strictly feasible i.e. the sets

Fp′ =

{
X|X = −F0 −

m∑
i=1

piFi � 0, p ∈ Rm

}
,

Fd′ = {Z|〈Fi, Z〉+ bi = 0, Z � 0}
(11)

Credible Autocoding of Convex Optimization Algorithms 9

are not empty, then there exists an optimal primal-dual pair (X∗, Z∗) such that

Tr (X∗Z∗) = 0. (12)

Moreover, the primal and dual optimal costs are guaranteed to be finite. The
condition in equation (12) implies that for strictly feasible problems, the primal
and dual costs are equal at their respective optimal points X∗ and Z∗. Note that
in the strictly feasible problem, the semi-definite constraints become definite
constraints.

The canonical way of dealing with constrained optimization is by first adding
to the cost function a term that increases significantly if the constraints are not
met, and then solve the unconstrained problem by minimizing the new cost func-
tion. This technique is commonly referred to as the relaxation of the constraints.
For example, lets assume that the problems in (8) and (7) are strictly feasible.
The positive-definite constraints X � 0 and Z � 0, which define the interior of
a pair of semi-definite cones, can be relaxed using an indicator function I(X,Z)
such that

I : (X,Z)→
{

0, X � 0, Z � 0
+∞, otherwise

(13)

The intuition behind relaxation using an indicator function is as follows. If the
primal-dual pair (X,Z) approaches the boundary of the interior region, then the
indicator function I(X,Z) approaches infinity, thus incurring a large penalty on
the cost function.

The indicator function in (13) is not convenient for optimization because it
is not differentiable. Instead, the indicator function can be replaced by a family
of smooth, convex functions B(X,Z) that not only approximate the behavior of
the indicator function but are also self-concordant. We refer to these functions
as barrier functions. A scalar function F : R→ R, is said to be self-concordant
if it is at least three times differentiable and satisfies the inequality

|F ′′′(x)| ≤ 2F ′′(x)
3
2 . (14)

The concept of self-concordance has been generalized to vector and matrix func-
tions, thus we can also find such functions for positive-definite variables X and
Z. Here we state, without proof, the key property of self-concordant functions.

Property 1. Functions that are self-concordant can be minimized in polynomial
time to a given non-zero accuracy using a Newton type iteration [18].

Examples of self-concordant functions include linear functions, quadratic func-
tions, and logarithmic functions. A valid barrier function for the semi-definite
constraints from (8) and (7) is

B(X,Z) = − log det (X)− log det (Z). (15)

5 An Interior Point Algorithm and Its Properties

We now describe an example primal-dual interior point algorithm. We focus
on the key property of convergence. We show its usefulness in constructing the

10

inductive invariants to be applied towards documenting the software implemen-
tation. The algorithm is displayed in table 2 and is based on the work in [16].

5.1 Details of the Algorithm

The algorithm in table 2 consists of an initialization routine and a while loop.
The operator length is used to compute the size of the input problem data. The
operator ˆ−1 represents an algorithm such as QR decomposition that returns
the inverse of the matrix. The operator ˆ0.5 represents an algorithm such as the
Cholesky decomposition that computes the square root of the input matrix. The
operator lsqr represents a least-square QR factorization algorithm that is used
to solve linear systems of equation of the form Ax = b. Under the assumption
of real algebra, all of these operators return exact solutions.

In the initialization part, the states X, Z and p are initialized to feasible
values, and the input problem data are assigned to constants Fi, i = 1, . . . ,m.
The term feasible here means that X, Z, and p satisfies the equality constraints
of the primal and dual problems. The efficiency of the initialization process is
discussed in later sections.

The while loop is a Newton iteration that computes the zero of the derivative
of the potential function

φ(X,Z) =
(
n+ ν

√
n
)

log Tr (XZ)− log det (XZ)− n log n, (16)

in which ν is a positive weighting factor. Note that the potential function is a
weighted sum of the primal-dual cost gap and the barrier function potential.
The weighting factor ν is used in computing the duality gap reduction factor

σ ≡ n

n+ ν
√
n

. A larger ν implies a smaller σ, which then implies a shorter

convergence time. For our algorithm, since we use a fix-step size of 1, a small
enough σ combined with the newton step could result in a pair of X and Z that
no longer belong to the interior of the positive-semidefinite cone. In the running
example, we have ν = 0.4714. While this choice of ν doubled the number of
iterations of the running example compared to the typical choice of ν = 1, it is
critical in satisfying the invariants of the while loop that are introduced later
this paper.

Let symbol T = Z−0.5 and Tinv denotes the inverse of T . The while loop
solves the set of matrix equations

〈Fi, ∆Z〉 = 0
m∑
i

∆piFi +∆X = 0

1

2
(T (Z∆X +∆ZX)Tinv + Tinv (∆XZ +X∆Z)T) = σµI − TinvXTinv.

(17)
for the Newton-search directions ∆Z, ∆X and ∆p. The first two equations in
(17) are obtained from a Taylor expansion of the equality constraints from the

Credible Autocoding of Convex Optimization Algorithms 11

Algorithm 1. MZ Short-Path Primal-Dual Interior Point Algorithm

Input: F0 � 0, Fi ∈ Sn, i = 1, . . . ,m, b ∈ Rm

ε: Optimality desired

1. Initialize:
Compute Z such that 〈Fi, Z〉 = −bi, i = 1, . . . ,m;

Let X ← X̂; // X̂ is some positive-definite matrix

Compute p such that

m∑
i

piFi = −X0 − F0;

Let µ← 〈X,Z〉
n

;

Let σ ← 0.75;
Let n← lengthFi, m← length bi;

2. while nµ > ε {
3. Let φ− ← 〈X,Z〉;
4. Let Tinv ← Z0.5;

5. Let T ← T−1
inv;

6. Compute (∆Z,∆X,∆p) that satisfies (17);
7. Let Z ← Z +∆Z, X ← X +∆X, p← p+∆p;
8. Let φ← 〈X,Z〉;

9. Let µ← 〈X,Z〉
n

;

10. if (φ− φ− > 0) {
11. return ;

}
}

Table 2. Primal-Dual Short Path Interior Point Algorithm

12

primal and dual problems. These two constraints formulate the feasibility sets as
defined in Eq (9). The last equation in (17) is obtained by setting the Taylor ex-
pansion of the derivative of (16) equal to 0, and then applying the symmetrizing
transformation

HT : M → 1

2

(
TMT−1 +

(
TMT−1

)T)
, T = Z−0.5 (18)

to the result. To see this, note that derivative of (16) is

[
XZ − n

n+ ν
√
n

Tr (XZ)

n
I

ZX − n

n+ ν
√
n

Tr (XZ)

n
I

]
.

The transformation in (18) is necessary to guarantee that the solution ∆X
is symmetric. The parameter σ, as mentioned before, can be interpreted as a
duality gap reduction factor. To see this, note that the 3rd equation in (17) is
the result of applying Newton iteration to solve the equation XZ = σµI. With
σ ∈ (0, 1), the duality gap Tr (XZ) = nσµ is reduced after every iteration. The
choice of T in (18) is taken from [15] and is called the Monteiro-Zhang (MZ)
direction. Many of the Newton search directions from the interior-point method
literature can be derived from an appropriate choice of T . The M-Z direction
also guarantees a unique solution ∆X to (17). The while loop then updates
the states X,Z, p with the computed search directions and computes the new
normalized duality gap. The aforementioned steps are repeated until the duality
gap nµ is less than the desired accuracy ε.

5.2 High-level Functional Property of the Algorithm

A key high-level functional property of the interior point algorithm in table (2)
is an upper bound on its worst case computational time. This upper bound
can be derived from a constant reduction in the potential function such as the
one in (16). Since the convergence property of interior-point algorithms is well-
established in the literature (for example see [10] and [20]), here we give a result
without proof about the convergence property of our example algorithm in ta-
ble 2. We have the following theorem, which gives us a tight upper bound on the
convergence time of our example algorithm. Note that the main structure of the
algorithm is a while loop that updates the values of the variables X, Z, and p
during each iteration of the loop.

Theorem 1. Let X, Z, and p denote their respective values at the ith iteration
of the loop, and let X−, Z−, and p− denote their respective values at the i− 1th
iteration. Given φ : (X,Z)→ log (Tr (XZ)), then there exists a δ > 0 such that

φ(X−, Z−)− φ(X,Z) ≥ δ, (19)

holds for every iteration of the loop.

For safety-critical applications, it is vital that the optimization code comes with
a rigorous guarantee of convergence within a specified time. We assume that the

Credible Autocoding of Convex Optimization Algorithms 13

required precision ε, and the problem data size n are known beforehand. As a con-
sequence of theorem 1, one can see that it takes at mostO

(√
n log ε−1 Tr (X0Z0)

)
iterations until the duality gap Tr (XZ) converges to ε

′
< ε i.e. the loop termi-

nates.
For annotating the while loop of the implementation, we want to construct

an inductive invariant of the form

0 ≤ φ(X,Z) ≤ 1. (20)

however the function φ(X,Z) specified in theorem 1 is not positive. Although
theorem 1 also holds with φ(X,Z) from (16) [13], however that funciton is also
not positive. To construct an invariant in the form of (20), we can just use the
duality gap i.e.

φ(X,Z) = Tr (XZ) . (21)

An important implication of theorem 1 is that the duality gap Tr (XZ) converges
to 0 linearly i.e. ∃κ ∈ (0, 1) such that Tr (XZ) ≤ κTr (X−Z−), in which X− and
Z− are values of X and Z at the previous iteration. Using just Tr (XZ), we can
construct one invariant of the form in (20) and a second invariant φ− κφ− < 0
to express the linear convergence property implied by theorem 1.

There are several other inductive invariants to be annotated for the while

loop. For example, X and Z need to be positive-definite for the duality gap func-
tion to be positive. Not only do we need to check that X and Z are initialized to
symmetric matrices within the interior of the semi-definite cone, we also need to
show that they are guaranteed to remain in that cone throughout the execution
of the while loop.

6 Annotating an Optimization Program for Deductive
Verification

In this section, we discuss, line by line, an example of a fully-annotated opti-
mization program that is based on the interior-point algorithm in figure 2. The
fully-annotated program represents a claim of proof that the code also conforms
to certain safety or liveness properties of the algorithm. The claim of proof needs
to be verified by a proof-checking program, which we call the backend. The an-
notated program was written in the Matlab language and the Hoare logic style
annotations were inserted manually. Matlab was chosen as the implementation
language because of its compactness and readability. For the automation of the
process i.e. the credible autocoding framework, a realistic target language such as
C should be chosen, as it is more acceptable for formal analysis and verification.

The annotation process starts with the selection of a safety or liveness prop-
erty of the interior-point algorithm from which the code originates. The chosen
property is formalized and then translated into invariants, and then inserted into
the code as Hoare logic pre- and post-conditions. For the example optimization
program, the invariant that encode the property of bounded execution time of
the program is φ − 0.76φ− < 0. Various additional proof elements are inserted

14

into the code, also in the form of Hoare logic style pre- and post-conditions, to
allow easy automation of the proof-checking process. The amount of additional
proof elements needed is dependent on the capability of the backend. Lastly,
by using the Hoare logic rules, the entire program is populated with pre- and
post-conditions, thus resulting in a fully-annotated code.

The rest of this section is organized as follows. First we give the example
Matlab implementation and a description of the non-standard Matlab functions
used in the code. Second, we give a description of the annotation language used
in expressing the invariants and assertions. Finally, we give a detailed description
of all the Hoare triples in the fully-annotated example.

6.1 Matlab Implementation

The example implementation uses three non-standard Matlab operators vecs,
mats and krons. These operators are used to transform the matrix equations
in equation (17) into matrix vector equations of the form Ax = b. More details
about these operator are given in the appendix. The symbol ’ denotes Matlab’s
transpose function.

The program is divided into two parts. The first part, which we call the
initialization part, assigns the data of the input optimization problem to memory
and initializes the variables to be optimized. The second part, which is the
while loop, executes the interior-point algorithm to solve the input optimization
problem.

The input data is obtained from a generic optimization problem taken from
systems and control. The details of the original problem are skipped here as they
have no bearing on the main contribution of this article. Matrices Fi, i = 0, . . . , 3
were computed from the original problem using the tool Yalmip [11].

6.2 Annotation Language

The fully-annotated example is displayed in section 11.2 of the appendix. The
annotations are expressed using a pseudo Matlab specification language (MSL)
that is similar, in features, to the ANSI/ISO C Specification Language (ACSL)
for C programs [4]. Like in ACSL, the keywords requires and ensures denote a pre
and post-condition statement respectively. A MSL contract, like the ACSL con-
tract, is used to express a Hoare triple. For example, the MSL contract displayed
in figure 5 can be parsed as the Hoare triple {P}C; {Q}.

A block of code can have more than one contract. For example, as shown in
figure 6, the two MSL contracts translates to the Hoare triples

{Pi}C; {Qi} , i = 1, 2. (22)

A block of empty code can alsobe annotated by contract. For example, the
formula P ⇒ Q can be expressed as the Hoare triple {P} empty; {Q}, which is
equivalent to the MSL contract in figure 7.

Credible Autocoding of Convex Optimization Algorithms 15

1 F0=[1, 0; 0, 0.1];

2 F1 =[-0.750999 0.00499; 0.00499 0.0001];

3 F2 =[0.03992 -0.999101; -0.999101 0.00002];

4 F3 =[0.0016 0.00004; 0.00004 -0.999999];

5 b=[0.4; -0.2; 0.2];

6 n=length(F0);

7 m=length(b);

8 F=[vecs(F1); vecs(F2); vecs(F3)];

9 Ft=F’;

10 Z=mats(lsqr(F,-b),n);

11 X=[0.3409 0.2407; 0.2407 0.9021];

12 epsilon =1e-8;

13 sigma =0.75;

14 phi=trace(X*Z);

15 phim =1/0.75* phi;

16 P=mats(lsqr(Ft,vecs(-X-F0)),n);

17 p=vecs(P);

18 while (phi >epsilon) {

19 Xm=X;

20 Zm=Z;

21 pm=p;

22 mu=trace(Xm*Zm)/n;

23 Zh=Zm ^(0.5);

24 Zhi=Zh^(-1);

25 G=krons(Zhi ,Zh ’*Xm ,n,m);

26 H=krons(Zhi*Zm ,Zh ’,n,m);

27 r=sigma*mu*eye(n,n)-Zh*Xm*Zh;

28 dZm=lsqr(F,zeros(m,1));

29 dXm=lsqr(H, vecs(r)-G*dZm);

30 dpm=lsqr(Ft ,-dXm);

31 p=pm+dpm

32 X=Xm+mats(dXm ,n);

33 Z=Zm+mats(dZm ,n);

34 phim=trace(Xm*Zm);

35 phi=trace(X*Z);

36 mu=trace(X*Z)/n;

37 }

Fig. 4. Optimization Program in Matlab

1 % requ i r e s P
2 % ensures Q
3 {

4 C;

5 }

Fig. 5. An ACSL-like Contract

16

1 % requ i r e s P1
2 % ensures Q1
3

4 % requ i r e s P2
5 % ensures Q2
6 {

7 C;

8 }

Fig. 6. Multiple Contracts

1 % requ i r e s P
2 % ensures Q
3 {

4 % empty ;
5 }

Fig. 7. Contract for an empty code

Remark 1. Such empty code block annotations are used to decompose a proof
to its most basic elements. Indeed, assume we are led to write a Hoare Triple:

{P}C; {Q2} (23)

where Q2 does not naturally appear as a consequence of executing C when
P holds. If there exists a more natural consequence Q1 for the triple, and if
Q1 ⇒ Q2, the triple can be expanded into two Hoare triples:

{P}C; {Q1} (24)

and
{Q1} empty; {Q2} . (25)

The main reason to expand a Hoare triple into multiple ones is to simplify the
automation of the proof-checking process. The choice in expanding is arbitrary
as it is dependent on the capability of the backend. For example, in the case of
(23), it is possible that the backend can verify (24) and (25) separately but not
(23) without human input. Practically speaking, by reducing the complexity in
the verification of an individual Hoare triple in exchange for an increase in the
total number of Hoare triples, the proof-checking process usually become easier
to automate.

A contract can have more than one pre-condition statement as shown in
figure 8. The pre-condition statements are combined into a single pre-condition
P conjunctively when the contract is parsed as a Hoare triple. For example, the
contract in figure 8 expresses the Hoare triple {P1 ∧ P2} empty; {Q}.

Credible Autocoding of Convex Optimization Algorithms 17

1 % requ i r e s P1
2 % requ i r e s P2
3 % ensures Q
4 {

5 C;

6 }

Fig. 8. Contract for an empty code

The logic comparison operator > is overloaded to express �. The function
smat is the inverse of the function svec. The function svec is similar to the sym-
metric vectorization function vecs but with a multiplication factor of 2 outside
the diagonal. For example, the expression smat([0.4;-0.2;0.2]) returns the matrix[

0.4 −0.1
−0.1 0.2

]
. (26)

6.3 Functions with Verified Contracts

Certain functions used in the example program come by default with MSL con-
tracts to ensure the regularity of the inputs and outputs to the functions. These
annotations are implicit since they are assumed to be correct.

For example, the square root function and the inverse function denoted by
the symbols ˆ0.5 and ˆ−1 respectively, come by default with the properties that
the input matrix is symmetric positive-definite and the output is also symmetric
positive-definite.

1 % requ i r e s Zm>0;
2 % ensures Zh>0;
3 Zh=Zm ^(0.5);

4 % requ i r e s Zh>0;
5 % ensures Zhi >0;
6 Zhi=Zh^(-1)

The function lsqr comes by default with the post-condition which stipulates that
the matrix-vector product of the first argument of the function and the output
of the function is equal to the second argument of the function.

1 % ensures F∗y==−b ;
2 y=lsqr(F,-b);

The function vecs by default comes with the pre-condition that the input argu-
ment to the function is a symmetric matrix.

1 % requ i r e s P==transpose (P) ;
2 p=vecs(P);

18

The function mats, as displayed below, requires that x ∈ R
n(n+1)

2 and ensures
that the output X is a symmetric matrix of size n.

1 % requ i r e s n>=1;
2 % requ i r e s type (x)==vec tor (n/2∗(n+1)) ;
3 % ensures type (X)==symmetric_matrix (n) ;
4 X=mats(x,n);

A first effort in the automatic generation of contracts for the basic building
blocks of high level languages can be found in [6].

6.4 Annotated Code

For the analysis and discussion of the annotations, the fully-annotated example
is split into multiple parts and each part is displayed in a separate figure and
discussed in a separate subsection. In these figures, every MSL contract is as-
signed a pair of numbers (n,m), which indicates the mth contract of the nth
block of code of the figure. The Hoare triple expressed by the contract with a
label of (n,m) is denoted as

Hn,m := {Pn,m}Cn; {Qn,m} . (27)

For example, in figure 6.4, H1,1 is the Hoare triple {x > 0}x = y; {y > 0}, with
P1,1 being the pre-condition x > z, C1 being the line of code y=x-z; and Q1,1

being the post-condition y > 0. Also in figure 6.4, H1,2 is the Hoare triple

1 % (1 , 1) r e qu i r e s x>z ;
2 % ensures y>0;
3

4 % (1 , 2) r e qu i r e s x<0;
5 % requ i r e s z >0;
6 % ensures y<0;
7 {

8 y=x-z;

9 }

{x < 0 ∧ z > 0} y = x−z; {y < 0}, with P1,2 := x < 0∧z > 0, and Q1,2 := y < 0.
The variables from the program will be referenced using either their pro-

grammatic textual representation or their corresponding mathematical symbols.
For example, the list of variables phi, phim, dXm, and Xm is the same
as the list of symbols φ, φ−, ∆X− , and X− Likewise, the annotations are
also referenced using both representations as well. For example, the expression

phim=trace(Xm*Zm)/n is equivalent to φ− :=
Tr (X−Z−)

n
. Some expressions

from the program such as mats(dXm,n) and mats(dZm,n) are referenced using
the more compact symbols ∆X− and ∆Z− respectively.

Credible Autocoding of Convex Optimization Algorithms 19

6.5 Proof Checking the Annotations

We assume there exists an automated proof-checking program, which we refer
to as the backend, that can be used to verify the Hoare triples in the anno-
tated example. We will not go into much details about the backend other than
occasionally discussing some of theories and formulas needed to verify certain
annotations.

6.6 Initialization Part I

The first part of initialization code along with its annotations is displayed in
figure 9. The annotations described in this subsection of the paper are from this
figure unless explicitly stated otherwise.

In Ci, i = 1, . . . , 5, the data parameters of the input optimization problem
are assigned to the appropriate variables. The inserted post-conditions Pi,1, i =
1, . . . , 5 represent regularity conditions on the data parameters of the input prob-
lem. The correctness of these post-conditions guarantee that the input optimiza-
tion problem is well-posed. For example, the post-condition P1,1 claims that the
variable F0 is positive-definite after the execution of C1 in line 2. Another ex-
ample is Q2,1 which claims that after execution of C2 in line 4, the variable F1
is a symmetric matrix.

In C6 and Cy, the problem sizes are computed. In our example, variable m
denotes the number of equality constraints in the dual formulation and variable
n denotes the dimensions of the optimization variables X and Z. The inserted
post-conditions Q6,1 and Q7,1 asserts that the problem sizes are at least one.

6.7 Initialization Part II

The annotations described in this subsection of the paper are from figure 10
unless explicitly stated otherwise.

The blocks of code Ci, i = 1, 2 generate and then assign initial values to
variablesX and Z. The values of variablesX and Z need to be positive-definite in
order to satisfy the strict feasibility property of the input optimization problem.
Furthermore, functions used in the latter part of the program such as ˆ0.5 and
ˆ−1 implicitly require the input to be positive-definite. To check if X and Z
are positive-definite after they are initialized, we insert the post-conditions Q1,1

and Q2,1. The correctness of Hi,1, i = 1, 2 can be checked by a backend that
can verify if a matrix is positive definite. For C2, we insert a second contract to
check if the quantity of the duality gap, defined as the inner product X and Z
or trace(X*Z), is bounded from above by 0.1.

Using the skip rule from table 1, the post-conditions Q1,1 and Q2,1 are prop-
agated forward, and combined conjunctively to form P3,1. Pre-condition P3,1 is
an invariant to be annotated for the while loop By the application of the theory

X � 0 ∧ Z � 0⇒ Tr (XZ) > 0, (28)

20

1 % (1 , 1) ensures F0>0;
2 {

3 F0=[1, 0; 0, 0.1];

4 }

5 % (2 , 1) ensures t ranspo se (F1)==F1 ;
6 {

7 F1 =[-0.750999 0.00499; 0.00499 0.0001];

8 }

9 % (3 , 1) ensures t ranspo se (F2)==F2 ;
10 {

11 F2 =[0.03992 -0.999101; -0.999101 0.00002];

12 }

13 % (4 , 1) ensures t ranspo se (F3)==F3 ;
14 {

15 F3 =[0.0016 0.00004; 0.00004 -0.999999];

16 }

17 % (5 , 1) ensures smat (b) >0;
18 {

19 b=[0.4; -0.2; 0.2];

20 }

21 F=[vecs(F1); vecs(F2); vecs(F3)];

22 % (6 , 1) ensures Ft==transpose (F) ;
23 {

24 Ft=F’;

25 }

26 % (7 , 1) ensures n>=1;
27 {

28 n=length(F0);

29 }

30 % (8 , 1) ensures m>=1;
31 {

32 m=length(b);

33 }

Fig. 9. Initialization

Credible Autocoding of Convex Optimization Algorithms 21

1 % (1 , 1) ensures Z>0;
2 {

3 Z=mats(lsqr(F,-b),n);

4 }

5 % (2 , 1) ensures X>0
6

7 % (2 , 2) ensures t r a c e (X∗Z) <=0.1;
8 {

9 X=[0.3409 0.2407; 0.2407 0.9021];

10 }

11 % (3 , 1) r e qu i r e s Z>0 && X>0;
12 % ensures t r a c e (X∗Z) >0;
13 {

14 % empty code
15 }

16 % (4 , 1) ensures t ranspo se (P)==P;
17 {

18 P=mats(lsqr(Ft ,vecs(-X-F0)),n);

19 p=vecs(P);

20 }

21 % (5 , 1) ensures ep s i l on >0
22 {

23 epsilon =1e-8;

24 }

25 % (6 , 1) ensures sigma ==0.75;
26 {

27 sigma =0.75;

28 }

29 % (7 , 1) r e qu i r e s t r a c e (X∗Z) <=0.1;
30 % ensures phi <=0.1;
31

32 % (7 , 2) r e qu i r e s t r a c e (X∗Z) >0;
33 % ensures phi >0;
34

35 % (7 , 3) ensures phi==tra c e (X∗Z) ;
36 {

37 phi=trace(X*Z);

38 }

39 % (8 , 1) r e qu i r e s phi >0;
40 % ensures phi −0 .76/0 .75∗ phi <0;
41 {

42 % empty code
43 }

44 % (9 , 1) r e qu i r e s phi −0 .76/0 .75∗ phi <0;
45 % ensures phi −0.76∗phim<0;
46 {

47 phim =1/0.75* phi;

48 }

49 % (10 , 2) ensures mu==tra c e (X∗Z) /n ;
50 {

51 mu=trace(X*Z)/n;

52 }

Fig. 10. Initialization Part II

22

we get the post-condition Q3,1. Post-condition Q3,1 is a claim that the duality
gap is also bounded from below by 0. For the automatic checking of H3,1, the
backend can use the same theory from (28).

Next in C4, the initial value for p is computed using the matrix equality

F0 +

m∑
i

piFi + X = 0, which is taken from the primal formulation. Here, we

only insert the post-condition transpose(P)==P since it is one of the implicit
pre-conditions of the function vecs in line 19.

We move on to C5, which assigns the value 1× 10−8 to the variable epsilon.
This value is essentially a measure of the desired optimality and it is also an
important factor in computing an upper bound on the number of iterations of
the while loop. The proof of the bounded time termination of the loop requires
the desired optimality to be greater than 0, hence the insertion of Q5,1. The
next block of code, which is C6 assigns the value of 0.75 to the variable σ. The
inserted post-condition, which is P6,1 ensures that the variable σ is equal to the
value 0.75. This trivial condition is to be used later in the annotation process.
The verification of Qi,1, i = 5, 6 should be automatic for any theorem prover.

Statement C7 computes the duality gap Tr (X ∗ Z) and then assigns the
result to the variable phi. There are three contracts for C7. For H7,j , j =
1, 2, the pre-conditions P7,1 and P7,2, which correspond to Trace(X*Z)>0 and
Trace(X*Z)<=0.1 respectively, are obtained by applying the skip rule to Q2,2 and
Q3,1. The post-conditions Q7,1 and Q7,2 are generated using the backward sub-
stitution rule from 1. They are also invariants to be annotated for the while loop.
The last contract of C7 contains a trivially true post-condition phi==trace(X*Z)
to be used later in the annotation process.

Now moving on to C8, we see another inserted empty block of code (line
42) with the pre-condition phi>0. The pre-condition is simply Q7,2 propagated
forward. Before we discuss the post-condition inH8,1, we first jump ahead to next
block of code which is C9. For C9, the inserted post-condition phi-0.76*phim<0
is an invariant obtained by formalizing the property of finite termination of the
interior point algorithm. This post-condition is an invariant to annotate the
while loop. Applying the backwards substitution rule on Q9,1, we get the pre-
condition P9,1 which is exactly the post-condition for C8. Since C8 is an empty
block of code, the correctness of the Hoare triple H8,1 reduces to verifying the
formula P8,1 ⇒ Q8,1 which is equivalent to showing

c > 1 ∧ φ > 0⇒ φ− cφ < 0 ∧ 0.76/0.75 > 1 (29)

which can be discharged automatically by existing tools such as certain SMT
solvers [5].

Finally, we insert a trivially true post-condition for the last block of code in
figure 10. The post-condition simply ensures that the variable mu is equal to the
expression trace(X*Z)/n after the latter has been assigned to the former.

In the next few sections, we show that Q7,1 ∧ Q7,2 ∧ Q9,1 holds throughout
execution of the while loop, thereby proving that optimization program termi-
nates with an answer within a bounded time. We also show that P3,1 holds as

Credible Autocoding of Convex Optimization Algorithms 23

well throughout the entire execution of the loop, thereby completing the proof
of Q7,1 ∧Q7,2 ∧Q9,1.

6.8 The while loop

The annotations and code discussed in this subsection are from figure 11 unless
explicitly stated otherwise.

1 % (1 , 1) r e qu i r e s phi>0 && phi <=0.1;
2 % ensures phi>0 && phi <=0.1;
3

4 % (1 , 2) r e qu i r e s phi −0.76∗phim<0;
5 % ensures phi −0.76∗phim<0;
6

7

8 % (1 , 3) r e qu i r e s Z>0 && X>0;
9 % ensures Z>0 && X>0;

10 {

11 while (phi >epsilon) do

12 .

13 .

14 .

15 end

16 }

Fig. 11. The While Loop

The contracts on the while loop are constructed using the invariants Q7,1 ∧
Q7,2, Q9,1 and P3,1, in which P3,1, Q7,1, Q7,2 and Q9,1 are from figure 9. By
the application of the while axiom from (1), each invariant becomes the pre
and post-condition of a contract. In the next few subsections of the paper, we
discuss the line by line Hoare logic style proof of the correctness of Q1,j , j = 1, 3.
For partial correctness, we only need to show that Q1,j , j = 1, 3 hold before
the execution of the loop and after every execution of the loop body. The total
correctness comes from the finite termination property encoded by the invariant
phi-0.76*phim<0.

6.9 Proving φ− 0.76φ− < 0 on the code: Part I

The annotations and code discussed in this subsection are from figure 12 unless
stated otherwise.

The annotation of the loop body starts with the insertion of the block of
empty code in line 4. Using the skip rule on the invariant Q1,1 from figure 11
and Q7,3 from figure 9, we get the pre-condition P1,1. Apply the theory

P ∧ expr1 = expr2⇒ P [expr1/expr2] ∨ P [expr2/expr1] (30)

24

1 % (1 , 1) r e qu i r e s phi>0 && phi <=0.1 && phi==tra c e (X∗Z) ;
2 % ensures t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
3 {

4 % empty code
5 }

6 % (2 , 1) r e qu i r e s t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
7 % ensures t r a c e (Xm∗Zm)>0 && tra c e (Xm∗Zm) <=0.1;
8 {

9 Xm=X;

10 Zm=Z;

11 }

12 pm=p;

13 % (3 , 1) r e qu i r e s n>=1;
14 % ensures n∗mu==tra c e (Xm∗Zm) ;
15 {

16 mu=trace(Xm*Zm)/n;

17 }

Fig. 12. while Loop Body: Part I

to P1,1, we get the post-condition Q1,1. The formula in (30) is used for several
more annotations in the loop body. In the case of going from P1,1 to Q1,1,
we substituted all instances of the expression phi in φ > 0 ∧ φ ≤ 0.1 with
the expression trace(X*Z). The verification of H1,1 is fairly straightforward in a
theorem prover such as PVS.

The next block of code, which is C2, assigns the value of X and Z to the
variables X− and Z− respectively. The pre-condition for C2 is Q1,1 because the
post-condition of a prior contract is also a pre-condition of the current contract.
The post-condition Tr (X−Z−) > 0 ∧ Tr (X−Z−) ≤ 0.1 is generated by the
application of the backward substitution rule.

Finally, the last contract in figure 12 is for C3, which assigns the expression
trace(Xm*Zm)/n to the variable mu. The pre-condition P3,1 is Q7,1 from fig-
ure 9 propagated forward using the skip rule. The post-condition nµ = Tr (X−Z−)
is generated using the formula

n >= 1⇒ n 6= 0 ∧ n 6= 0 ∧ x =
y

n
⇒ nx = y. (31)

The correctness of equation (31) can be discharged automatically by a theorem
prover such as PVS or most SMT solvers.

6.10 Proving φ− 0.76φ− < 0 on the code: Part II

The annotations and code described in this subsection are from figure 13 unless
stated otherwise.

We look at the first contract, which is for the inserted block of empty code
in line 5. The first pre-condition statement n*mu==trace(Xm*Zm) is obtained by

Credible Autocoding of Convex Optimization Algorithms 25

1 % (1 , 1) r e qu i r e s n∗mu==tra c e (Xm∗Zm) ;
2 % requ i r e s t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (

mats (l s q r (krons ((Zm^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) , vecs (
sigma∗mu∗eye (n , n)−(Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−krons ((Zm
^(0 . 5)) ^(−1) , (Zm^(0 . 5)) ’∗Xm, n ,m) ∗ l s q r (F , z e ro s (m, 1))) , n) ∗
Zm)+tra c e (Xm∗Zm)−sigma∗n∗mu==0;

3 % ensures t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (krons ((Zm^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) , vecs (
sigma∗mu∗eye (n , n)−(Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−krons ((Zm
^(0 . 5)) ^(−1) , (Zm^(0 . 5)) ’∗Xm, n ,m) ∗ l s q r (F , z e ro s (m, 1))) , n) ∗
Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;

4 {

5 % empty
6 }

7 % (2 , 1) r e qu i r e s t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (krons ((Zm^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) , vecs (
sigma∗mu∗eye (n , n)−(Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−krons ((Zm
^(0 . 5)) ^(−1) , (Zm^(0 . 5)) ’∗Xm, n ,m) ∗ l s q r (F , z e ro s (m, 1))) , n) ∗
Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;

8 % ensures t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (H, vecs (sigma∗mu∗eye (n , n)−Zh∗Xm∗Zh)−G∗ l s q r (F ,
z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;

9 {

10 Zh=Zm ^(0.5);

11 Zhi=Zh^(-1);

12 G=krons(Zhi ,Zh ’*Xm ,n,m);

13 H=krons(Zhi*Zm ,Zh ’,n,m);

14 }

15 % (3 , 1) r e qu i r e s t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (H, vecs (sigma∗mu∗eye (n , n)−Zh∗Xm∗Zh)−G∗ l s q r (F ,
z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;

16 % ensures t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+
tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;

17

18 % (3 , 2) ensures dZm==l s q r (F , z e ro s (m, 1)) ;
19 {

20 r=sigma*mu*eye(n,n)-Zh*Xm*Zh;

21 dZm=lsqr(F,zeros(m,1));

22 dXm=lsqr(H, vecs(r)-G*dZm);

23 }

24 % (4 , 1) r e qu i r e s sigma ==0.75;
25 % requ i r e s t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+

tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;
26 % ensures t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+

tra c e (Xm∗Zm) −0.75∗ t r a c e (Xm∗Zm)==0;
27 {

28 % empty code
29 }

Fig. 13. while Loop Body: Part II

26

applying the skip rule to Q3,1 from figure 12. The second pre-condition statement
is the instantiation of the following true statement: given ∆X and ∆Z that
satisfy the equations

m∑
i=1

〈Fi, ∆Z〉 = 0, (32)

and

1

2

(
Z0.5 (∆XZ)Z−0.5 + Z−0.5 (Z∆X)Z0.5

)
=
−1

2

(
Z0.5 (X∆Z)Z−0.5 + Z−0.5 (∆ZX)Z0.5

)
+ σµI − Z0.5XZ0.5,

(33)

then ∀X,Z ∈ Rn×n,

Tr (X∆Z) + Tr (∆XZ) + Tr (XZ)− σnµ = 0. (34)

The correctness of (34) can be seen by noting that

Tr (∆XZ) = Tr

(
1

2

(
Z0.5 (∆XZ)Z−0.5 + Z−0.5 (Z∆X)Z0.5

))
= Tr

(
−1

2

(
Z0.5 (X∆Z)Z−0.5 + Z−0.5 (∆ZX)Z0.5

))
+ Tr (σµIn×n)− Tr

(
Z0.5XZ0.5

)
= −Tr (X∆Z) + σnµ− Tr (XZ) ,

(35)

hence

Tr (X∆Z) + Tr (∆XZ) + Tr (XZ)− σnµ
= Tr (X∆Z)− Tr (X∆Z) + σnµ− Tr (XZ) + Tr (XZ)− σnµ
= 0

(36)

Now we look at the pre-condition statement from line 2. First, note that the
subexpression mats(lsqr(F,zeros(m,1)) from line 2 returns a ∆Z that satisfies
equation (32). Second, note that the subexpression mats(lsqr(krons((..., vecs(sigma...*Zm)
from line 2 returns a ∆X that satisfies, with X replaced by X− and Z replaced
by Z−, the equation in (33). Finally, one can see that the pre-condition statement
is generated by instantiating X and Z of equation(34) with X− and Z−.

The post-condition for H1,1 is generated using the formula from (30) i.e. by
replacing all instances of the expression n*mu in the pre-condition statement
from line 2 with the expression trace(Xm*Zm).

The next contract consists of the pre-condition P2,1, which is a duplication
of Q1,1, and the post-condition Q2,1. The post-condition Q2,1 is generated by
four successive application of the backward substitution rule, one for each line
of code in C2. This process results in four successive Hoare triples, which are
merged into H2,1 by the application of the composition rule from equation (3).

Credible Autocoding of Convex Optimization Algorithms 27

Hoare triple H3,1 is constructed in a similar fashion as H2,1. For C3, we insert
an additional contract ensuring that the variable dZm is equal to the expression
lsqr(F,zeros(m,1)). This post-condition is correct because of the code in line 21
and will be used later in the annotation of the loop body.

The last contract from figure 13, which forms H4,1 has two pre-condition
statements. The first pre-condition is Q6,1 from figure 10. It is valid by repeated
backward substitution (rule 5 in table 1). The second pre-condition statement is
simply the post-condition of the prior contract. The post-condition Q4,1 is gen-
erated using the formula in (30). In this case, the formula results in all instances
of the expression sigma in Q3,1 being replaced by the expression 0.75.

6.11 Proving φ− 0.76φ− < 0 on the code: Part III

The annotations and code described in this subsection are from figure 13 unless
stated otherwise.

In figure 14, the annotations generated are used to prove the formula

Q4,1 ∧Q5,1 ⇒ Tr ((X− +∆X−) (Z− +∆Z−))− 0.75 Tr (X−Z−) = 0, (37)

in which Q4,1 and Q3,2 are from figure 14. Each of the Hoare triple represents
an individual step in the proof of (37).

We now look at the first contract from figure 14. The pre-condition P1,1

is generated using the skip rule on Q3,1 from figure 13. The post-condition is
generated by noting that F*lsqr(F,zeros(m,1)) is equal to {0}m, which can be
verified by checking the correctness of the default contract on the function lsqr.

In the next contract, the post-condition is generated by applying the trans-
pose operator to the first pre-condition statement, which is precisely the post-
condition of H1,1, and then followed by the application of the formula in (30)
using the second pre-condition statement in line 7. The second pre-condition
statement is obtained from the application of the skip rule on Q6,1 from figure 9.

The third contract is a proof step that is correct because mats and vecs
are unitary transformations. Although omitted from the discussion before, the
properties of unitary transformation can be part of the default contract on both
of these functions.

In the fourth contract, the first pre-condition statement is simply the post-
condition of the prior contract. The second pre-condition statement is inserted
by hand. Note that its correctness stems from the correctness of the lsqr. If the
default contract on lsqr is satisfied, then

Ft lsqr (Ft,−dXm) = −dXm (38)

is true for all Ft and dXm. By the application of (30), we get the post-condition
in line 19.

In the last contract, Q4,1 and Q4,1 from figure 14 are the pre-condition state-
ments. The post-condition is generated using a two step heuristics. First the
pre-conditions are summed, and then followed by an algebraic transformation
into the form in Q5,1. The generation of Q5,1 required far more ad hoc heuristics

28

1 % (1 , 1) r e qu i r e s dZm==l s q r (F , z e ro s (m, 1)) ;
2 % ensures l s q r (Ft ,−dXm) ’∗F∗dZm==0;
3 {

4 % empty code
5 }

6 % (2 , 1) r e qu i r e s l s q r (Ft ,−dXm) ∗F∗dZm==0;
7 % requ i r e s t ranspose (F)==Ft ;
8 % ensures dot (Ft∗ l s q r (Ft ,−dXm) ,dZm)==0;
9 {

10 % empty code
11 }

12 % (3 , 1) r e qu i r e s dot (Ft∗ l s q r (Ft ,−dXm) ,dZm)==0;
13 % ensures t r a c e (mats (Ft∗ l s q r (Ft ,−dXm) ,n) ∗mats (dZm, n))

==0;
14 {

15 % empty code
16 }

17 % (4 , 1) r e qu i r e s t r a c e (mats (Ft∗ l s q r (Ft ,−dXm) ,n) ∗mats (dZm, n))
==0;

18 % requ i r e s Ft∗ l s q r (Ft ,−dXm)==−dXm
19 % ensures t r a c e (mats (dXm, n) ∗mats (dZm, n))==0
20 {

21 % empty code
22 }

23 % (5 , 1) r e qu i r e s t r a c e (mats (dXm, n) ∗mats (dZm, n))==0;
24 % requ i r e s t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+

tra c e (Xm∗Zm) −0.75∗ t r a c e (Xm∗Zm)==0;
25 % ensures t r a c e ((Xm+mats (dXm, n)) ∗(Zm+mats (dZm, n)))

−0.75∗ t r a c e (Xm∗Zm)==0;
26 {

27 % empty code
28 }

Fig. 14. while Loop Body: Part III

Credible Autocoding of Convex Optimization Algorithms 29

than the other contracts discussed so far. However, note that we can split the
last contract into even smaller steps such as one for the summing followed by
one using the algebraic transformation.

6.12 Proving φ− 0.76φ− < 0 on the code: Part IV

The annotations and code described in this subsection are from figure 15 unless
stated otherwise.

The block of code in line 2 and 3 has no contract. We skip ahead to the
block of code in lines 8 and 9. For C1, the pre-condition is a duplication of Q5,1

from figure 14 and the post-condition Q1,1 is generated by using the backward
substitution rule twice i.e. once for each line of code in the block.

Next, we jump forward to last block of code in the loop body, which is C5.
For C5, using the while loop axiom, we insert Q1,1 and Q1,2 from figure 11
as post-conditions. Applying the backward substitution rule on Q5,1 and Q5,2

results in P5,1 and P5,2 respectively. Additionally, we also have Q5,3 in order to
ensure consistency with the clause phi==trace(X*Z) in P1,1 from figure 12.

We now jump backward to C4, and we have the post-conditions Q4,1 and Q4,2

that are precisely P5,1 and P5,2. The post-condition Q4,1 is not affected by the
execution of C4, so we cannot apply the Hoare logic rules. Instead we propagate
the post-conditions Q1,1 and Q2,1 from figure 12 forward and then combined
them conjunctively to form P4,1. With the inserted P4,1, verifying H4,1 is the
same as checking if

P4,1 ⇒ Q4,1 (39)

holds. Equation (39) can be discharged by a theorem prover for example in three
steps: first we apply the following result from theory:

y − cx = 0⇒ y = cx (40)

on Q1,1 followed by the application of

c > 0 ∧ c < 1 ∧ x <= 0.1 ∧ x > 0⇒ cx <= 0.1 ∧ cx > 0, (41)

on Q2,1 from figure 12. Lastly, by applying the formula in (30) on the conclusions
of (40) and (41), we get y <= 0.1 ∧ y > 0 which leads to Q4,1.

The backward substitution rule is applied on Q4,2 to get P4,2. Looking back
at C1, we can see the post-condition Q1,1 is not equivalent to P4,2. Since there is
no executable code between Q1,1 and P4,2, we would have a contradiction unless

Q1,1 ∧
∧
i

Qi ⇒ P4,2, in which Qi belongs to the set of all post-conditions of

C1. We resolve this contradiction by inserting the Hoare triples Hi,1, i = 2, 3 as
a proof of

Q1,1 ∧ Tr (X−Z−) > 0⇒ P4,2. (42)

The generation of Hi,1, i = 2, 3, used ad hoc heuristics as in the annotations
of figure 14. As done for equation (37), we first decided to split the proof of
the formula in (42) into two steps. In the first step i.e. H2,1, the pre-condition

30

1 {

2 dpm=lsqr(Ft ,-dXm);

3 p=pm+dpm

4 }

5 % (1 , 1) r equ i r e t r a c e ((Xm+mats (dXm, n)) ∗(Zm+mats (dZm, n)))
−0.75∗ t r a c e (Xm∗Zm)==0;

6 % ensures t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0
7 {

8 X=Xm+mats(dXm ,n);

9 Z=Zm+mats(dZm ,n);

10 }

11 % (2 , 1) r e qu i r e s t r a c e (Xm∗Zm) >0;
12 % ensures 0 .01∗ t r a c e (Xm∗Zm) >0;
13 {

14 % empty code
15 }

16 % (3 , 1) r e qu i r e s t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0
17 % requ i r e s 0 . 01∗ t r a c e (Xm∗Zm) >0;
18 % ensures t r a c e (X∗Z) −0.76∗ t r a c e (Xm∗Zm) <0;
19 {

20 % empty code
21 }

22 % (4 , 1) r e qu i r e s t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0
23 % requ i r e s t r a c e (Xm∗Zm)>0 && tra c e (Xm∗Zm) <=0.1;
24 % ensures t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
25

26 % (4 , 2) r e qu i r e s t r a c e (X∗Z) −0.76∗ t r a c e (Xm∗Zm)<0
27 % ensures t r a c e (X∗Z) −0.76∗phim<0;
28 {

29 phim=trace(Xm*Zm);

30 }

31 % (5 , 1) r e qu i r e s t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
32 % ensures phi>0 && phi <=0.1;
33

34 % (5 , 2) r e qu i r e s t r a c e (X∗Z) −0.76∗phim<0;
35 % ensures phi −0.76∗phim<0;
36

37 % (5 , 3) ensures phi==tra c e (X∗Z) ;
38 {

39 phi=trace(X*Z);

40 mu=trace(X*Z);

41 }

Fig. 15. while Loop Body: Part IV

Credible Autocoding of Convex Optimization Algorithms 31

is trace(Xm*Zm)>0, which is true by conjunctive simplification of Q2,1 from
figure 12, and a post-condition Q2,1 constructed using the following result from
theory:

c > 0 ∧ x > 0⇒ cx > 0, (43)

with a value of 0.01 being chosen purposefully for the positive constant c. In
H3,1, we insert Q1,1 ∧Q2,1 as the pre-condition and P4,2 as the post-condition.
The correctness of H3,1 can be verified by applying the following result:

y = 0 ∧ cx > 0⇒ y − cx < 0. (44)

By verifying P4,2 , we have now completed the discussion on the annotations
to assist the mechanical proof of the correctness of the invariants phi>0 &&
phi<=0.1 and phi-0.76*phim<0. In the next subsection, we discuss, albeit in a far
less mechanical way, on the possible annotations to prove the correctness of the
invariant X>0 && Z>0.

6.13 The loop invariant X � 0 ∧ Z � 0

In the following subsections, we describe some of the key annotations used to
show that Z � 0 ∧X � 0 hold as an invariant of the while loop. For the sake
of brevity, some of the intermediate proof annotations are omitted.

First we use the central path property of the running example i.e. X and Z
are assigned initial values such that

‖XZ − µI‖F ≤ 0.3105µ (45)

as an inductive invariant for the while loop.

Remark 2. The central path property in (45) is a constraint that guarantees that
X and Z are initialized to values contained within a small neighborhood of the
central path. This constraint is well-known in the interior point literature [7],
and it is used to prove linear convergence of the duality gap in the general case.
For some input optimization problems, a large deviation from the central path
during a Newton step can result in an increase in the duality gap. Efficient
methods exist in the interior point method literature (see [14]) to guarantee an
initialization within a small neighborhood of the central path.

We now insert (45) and X � 0 ∧ Z � 0 as the invariants of the while loop.

6.14 Proving X � 0 ∧ Z � 0 on the code: Part I

All annotations discussed in this subsection are from figure 17 unless explicitly
stated otherwise. The first pre-condition statement in H1,1 is an invariant from
Q1,1 of figure 16. The second pre-condition statement is obtained from Q10,2

from figure 10. We apply equation (30) to get the post-condition∥∥∥∥XZ − Tr (XZ)

n
I

∥∥∥∥
F

≤ 0.3105
Tr (XZ)

n
. (46)

32

1 % (1 , 1) r e qu i r e s norm(X∗Z−mu∗eye (n , n)) <=0.3105∗mu && X>0 && Z
>0;

2 % ensures norm(X∗Z−mu∗eye (n , n)) <=0.3105∗mu && X>0 && Z
>0;

3 {

4 while (phi >epsilon) do

5 .

6 .

7 .

8 end

9 }

Fig. 16. Positive-Definiteness of X and Z as Invariants

1 % (1 , 1) r e qu i r e s norm(X∗Z−mu∗eye (n , n)) <=0.3105∗mu;
2 % requ i r e s mu==tra c e (X∗Z) /n ;
3 % ensures norm(X∗Z−t r a c e (X∗Z) /n∗ eye (n , n)) <=0.3105∗

t r a c e (X∗Z) /n ;
4 {

5 % empty
6 }

7 % (2 , 1) r e qu i r e s X>0 && Z>0;
8 % ensures Xm>0 && Zm>0;
9

10 % (2 , 2) r e qu i r e s norm(X∗Z−t r a c e (X∗Z) /n∗ eye (n , n)) <=0.3105∗
t r a c e (X∗Z) /n ;

11 % ensures norm(Xm∗Zm−t r a c e (Xm∗Zm) /n∗ eye (n , n)) <=0.3105∗
t r a c e (Xm∗Zm) /n ;

12 {

13 Xm=X

14 Zm=Z;

15 pm=p;

16 }

17 % (3 , 1) r e qu i r e s norm(Xm∗Zm−t r a c e (Xm∗Zm) /n∗ eye (n , n)) <=0.3105∗
t r a c e (Xm∗Zm) /n ;

18 % ensures norm(Xm∗Zm−mu∗eye (n , n)) <=0.3105∗mu;
19 {

20 mu=trace(Xm*Zm)/n;

21 }

Fig. 17. Invariant X � 0 ∧ Z � 0 Part I

Credible Autocoding of Convex Optimization Algorithms 33

Next, for C2, we insert two contracts. The first contract has the pre-condition
X � 0 ∧ Z � 0, which is obtained from Q1,1 of figure 16. The post-condition
Q2,1 is generated by the repeated applications of the backward substitution rule.
For the second contract, the pre-condition is simply Q1,1 and the post-condition
is also generated by the repeated application of the backward substitution rule.
We now move to C3 which only has one contract. The pre-condition in H3,1 is
simply Q2,2 and the post-condition Q3,1 is generated by another application of
the backward substitution rule.

6.15 Proving X � 0 ∧ Z � 0 on the code: Part II

The annotations described in this subsection are from figure 18 unless explicitly
stated otherwise. The post-condition Q2,2 of figure 16 implies two properties
that are vital to proving the correctness of Z � 0 and X � 0. The insertion
of those properties result in the next two Hoare triples. Triple H1,1 is obtained
from the formula

P1,1 ⇒ ‖Z−0.5− ∆ZZ−0.5− ‖F ≤ 0.7, (47)

with ∆Z that satisfies equation (32) and P1,1 being Q2,2 from figure 16. The
value 0.7 in (47) is obtained from an over-approximation of the expression√
n (1− σ)

2
+ 0.31052

1− 0.3105
. The proof for this result is skipped here and can be

found in [16]. We also have H1,2, which is obtained from the formula

P2,2 ⇒ ‖Z−0.5− ∆X∆ZZ0.5
− ‖F ≤ 0.3105σµ, (48)

with ∆X and ∆Z that satisfy (32) and (33) and P1,2 also being Q2,2 from
figure 16.

Next, the block of code C2 computes the Newton directions ∆X− and ∆Z−.
We duplicate Q1,1 and Q1,2 to form P2,1 and P2,2 respectively. Using the back-
ward substitution rule on Q2,1, we get the post-condition

‖Z−0.5− ∆Z−Z
−0.5
− ‖F ≤ 0.7. (49)

Applying the backward substitution rule again on P2,2, we get the post-condition

‖Z−0.5− ∆X−∆Z−Z
0.5
− ‖F ≤ 0.3105σµ, (50)

We move to the next Hoare triple which is H3,1. The pre-condition state-
ment mats(H*dXm)+mats(G*dZm)==sigma*mu*eye(n,n)-Zh*Xm*Zh is correct by
noting that mats(H*dXm) is equal to mats(vecs(r)-G*dXm) because of the assign-
ment in line 21, and mats(vecs(r)-G*dXm) reduces to r-mats(G*dXm). An equiv-
alent formula to mats(H*dXm)+mats(G*dZm)==sigma*mu*eye(n,n)-Zh*Xm*Zh is

0.5
(
Z−0.5− (∆Z−X− + Z−∆X−)Z0.5

− + Z0.5
− (X−∆Z− +∆X−Z−)Z−0.5−

)
= σµI − Z0.5

− X−Z
0.5
− .

(51)

34

1 % (1 , 1) r e qu i r e s norm(Xm∗Zm−mu∗eye (n , n)) <=0.3105∗mu;
2 % ensures norm ((Zm^(0 . 5)) ^(−1)∗mats (l s q r (F , z e ro s (m, 1))

, n) ∗Zm^(0 . 5)) <=0.7;
3

4 % (1 , 2) r e qu i r e s norm(Xm∗Zm−mu∗eye (n , n)) <=0.3105∗mu;
5 % requ i r e s norm(Zm^(0 . 5)) ^(−1)∗mats (l s q r (krons ((Zm

^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) , vecs (sigma∗mu∗eye (n , n)−(
Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−krons ((Zm^(0 . 5)) ^(−1) , (Zm^(0 . 5))
’∗Xm, n ,m) ∗ l s q r (F , z e ro s (m, 1))) , n) ∗mats (l s q r (F , z e ro s (m, 1)) ,
n) ∗Zm^(0 . 5)) <=0.3105∗ sigma∗mu;

6 {

7 % empty
8 }

9 % (2 , 1) r e qu i r e s norm ((Zm^(0 . 5)) ^(−1)∗mats (l s q r (F , z e ro s (m, 1))
, n) ∗Zm^(0 . 5)) <=0.7;

10 % ensures norm(Zhi ∗mats (dZm, n) ∗Zhi) <=0.7;
11

12 % (2 , 2) r e qu i r e s norm(Zm^(0 . 5)) ^(−1)∗mats (l s q r (krons ((Zm
^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) , vecs (sigma∗mu∗eye (n , n)−(
Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−krons ((Zm^(0 . 5)) ^(−1) , (Zm^(0 . 5))
’∗Xm, n ,m) ∗ l s q r (F , z e ro s (m, 1))) , n) ∗mats (l s q r (F , z e ro s (m, 1)) ,
n) ∗Zm^(0 . 5)) <=0.3105∗ sigma∗mu;

13 % ensures norm(Zhi ∗mats (dXm, n) ∗mats (dXm, n) ∗Zhi)
<=0.3105∗ sigma∗mu;

14 {

15 Zh=Zm ^(0.5);

16 Zhi=Zh^(-1);

17 G=krons(Zhi ,Zh ’*Xm ,n,m);

18 H=krons(Zhi*Zm ,Zh ’,n,m);

19 r=sigma*mu*eye(n,n)-Zh*Xm*Zh;

20 dZm=lsqr(F,zeros(m,1));

21 dXm=lsqr(H, vecs(r)-G*dZm);

22 }

23 % (3 , 1) r e qu i r e s mats (H∗dXm)+mats (G∗dZm)==sigma∗mu∗eye (n , n)−
Zh∗Xm∗Zh ;

24 % requ i r e s norm(Zhi ∗mats (dXm, n) ∗mats (dXm, n) ∗Zhi)
<=0.3105∗ sigma∗mu;

25 % ensures 0 . 5∗ norm(Zhi ∗ ((Zm+mats (dZm, n) ∗(Xm+mats (dXm, n
)−sigma∗mu∗eye (n , n)) ∗Zh+Zh ’ ∗ ((Xm+mats (dXm, n) ∗(Zm+mats (dZm
, n)−sigma∗mu∗eye (n , n)) ∗Zhi) <=0.3105∗ sigma∗mu;

26 {

27 % empty
28 }

29 dpm=lsqr(Ft ,-dXm);

30 p=pm+dpm;

31 % (4 , 1) r e qu i r e s norm(Zhi ∗mats (dZm, n) ∗Zhi) <=0.7;
32 % ensures Zm+mats (dZm, n) >0;
33 {

34 % empty
35 }

Fig. 18. Annotations for the Invariant X � 0 ∧ Z � 0: Part II

Credible Autocoding of Convex Optimization Algorithms 35

The second pre-condition statement of H3,1 is Q2,2 unchanged. Given the pre-
condition statements, we can deductively arrive at the post-condition Q3,1, which
is

0.5‖Z−0.5− ((Z− +∆Z−) (X− +∆X−)− σµI)Z0.5
− +

Z0.5
− ((X− +∆X−) (Z− +∆Z−)− σµI)Z−0.5− ‖F

≤ 0.3105σµ.

(52)

Remark 3. Note that in (52), we use the expression Z0.5
− to represent the variable

Zh and the expression Z−0.5− to represent Zhi. This can be done because of the
assignments in lines 15 and 16. For the sake of brevity, we do not annotate the
steps that lead to (52) as Hoare triples on the code, nonetheless here we give a
sketch of the constructive proof. First note that

0.5
(
Z−0.5− (∆Z−X− + Z−∆X−)Z0.5

− + Z0.5
− (X−∆Z− +∆X−Z−)Z−0.5− +

Z0.5
− X−Z

0.5
− − σµI + Z−0.5− (∆Z−∆X−)Z0.5

− + Z0.5
− (∆X−∆Z−)Z−0.5−

)
= 0.5

(
Z−0.5− ((Z− +∆Z−) (X− +∆X−)− σµI)Z0.5

− +

Z0.5
− ((X− +∆X−) (Z− +∆Z−)− σµI)Z−0.5−

)
.

(53)

holds because the left hand side is an algebraic expansion of the right hand side.
Second, apply the formula in (30) on the conjunction of (53) and (51), (53) is
reduced to

Z−0.5− (∆Z−∆X−)Z0.5
− + Z0.5

− (∆X−∆Z−)Z−0.5−

= 0.5
(
Z−0.5− ((Z− +∆Z−) (X− +∆X−)− σµI)Z0.5

− +

Z0.5
− ((X− +∆X−) (Z− +∆Z−)− σµI)Z−0.5−

)
.

(54)

Finally, apply the transitive property of the comparison operators to Q2,2 and
the Frobenius norm of (54), we get the post-condition in (52).

Now we move ahead to the last Hoare triple of figure 18, which is H4,1. This
Hoare triple is generated using the formula

Q2,1 ⇒ Z− +∆Z− � 0, (55)

Remark 4. The formula in (55) is correct and to see that, note

Q2,1 ⇒ ‖Z−0.5− ∆Z−Z
−0.5
− ‖F < 1⇒ I + Z−0.5− ∆Z−Z

−0.5
− � 0. (56)

and that

I + Z−0.5− ∆Z−Z
−0.5
− = Z−0.5− (Z− +∆Z−)Z−0.5− . (57)

36

1 % (1 , 1) r e qu i r e s 0 . 5∗ norm(Zhi ∗ ((Zm+mats (dZm, n) ∗(Xm+mats (dXm, n
)−sigma∗mu∗eye (n , n)) ∗Zh+Zh ’ ∗ ((Xm+mats (dXm, n) ∗(Zm+mats (dZm
, n)−sigma∗mu∗eye (n , n)) ∗Zhi ’) <=0.3105∗ sigma∗mu;

2 % ensures 0 . 5∗ norm(Zhi ∗(X∗Z−sigma∗mu∗eye (n , n)) ∗Zh+Zh
’ ∗ (Z∗X−sigma∗mu∗eye (n , n)) ∗Zhi ’) <=0.3105∗ sigma∗mu;

3

4 % (1 , 2) r e qu i r e s Zm+mats (dZm, n) >0;
5 % ensures Z>0;
6 {

7 X=Xm+mats(dXm ,n);

8 Z=Zm+mats(dZm ,n);

9 }

10 % (2 , 1) r e qu i r e s Z>0 && Zm>0;
11 % ensures norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−sigma∗mu∗eye (n , n))

<=0.5∗norm(Zhi ∗(X∗Z−sigma∗mu∗ I) ∗Zh+Zh ’ ∗ (Z∗X−sigma∗mu∗ I) ∗
Zhi ’) ;

12 {

13 % empty
14 }

15 phim=trace(Xm*Zm);

16 phi=trace(X*Z);

17 % (3 , 1) r e qu i r e s t r a c e (X∗Z)−sigma∗ t r a c e (Xm∗Zm)==0;
18 % requ i r e s t r a c e (Xm∗Zm)==n∗mu;
19 % ensures t r a c e (X∗Z)−sigma∗n∗mu==0;
20 {

21 % empty
22 }

23 % (4 , 1) r e qu i r e s t r a c e (X∗Z)−sigma∗n∗mu==0;
24 % requ i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−sigma∗mu∗eye (n , n))

<=0.5∗norm(Zhi ∗(X∗Z−sigma∗mu∗ I) ∗Zh+Zh ’ ∗ (Z∗X−sigma∗mu∗eye (
n , n)) ∗Zhi ’) ;

25 % requ i r e s 0 . 5∗ norm(Zhi ∗(X∗Z−sigma∗mu∗eye (n , n)) ∗Zh+Zh
’ ∗ (Z∗X−sigma∗mu∗eye (n , n)) ∗Zhi ’) <=0.3105∗ sigma∗mu;

26 % ensures norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−t r a c e (X∗Z) /n∗ eye (n , n)
) <=0.3105∗ t r a c e (X∗Z) /n ;

27 {

28 % empty
29 }

30 % (5 , 1) r e qu i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−t r a c e (X∗Z) /n∗ eye (n , n)
) <=0.3105∗ t r a c e (X∗Z) /n ;

31 % ensures norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−mu∗eye (n , n)) <=0.3105∗
mu;

32 {

33 mu=trace(X*Z)/n;

34 }

35 % (6 , 1) r e qu i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−mu∗eye (n , n)) <=0.3105∗
mu;

36 % ensures norm(XZ−mu∗eye (n , n)) <=0.3105∗mu;
37

38 % (6 , 2) r e qu i r e s Z>0;
39 % requ i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−mu∗eye (n , n)) <=0.3105∗

mu;
40 % ensures X>0;
41 {

42 % empty
43 }

Fig. 19. Annotations for the Invariant X � 0 ∧ Z � 0: Part III

Credible Autocoding of Convex Optimization Algorithms 37

6.16 Proving X � 0 ∧ Z � 0 on the code: Part III

Now we move forward to the last part of the loop body. The annotations de-
scribed in this subsection are from figure 19 unless explicitly stated otherwise.
We insert two contracts for block of code C1. The pre-conditions of the two
contracts are respectively Q3,1 and Q4,1 of figure 18 propagated forward using
the skip rule. By the application of the backward substitution, we obtain the
post-conditions P1,1 and P1,2. The post-condition Z � 0 completes the proof for
a part of the invariant Q1,1 from figure 16. We still have to show that X � 0
and ‖XZ − µI‖F ≤ 0.3105µ hold.

The next Hoare triple, which is H2,1, is generated using the formula, ∀Z �
0, Z− � 0,

‖Z0.5XZ0.5 − σµI‖F ≤
1

2
‖Z−0.5− (ZX − σµI)Z0.5

− +

Z0.5
− (XZ − σµI)Z−0.5− ‖F

(58)

holds. The post-condition of H2,1 is precisely the statement in (58) with Zh
being Z0.5

− and Zhi being Z−0.5− .
Now we forward again to H3,1. Recall the post-condition Q1,1 from figure 15,

which is trace(X*Z) - 0.75*trace(Xm*Zm)==0. Also recall that the post-condition
Q1,1 from figure 10, which is sigma==0.75. We can apply the rule in (30) to
trace(X*Z) - 0.75*trace(Xm*Zm)==0 && sigma==0.75, and obtain the first pre-
condition statement trace(X*Z)-sigma*trace(Xm*Zm)==0. By propagating for-
ward Q1,1 from figure 12, we get the second pre-condition statement. Apply again
the rule from (30) on P3,1, we get the post-condition trace(X*Z)-sigma*n*mu==0.

In the next Hoare triple, which is H4,1, the pre-condition is formed by com-
bining the post-conditions Qi,1, i = 1, 2, 3. The post-condition Q4,1 is generated
by first noting that due to the transitivity of <=, the formula

Q2,1 ∧Q1,1 ⇒ ‖Z0.5XZ0.5 − σµI‖F ≤ 0.3105µ (59)

holds. Second, applying the rule in (30) to the conjunction of (59) and Q3,1

precisely yields post-condition Q4,1.
Finally we move forward to the block of code in line 33, in which the variable

mu is updated with the expression
Tr (XZ)

n
. Apply the backward substitution

rule on the pre-condition, which is simply Q4,1 unaltered, we get a post-condition
of

‖Z0.5XZ0.5 − µI‖F ≤ 0.3105µ. (60)

The post-condition in (60) i.e. Q5,1 is used to generate the last two Hoare
triples of figure 19. The Hoare triple H6,1 is a result of the formula

‖Z0.5XZ0.5 − µI‖F ≤ 0.3105µ⇒ ‖XZ − µI‖F ≤ 0.3105µ, (61)

which we know is correct beforehand. For H6,2, we have the pre-condition Z �
0 ∧Q5,1 which implies X � 0, and thus completes the annotation process.

38

7 Autocoding of Convex Optimization Algorithms and
Automatic Verification

In this section, we describe some general ideas towards the credible autocoding
of convex optimization algorithms. In credible autocoding, the optimization se-
mantics, such as those described in the manual process in the previous section, is
generated automatically. The variations of the interior point method discussed
in this paper is relatively simple with changes in one of the parameters such
as the symmetrizing scaling matrix T , the step size α which is defaulted to 1
in the algorithm description, the duality gap reduction parameter σ, etc. The
more complex interior point implementations such as those with heuristics in
the predictor, can also be specified using a few additional parameters. Since
many optimization programs differs from each other only in a finite set of pa-
rameter, and the input problem, we proppose an autocoding approach based on
a set of standard parameterized mappings of interior-point algorithms to the
output code. The same approach applies to the generation of the optimization
semantics. We can construct a set of mappings from the type of interior point
algorithm to a set of standard paramaterized optimizaiton semantics i.e. such
as the ones described in the previous section. The autocoding process, roughly
speaking, becomes a procedure to choose the mapping, followed by insertion of
the pre-defined semantics into the generated code, and then subsituting in the
values of the parameters and the input problem.

As we discussed briefly before, for domain-specific properties such as Z �
0 ∧ X � 0, the annotations are obtained usually from the steps of a complex
proof that cannot always be discharge by a generic automated proof-checkers.
The automatic verification of the annotated output most likely would require a
theorem prover based tool. The theorem prover need to be adapted to handle
the theories and formulas described in the previous section. The current theories
available in the theorem prover PVS are not equipped to handle a lot of anno-
tations discussed, especially in figures 18 and 19. The feasible approach would
be to use the same method that we took for control system invariants i.e. to
construct a few key theorems, which can be repeatedly applied to many au-
tocoded optimization programs as they only differs from each other in the input
data, step size or the Newton direction. Key theorems including properties on
Frobenius norms, matrix operator theory, etc.

8 Future Work

In this paper, we introduce an approach to communicate high-level functional
properties of convex optimization algorithms and their proofs down to the code
level. This work open several research directions.

On a more theoretical front, one can explore the possibile existence of lin-
ear approximations to the potential function used in the construction of the
invariant. Having linear approximations would possibly enable the construction
of efficient automatic decision procedures to verify the annotations at code level.

Credible Autocoding of Convex Optimization Algorithms 39

On a more practical front, Matlab remains a high-level language that is never
used as an embedded language. There is a need to carry out the work done in this
paper on a lower-level embedded language such as C. In addition, the manual
process outlined in this paper becomes all the more valuable in a safety-critical
context if it is automated. Hence the need for the construction of a prototype
tool capable of autocoding a variety of convex optimization programs along with
their proofs down to the code level.

It is also crucial for a certification authority to be able to independently and
automatically verify the validity of the annotations presented in this paper. To
the authors’ knowledge, no existing formal analysis tool supports the kind of
properties used here. This entails, for example, the extension of existing proof
assistants with high-level theorems from Optimization.

Finally, we also need to be able to reason about the invariants introduced in
this paper in the presence of the numerical errors due to floating-point compu-
tations.

9 Conclusions

This paper proposes the transformation of high-level functional properties of
interior point method algorithms down to implementation level for certification
purpose. The approach is taken from a previous work done for control systems.
We give an example of a primal-dual interior point algorithms and its conver-
gence property. We show that the high-level proofs can be used as annotations
for the verification of an online optimization program.

10 Acknowledgements

The authors would like to acknowledge support from the Vérification de l’Optimisation
Rapide Appliquée à la Commande Embarquée (VORACE) project, the NSF
Grant CNS - 1135955 “CPS: Medium: Collaborative Research: Credible Au-
tocoding and Verification of Embedded Software (CrAVES)” and Army Research
Office’s MURI Award W911NF-11-1-0046

References

1. F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point
methods for semidefinite programming: Convergence rates, stability and numerical
results. SIAM Journal on Optimization, 5:13–51, 1994.

2. P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI/ISO C Specification Language, 2008. http://frama-c.cea.fr/acsl.html.

3. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
New York, NY, USA, 2004.

4. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-c: A software analysis perspective. In Proceedings of the 10th International
Conference on Software Engineering and Formal Methods, SEFM’12, pages 233–
247, Berlin, Heidelberg, 2012. Springer-Verlag.

http://frama-c.cea.fr/acsl.html

40

5. L. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. Ramakrishnan
and J. Rehof, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer Berlin Heidelberg, 2008.

6. A. Dieumegard, A. Toom, and M. Pantel. Model-based formal specification of a
dsl library for a qualified code generator. In Proceedings of the 12th Workshop on
OCL and Textual Modelling, OCL ’12, pages 61–62, New York, NY, USA, 2012.
ACM.

7. J. Gondzio. Interior point methods 25 years later. European Journal of Operational
Research, 2012.

8. C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point
method for semidefinite programming. SIAM Journal on Optimization, 6:342–361,
1996.

9. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576–580, October 1969.

10. M. Kojima, S. Shindoh, and S. Hara. Interior-Point Methods for the Monotone
Semidefinite Linear Complementarity Problem in Symmetric Matrices. SIAM
Journal on Optimization, 7(1):86–125, Feb 1997.

11. J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB, 2004.
12. J. Mattingley and S. Boyd. Cvxgen: a code generator for embedded convex opti-

mization. Optimization and Engineering, 13(1):1–27, 2012.
13. L. McGovern and E. Feron. Requirements and hard computational bounds for

real-time optimization in safety-critical control systems. In Decision and Control,
1998. Proceedings of the 37th IEEE Conference on, volume 3, pages 3366–3371
vol.3, 1998.

14. L. K. McGovern. Computational Analysis of Real-Time Convex Optimization for
Control Systems. PhD thesis, Massachussetts Institute of Technology, Boston,
USA, May 2000.

15. R. D. Monteiro and Y. Zhang. A unified analysis for a class of long-step primal-
dual path-following interior-point algorithms for semidefinite programming. Math.
Programming, 81:281–299, 1998.

16. R. D. C. Monteiro. Primal–dual path-following algorithms for semidefinite pro-
gramming. SIAM J. on Optimization, 7(3):663–678, March 1997.

17. Y. Nesterov and A. Nemirovskii. A general approach to the design of optimal
methods for smooth convex functions minimization. Ekonomika i Matem. Metody,
24:509–517, 1988.

18. Y. Nesterov and A. Nemirovskii. Self-Concordant functions and polynomial time
methods in convex programming. Materialy po matematicheskomu obespecheniiu
EVM. USSR Academy of Sciences, Central Economic & Mathematic Institute,
1989.

19. Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex
Programming. Studies in Applied Mathematics. Society for Industrial and Applied
Mathematics, 1994.

20. Y. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled
cones. SIAM Journal on Optimization, 8:324–364, 1995.

21. S. Richter, C. N. Jones, and M. Morari. Certification aspects of the fast gradient
method for solving the dual of parametric convex programs. Mathematical Methods
of Operations Research, 77(3):305–321, 2013.

22. M. Rinard. Credible compilation. Technical report, In Proceedings of CC 2001:
International Conference on Compiler Construction, 1999.

Credible Autocoding of Convex Optimization Algorithms 41

23. P. Roux, R. Jobredeaux, P.-L. Garoche, and E. Feron. A generic ellipsoid abstract
domain for linear time invariant systems. In HSCC, pages 105–114, 2012.

24. S. C. RTCA. DO-178C, software considerations in airborne systems and equipment
certification, 2011.

25. S. C. RTCA. DO-333 formal methods supplement to DO-178C and DO-278A.
Technical report, Dec 2011.

26. T. Wang, R. Jobredeaux, and E. Feron. A graphical environment to express the
semantics of control systems, 2011. arXiv:1108.4048.

27. T. Wang, R. Jobredeaux, H. Herencia-Zapana, P.-L. Garoche, A. Dieumegard,
E. Feron, and M. Pantel. From design to implementation: an automated, credible
autocoding chain for control systems. CoRR, abs/1307.2641, 2013.

28. S. Zhang. Quadratic maximization and semidefinite relaxation. Mathematical
Programming, 87(3):453–465, 2000.

11 Appendix

11.1 Vectorization Functions

The function vecs is similar to the standard vectorization function but special-
ized for symmetric matrices. It is defined as, for 1 ≤ i < j ≤ n and M ∈ Sn,

vecsM =
[
M11, . . . ,

√
2Mij , . . . , Mnn

]T
. (62)

The factor
√

2 ensures the function vecs preserves the distance defined by the

respective inner products of Sn and R
n(n+1)

2 . The function mats is the inverse
of vecs. The function krons, denoted by the symbol ⊗sym, is similar to the
standard Kronecker product but specialized for symmetric matrix equations. It
has the property

(Q1 ⊗sym Q2) vecs (M) = vecs

(
1

2

(
Q1MQT

2 +Q2MQT
1

))
. (63)

Let Q1 = TZ and Q2 = Tinv and M = ∆X, we get

(TZ ⊗sym Tinv) vecs (∆X) = vecs

(
1

2
(TZ∆XTinv + Tinv∆XZT)

)
. (64)

Additionally, let Q1 = T , Q2 = XTinv, and M = ∆Z, we get

(T ⊗sym XTinv) vecs (∆Z) = vecs

(
1

2
(T∆ZXTinv + TinvX∆ZT)

)
. (65)

Combining (64) and (65), we get exactly the left hand side of the third equation
in (17). Given a ∆Z, we can compute ∆X by solving Ax = b for x where

A = (TZ ⊗sym Tinv)
∆X = mats (x)

b = vecs (σµI − TinvXTinv)− (T ⊗sym XTinv) vecs (∆Z).
(66)

42

11.2 Annotated Code

1 %% Example SDP Code : Primal−Dual Short−Step Algorithm
2 % ensures F0>0;
3 {

4 F0=[1, 0; 0, 0.1];

5 }

6 % ensures t ranspose (F1)==F1 ;
7 {

8 F1 =[-0.750999 0.00499; 0.00499 0.0001];

9 }

10 % ensures t ranspose (F2)==F2 ;
11 {

12 F2 =[0.03992 -0.999101; -0.999101 0.00002];

13 }

14 % ensures t ranspose (F3)==F3 ;
15 {

16 F3 =[0.0016 0.00004; 0.00004 -0.999999];

17 }

18 % ensures smat (b) >0;
19 {

20 b=[0.4; -0.2; 0.2];

21 }

22 F=[vecs(F1); vecs(F2); vecs(F3)];

23 % ensures Ft==transpose (F) ;
24 {

25 Ft=F’;

26 }

27 % ensures n>=1;
28 {

29 n=length(F0);

30 }

31 % ensures m>=1;
32 {

33 m=length(b);

34 }

35 % ensures Z>0;
36 {

37 Z=mats(lsqr(F,-b),n);

38 }

39 % ensures X>0
40

41 % ensures t r a c e (X∗Z) <=0.1;
42 {

43 X=[0.3409 0.2407; 0.2407 0.9021];

44 }

45 % requ i r e s Z>0 && X>0;
46 % ensures t r a c e (X∗Z) >0;
47 {

48 % empty code

Credible Autocoding of Convex Optimization Algorithms 43

49 }

50 % ensures t ranspose (P)==P;
51 {

52 P=mats(lsqr(Ft ,vecs(-X-F0)),n);

53 p=vecs(P);

54 }

55 % ensures ep s i l on >0
56 {

57 epsilon =1e-8;

58 }

59 % ensures sigma ==0.75;
60 {

61 sigma =0.75;

62 }

63 % requ i r e s t r a c e (X∗Z) <=0.1;
64 % ensures phi <=0.1;
65

66 % requ i r e s t r a c e (X∗Z) >0;
67 % ensures phi >0;
68

69 % ensures phi==tra c e (X∗Z) ;
70 {

71 phi=trace(X*Z);

72 }

73 % requ i r e s phi >0;
74 % ensures phi −0 .76/0 .75∗ phi <0;
75 {

76 % empty code
77 }

78 % requ i r e s phi −0 .76/0 .75∗ phi <0;
79 % ensures phi −0.76∗phim<0;
80 {

81 phim =1/0.75* phi;

82 }

83 % ensures mu==tra c e (X∗Z) /n ;
84 {

85 mu=trace(X*Z)/n;

86 }

87

88 % requ i r e s phi>0 && phi <=0.1;
89 % ensures phi>0 && phi <=0.1;
90

91 % requ i r e s phi −0.76∗phim<0;
92 % ensures phi −0.76∗phim<0;
93

94 % requ i r e s norm(X∗Z−mu∗eye (n , n)) <=0.3105∗mu && X>0 && Z>0;
95 % ensures norm(X∗Z−mu∗eye (n , n)) <=0.3105∗mu && X>0 && Z>0;
96 {

97 while (phi >epsilon) do

98 % requ i r e s phi>0 && phi <=0.1 && phi==tra c e (X∗Z) ;

44

99 % ensures t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
100

101 % requ i r e s norm(X∗Z−mu∗eye (n , n)) <=0.3105∗mu;
102 % requ i r e s mu==tra c e (X∗Z) /n ;
103 % ensures norm(X∗Z−t r a c e (X∗Z) /n∗ eye (n , n)) <=0.3105∗ t r a c e (X∗

Z) /n ;
104

105 {

106 % empty code
107 }

108 % requ i r e s t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
109 % ensures t r a c e (Xm∗Zm)>0 && tra c e (Xm∗Zm) <=0.1;
110

111 % requ i r e s X>0 && Z>0;
112 % ensures Xm>0 && Zm>0;
113

114 % requ i r e s norm(X∗Z−t r a c e (X∗Z) /n∗ eye (n , n)) <=0.3105∗ t r a c e (X
∗Z) /n ;

115 % ensures norm(Xm∗Zm−t r a c e (Xm∗Zm) /n∗ eye (n , n)) <=0.3105∗
t r a c e (Xm∗Zm) /n ;

116 {

117 Xm=X;

118 Zm=Z;

119 }

120 pm=p;

121 % requ i r e s n>=1;
122 % ensures t r a c e (Xm∗Zm)==n∗mu;
123

124 % requ i r e s norm(Xm∗Zm−t r a c e (Xm∗Zm) /n∗ eye (n , n)) <=0.3105∗
t r a c e (Xm∗Zm) /n ;

125 % ensures norm(Xm∗Zm−mu∗eye (n , n)) <=0.3105∗mu;
126 {

127 mu=trace(Xm*Zm)/n;

128 }

129 % requ i r e s norm ((Zm^(0 . 5)) ^(−1)∗mats (l s q r (F , z e ro s (m, 1)) , n)
∗Zm^(0 . 5)) <=0.7;

130 % ensures norm(Zhi ∗mats (dZm, n) ∗Zhi) <=0.7;
131

132 % requ i r e s norm(Zm^(0 . 5)) ^(−1)∗mats (l s q r (krons ((Zm^(0 . 5))
^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) , vecs (sigma∗mu∗eye (n , n)−(Zm
^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−krons ((Zm^(0 . 5)) ^(−1) , (Zm^(0 . 5))
’∗Xm, n ,m) ∗ l s q r (F , z e ro s (m, 1))) , n) ∗mats (l s q r (F , z e ro s (m, 1)
) , n) ∗Zm^(0 . 5)) <=0.3105∗ sigma∗mu;

133 % ensures norm(Zhi ∗mats (dXm, n) ∗mats (dXm, n) ∗Zhi) <=0.3105∗
sigma∗mu;

134 {

135 % requ i r e s n∗mu==tra c e (Xm∗Zm) ;
136 % requ i r e s t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (

mats (l s q r (krons ((Zm^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) ,
vecs (sigma∗mu∗eye (n , n)−(Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−

Credible Autocoding of Convex Optimization Algorithms 45

krons ((Zm^(0 . 5)) ^(−1) , (Zm^(0 . 5)) ’∗Xm, n ,m) ∗ l s q r (F ,
z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗n∗mu==0;

137 % ensures t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (krons ((Zm^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) ,
vecs (sigma∗mu∗eye (n , n)−(Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−
krons ((Zm^(0 . 5)) ^(−1) , (Zm^(0 . 5)) ’∗Xm, n ,m) ∗ l s q r (F ,
z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)
==0;

138 {

139 % empty
140 }

141 % requ i r e s t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (krons ((Zm^(0 . 5)) ^(−1)∗Zm, (Zm^(0 . 5)) ’ , n ,m) ,
vecs (sigma∗mu∗eye (n , n)−(Zm^(0 . 5)) ∗Xm∗(Zm^(0 . 5)))−
krons ((Zm^(0 . 5)) ^(−1) , (Zm^(0 . 5)) ’∗Xm, n ,m) ∗ l s q r (F ,
z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)
==0;

142 % ensures t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (H, vecs (sigma∗mu∗eye (n , n)−Zh∗Xm∗Zh)−G∗ l s q r (F
, z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)
==0;

143 {

144 Zh=Zm ^(0.5);

145 Zhi=Zh^(-1);

146 G=krons(Zhi ,Zh ’*Xm ,n,m);

147 H=krons(Zhi*Zm ,Zh ’,n,m);

148 }

149 % requ i r e s t r a c e (Xm∗mats (l s q r (F , z e ro s (m, 1)) , n))+t ra c e (
mats (l s q r (H, vecs (sigma∗mu∗eye (n , n)−Zh∗Xm∗Zh)−G∗ l s q r (F
, z e ro s (m, 1))) , n) ∗Zm)+tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)
==0;

150 % ensures t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+
tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;

151

152 % ensures dZm==l s q r (F , z e ro s (m, 1)) ;
153 {

154 r=sigma*mu*eye(n,n)-Zh*Xm*Zh;

155 dZm=lsqr(F,zeros(m,1));

156 dXm=lsqr(H, vecs(r)-G*dZm);

157 }

158 }

159 % requ i r e s sigma ==0.75;
160 % requ i r e s t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+

tra c e (Xm∗Zm)−sigma∗ t r a c e (Xm∗Zm)==0;
161 % ensures t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+

tra c e (Xm∗Zm) −0.75∗ t r a c e (Xm∗Zm)==0;
162 {

163 % empty code
164 }

165 % requ i r e s dZm==l s q r (F , z e ro s (m, 1)) ;

46

166 % ensures l s q r (Ft ,−dXm) ’∗F∗dZm==0;
167 {

168 % empty code
169 }

170 % requ i r e s l s q r (Ft ,−dXm) ∗F∗dZm==0;
171 % requ i r e s t ranspose (F)==Ft ;
172 % ensures dot (Ft∗ l s q r (Ft ,−dXm) ,dZm)==0;
173 {

174 % empty code
175 }

176 % requ i r e s dot (Ft∗ l s q r (Ft ,−dXm) ,dZm)==0;
177 % ensures t r a c e (mats (Ft∗ l s q r (Ft ,−dXm) ,n) ∗mats (dZm, n))==0;
178 {

179 % empty code
180 }

181 % requ i r e s t r a c e (mats (Ft∗ l s q r (Ft ,−dXm) ,n) ∗mats (dZm, n))==0;
182 % requ i r e s Ft∗ l s q r (Ft ,−dXm)==−dXm
183 % ensures t r a c e (mats (dXm, n) ∗mats (dZm, n))==0
184 {

185 % empty code
186 }

187 % requ i r e s t r a c e (mats (dXm, n) ∗mats (dZm, n))==0;
188 % requ i r e s t r a c e (Xm∗mats (dZm, n))+t ra c e (mats (dXm, n) ∗Zm)+

tra c e (Xm∗Zm) −0.75∗ t r a c e (Xm∗Zm)==0;
189 % ensures t r a c e ((Xm+mats (dXm, n)) ∗(Zm+mats (dZm, n))) −0.75∗

t r a c e (Xm∗Zm)==0;
190 {

191 % empty code
192 }

193 % requ i r e s mats (H∗dXm)+mats (G∗dZm)==sigma∗mu∗eye (n , n)−Zh∗
Xm∗Zh ;

194 % requ i r e s norm(Zhi ∗mats (dXm, n) ∗mats (dXm, n) ∗Zhi) <=0.3105∗
sigma∗mu;

195 % ensures 0 . 5∗ norm(Zhi ∗ ((Zm+mats (dZm, n) ∗(Xm+mats (dXm, n)−
sigma∗mu∗eye (n , n)) ∗Zh+Zh ’ ∗ ((Xm+mats (dXm, n) ∗(Zm+mats (dZm
, n)−sigma∗mu∗eye (n , n)) ∗Zhi) <=0.3105∗ sigma∗mu;

196 {

197 % empty
198 }

199 {

200 dpm=lsqr(Ft ,-dXm);

201 p=pm+dpm

202 }

203 % requ i r e s norm(Zhi ∗mats (dZm, n) ∗Zhi) <=0.7;
204 % ensures Zm+mats (dZm, n) >0;
205 {

206 % empty
207 }

208 % requ i r e t r a c e ((Xm+mats (dXm, n)) ∗(Zm+mats (dZm, n))) −0.75∗
t r a c e (Xm∗Zm)==0;

Credible Autocoding of Convex Optimization Algorithms 47

209 % ensures t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0;
210

211 % requ i r e s 0 . 5∗ norm(Zhi ∗ ((Zm+mats (dZm, n) ∗(Xm+mats (dXm, n)−
sigma∗mu∗eye (n , n)) ∗Zh+Zh ’ ∗ ((Xm+mats (dXm, n) ∗(Zm+mats (dZm
, n)−sigma∗mu∗eye (n , n)) ∗Zhi ’) <=0.3105∗ sigma∗mu;

212 % ensures 0 . 5∗ norm(Zhi ∗(X∗Z−sigma∗mu∗eye (n , n)) ∗Zh+Zh ’ ∗ (Z∗
X−sigma∗mu∗eye (n , n)) ∗Zhi ’) <=0.3105∗ sigma∗mu;

213

214 % requ i r e s Zm+mats (dZm, n) >0;
215 % ensures Z>0;
216 {

217 X=Xm+mats(dXm ,n);

218 Z=Zm+mats(dZm ,n);

219 }

220 % requ i r e s t r a c e (Xm∗Zm) >0;
221 % ensures 0 . 01∗ t r a c e (Xm∗Zm) >0;
222 {

223 % empty code
224 }

225 % requ i r e s t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0
226 % requ i r e s 0 . 01∗ t r a c e (Xm∗Zm) >0;
227 % ensures t r a c e (X∗Z) −0.76∗ t r a c e (Xm∗Zm) <0;
228 {

229 % empty code
230 }

231 % requ i r e s Z>0 && Zm>0;
232 % ensures norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−sigma∗mu∗eye (n , n)) <=0.5∗

norm(Zhi ∗(X∗Z−sigma∗mu∗ I) ∗Zh+Zh ’ ∗ (Z∗X−sigma∗mu∗ I) ∗Zhi ’)
;

233 {

234 % empty
235 }

236 % requ i r e s t r a c e (X∗Z) −0.75∗ t r a c e (Xm∗Zm)==0
237 % requ i r e s t r a c e (Xm∗Zm)>0 && tra c e (Xm∗Zm) <=0.1;
238 % ensures t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
239

240 % requ i r e s t r a c e (X∗Z) −0.76∗ t r a c e (Xm∗Zm)<0
241 % ensures t r a c e (X∗Z) −0.76∗phim<0;
242 {

243 phim=trace(Xm*Zm);

244 }

245 % requ i r e s t r a c e (X∗Z)>0 && tra c e (X∗Z) <=0.1;
246 % ensures phi>0 && phi <=0.1;
247

248 % requ i r e s t r a c e (X∗Z) −0.76∗phim<0;
249 % ensures phi −0.76∗phim<0;
250

251 % ensures phi==tra c e (X∗Z) ;
252 {

253 phi=trace(X*Z);

48

254 }

255 % requ i r e s t r a c e (X∗Z)−sigma∗ t r a c e (Xm∗Zm)==0;
256 % requ i r e s t r a c e (Xm∗Zm)==n∗mu;
257 % ensures t r a c e (X∗Z)−sigma∗n∗mu==0;
258 {

259 % empty
260 }

261 % requ i r e s t r a c e (X∗Z)−sigma∗n∗mu==0;
262 % requ i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−sigma∗mu∗eye (n , n)) <=0.5∗

norm(Zhi ∗(X∗Z−sigma∗mu∗ I) ∗Zh+Zh ’ ∗ (Z∗X−sigma∗mu∗eye (n , n)
) ∗Zhi ’) ;

263 % requ i r e s 0 . 5∗ norm(Zhi ∗(X∗Z−sigma∗mu∗eye (n , n)) ∗Zh+Zh ’ ∗ (Z∗
X−sigma∗mu∗eye (n , n)) ∗Zhi ’) <=0.3105∗ sigma∗mu;

264 % ensures norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−t r a c e (X∗Z) /n∗ eye (n , n))
<=0.3105∗ t r a c e (X∗Z) /n ;

265 {

266 % empty
267 }

268 % requ i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−t r a c e (X∗Z) /n∗ eye (n , n))
<=0.3105∗ t r a c e (X∗Z) /n ;

269 % ensures norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−mu∗eye (n , n)) <=0.3105∗mu;
270 {

271 mu=trace(X*Z)/n;

272 }

273 % requ i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−mu∗eye (n , n)) <=0.3105∗mu;
274 % ensures norm(XZ−mu∗eye (n , n)) <=0.3105∗mu;
275

276 % requ i r e s Z>0;
277 % requ i r e s norm(Z^(0 . 5) ∗X∗Z^(0 . 5)−mu∗eye (n , n)) <=0.3105∗mu;
278 % ensures X>0;
279 {

280 % empty
281 }

282 end

283 }

	Credible Autocoding of Convex Optimization Algorithms

