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Summary

Autonomous mobile robots – both aerial and terrestrial vehicles – have gained

immense importance due to the broad spectrum of their potential military and civil-

ian applications. One of the indispensable requirements for the autonomy of a mobile

vehicle is the vehicle’s capability of planning and executing its motion, that is, finding

appropriate control inputs for the vehicle such that the resulting vehicle motion satis-

fies the requirements of the vehicular task. The motion planning and control problem

is inherently complex because it involves two disparate sub-problems: (1) satisfaction

of the vehicular task requirements, which requires tools from combinatorics and/or

formal methods, and (2) design of the vehicle control laws, which requires tools from

dynamical systems and control theory.

Accordingly, this problem is usually decomposed and solved over two levels of

hierarchy. The higher level, called the geometric path planning level, finds a geometric

path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The

lower level, called the trajectory planning level, involves sufficient smoothening of

this geometric path followed by a suitable time parametrization to obtain a reference

trajectory for the vehicle.

Although simple and efficient, such hierarchical decomposition suffers a serious

drawback: the geometric path planner has no information of the kinematical and dy-

namical constraints of the vehicle. Consequently, the geometric planner may produce

paths that the trajectory planner cannot transform into a feasible reference trajec-

tory. Two main ideas appear in the literature to remedy this problem: (a) randomized

sampling-based planning, which eliminates the geometric planner altogether by plan-

ning in the vehicle state space, and (b) geometric planning supported by feedback
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control laws. The former class of methods suffer from a lack of optimality of the

resultant trajectory, while the latter class of methods makes a restrictive assumption

concerning the vehicle kinematical model.

We propose a hierarchical motion planning framework based on a novel mode

of interaction between these two levels of planning. This interaction rests on the

solution of a special shortest-path problem on graphs, namely, one using costs defined

on multiple edge transitions in the path instead of the usual single edge transition

costs. These costs are provided by a local trajectory generation algorithm, which we

implement using model predictive control and the concept of effective target sets for

simplifying the non-convex constraints involved in the problem. The proposed motion

planner ensures “consistency” between the two levels of planning, i.e., a guarantee

that the higher level geometric path is always associated with a kinematically and

dynamically feasible trajectory.

The main contributions of this thesis are:

1. A motion planning framework based on history-dependent costs (H-costs) in

cell decomposition graphs for incorporating vehicle dynamical constraints: this

framework offers distinct advantages in comparison with the competing ap-

proaches of discretization of the state space, of randomized sampling-based

motion planning, and of local feedback-based, decoupled hierarchical motion

planning,

2. An efficient and flexible algorithm for finding optimal H-cost paths,

3. A precise and general formulation of a local trajectory problem (the tile motion

planning problem) that allows independent development of the discrete planner

and the trajectory planner, while maintaining “compatibility” between the two

planners,

4. A local trajectory generation algorithm using mpc, and the application of the

xvi



concept of effective target sets for a significant simplification of the local trajec-

tory generation problem,

5. The geometric analysis of curvature-bounded traversal of rectangular channels,

leading to less conservative results in comparison with a result reported in the

literature, and also to the efficient construction of effective target sets for the

solution of the tile motion planning problem,

6. A wavelet-based multi-resolution path planning scheme, and a proof of com-

pleteness of the proposed scheme: such proofs are altogether absent from other

works on multi-resolution path planning,

7. A technique for extracting all information about cells – namely, the locations,

the sizes, and the associated image intensities – directly from the set of signifi-

cant detail coefficients considered for path planning at a given iteration, and

8. The extension of the multi-resolution path planning scheme to include vehicle

dynamical constraints using the aforementioned history-dependent costs ap-

proach.

The future work includes an implementation of the proposed framework involving

a discrete planner that solves classical planning problems more general than the single-

query path planning problem considered thus far, and involving trajectory generation

schemes for realistic vehicle dynamical models such as the bicycle model.

xvii



Chapter 1

Introduction and Literature Review

Autonomous terrestrial and aerial vehicles have gained immense importance not only

due to the broad spectrum of their potential military and commercial applications,

but also due to the concurrent development of sensor technology and embedded sys-

tems that enable the realization of true autonomy. Autonomous vehicles may be

assigned tasks that are dull and/or repetitive, such as mobile surveillance or cleaning

and maintenance; tasks that are dangerous for humans, such as military transporta-

tion via hostile territory, large-scale fire fighting, and repair and recovery operations

in chemical plants and nuclear reactors; or tasks that are prohibitively expensive for

humans to execute, such as the exploration of celestial bodies. Unsurprisingly, various

theoretical and practical aspects of the development of autonomous mobile vehicles

have been vigorously and extensively researched by the robotics, automatic control,

and artificial intelligence communities for over four decades [30, 54, 93, 139]. Nev-

ertheless, whereas fixed-base robotic manipulators are commonplace in the industry,

fully autonomous mobile robots are yet the realm of state-of-the-art research (Fig. 1.1

depicts two such research vehicles), and several issues in this field of engineering are

(a) Googletm’s autonomous car [1] (b) Carnegie Mellon University’s “Boss” [148]

Figure 1.1: State-of-the-art autonomous vehicles.
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Figure 1.2: The typical “perceive-plan-execute” hierarchical control structure of au-
tonomous vehicles (adapted from [139]).

open topics of research.

Autonomous motion is enabled by the following, equally crucial sub-systems: per-

ception, planning, and control. Accordingly, a “perceive-plan-execute” hierarchy,

illustrated in Fig. 1.2, has traditionally been employed for realizing autonomous mo-

tion [139]. Owing both to the challenges involved in the development of each of

these sub-systems themselves, and to the involvement of different, traditionally dis-

connected academic communities – perception and planning have traditionally been

addressed by the robotics and artificial intelligence communities, whereas low-level

motion execution has traditionally been addressed by the automatic control commu-

nity – the inter-dependence of these sub-systems is yet to be adequately and rigorously

addressed [139]. The current motion planning and control literature, for example, in-

dicates a paradigm shift of focus from the traditional single-query (“go from A to B”)

problems to broader problems involving the generation of provably correct control

laws starting from high-level task specifications (cf. [12, 81, 158]), thus blurring the

distinction between classical planning and automatic control.

In this thesis, we investigate the problem of motion planning and control for au-

tonomous vehicles. Informally, this problem deals with finding appropriate control

inputs for an autonomous vehicle such that the vehicle’s resulting motion satisfies

the requirements of a specified task. This problem is inherently complex because it

involves two disparate sub-problems: (1) the satisfaction of the vehicular task require-

ments, which requires tools from combinatorics and/or formal methods, and (2) the
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design of the vehicle control laws, which requires tools from dynamical systems and

control theory. To address the complexity of the motion planning and control problem,

two distinct approaches have been proposed in the literature: a “top-down” approach

that concentrates on planning a geometric path compatible with the task require-

ments, which is then followed by a low-level controller that executes this geometric

path; and a “bottom-up” approach that concentrates on control-driven discretiza-

tions of the vehicle motions, which are then appropriately concatenated to meet the

vehicular task. A vast majority of the literature in motion planning (cf. [30, 90, 93])

falls into the former category.

A unified view [139] of the two aforementioned approaches involves the decompo-

sition of motion planning and control systems into two sub-systems: (1) a strategic,

or “deliberative” sub-system, that deals with global, long-term navigation and path

planning and with the satisfaction of the vehicular task requirements, and (2) a tacti-

cal, or “reactive” sub-system that deals with short-term, local navigation and obstacle

avoidance in the presence of the vehicle’s kinematic and dynamic constraints. This

decomposition is both conceptually and practically appealing; however, in the absence

of guarantees of “compatibility” of the two said sub-systems, the resultant motion

of the vehicle may consist of control tactics that are strategically infeasible or unac-

ceptably sub-optimal; or conversely, strategies that call for infeasible or unacceptably

sub-optimal control tactics.

In this thesis, we investigate the interaction between these two sub-systems to

develop an overall motion planning and control framework which allows independent

development of either sub-system, while maintaining a guarantee of “compatibility”

between the two sub-systems.
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1.1 Terminology and Formal Problem Statement

In this section, we establish the basic terminology and notation to be used throughout

this thesis, and we state precisely the motion planning and control problem.

We will use the term path to refer to the locus of the continuous motion of a point

in the plane, and the term trajectory , or synonymously, the term motion to refer to

a path or a curve parametrized by time. Depending on the context, we will use the

term path to refer also to a sequence of successively adjacent vertices in a graph.

In this thesis, we consider vehicles moving in the plane. In this context, we use the

term workspace, or synonymously, the term environment to refer to a planar region

W ⊂ R2 over which the vehicle moves. The obstacle space O ⊂ W is a subset of

the workspace. The vehicle’s configuration space C := R2 × S is the set of all vehicle

configurations, i.e., its position in the plane and its orientation. Finally, the term

state space refers to the state space D of the dynamical model of the vehicle, which

includes the configuration space, but may be larger.

We consider a vehicle dynamical model described as follows. Let (x, y, θ) ∈ C

denote the position coordinates of the vehicle in a pre-specified Cartesian axis system,

and let ψ denote any additional state variables required to describe the state of the

vehicle. We assume that ψ ∈M, whereM is a n-dimensional smooth manifold. The

state of the vehicle is thus described by ξ := (x, y, θ, ψ) ∈ D = C ×M. Let U ∈ Rm

denote the set of admissible control values; and for t > 0, let Ut denote the set of

piecewise continuous functions defined on the interval [0, t] that take values in U .

We assume that the evolution of the vehicle state ξ over a given time interval [0, tf ]

is described by the differential equation ξ̇(t) = f(ξ(t), u(t)) for all t > [0, tf ], where

u ∈ Utf is an admissible control input, and f is sufficiently smooth to guarantee global

existence and uniqueness of solutions. We denote by ξ(· ; ξ0, u) the state trajectory

that is the unique solution to the preceding differential equation with the initial

condition ξ(0) = ξ0.
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The motion of an autonomous vehicle is usually required to satisfy a task , ranging

from the relatively simple (e.g., “go from A to B”) to the relatively complex (e.g.,

“collect and analyze rock samples”). Tasks are typically specified by formulae of

predicate or temporal logic over a finite set of objects, and the problem of satisfaction

of task specifications is typically formulated as a problem of classical planning or

formal verification [12, 130]. Associated typically with the task satisfaction problem

is a finite state transition system consisting of a set T of task states , a finite set A of

actions , and a transition function δ : T ×A → T that associates with a state-action

pair a new task state.

Of our interest are tasks directly related to the motion of the autonomous vehicle in

the workspace W, and the task specification hence necessitates a finite discretization

of the workspace. In this thesis, we assume, as is the popular choice [12], that such

a discretization of the workspace is achieved via workspace cell decomposition, i.e.,

a partition of the workspace into a finite number of convex, obstacle-free regions

called cells . In the context of the classical planning problem formulation [130], task

states are defined by predicate logic formulae, the task specification consists of a goal

state in T that must be reached via a sequence of actions, and each task state is

associated (not necessarily uniquely) with a cell. On the other hand, temporal logic

formulae are used to specify constraints on the vehicle’s behavior over the period

of its operation [81, 158]; the task states then directly correspond to the cells, the

transition function captures geometric adjacency relations between the cells, and the

task specification consists of constraints on the sequence of cells traversed by the

vehicle.

Using the preceding terminology, the general motion planning problem for au-

tonomous vehicles may be formulated as follows.

Problem 1.1 (General Motion Planning). Given a task specification, an initial task

state τ0, and an initial vehicle state ξ0, find a sequence {am}Pm=1 ⊂ A of actions, a
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number tf ∈ R+, and an admissible control input u ∈ Utf such that

(a) The sequence {τn}Pn=0 of task states, defined by τn := δ(τn−1, an) for each n =

1, . . . , P satisfies the task specification, and

(b) The trajectory ξ(t; ξ0, u) enables the vehicle’s traversal through the sequence of

cells associated with the sequence {τn}Pn=0 of task states.

In this thesis, we first focus on the point-to-point motion planning problem, where

the vehicle task is to navigate from a pre-specified initial point in the workspace to

a pre-specified destination. In Chapter 8, we address the extension to the general

motion planning problem of the ideas presented in this thesis for solving the point-

to-point problem. For the point-to-point problem, we identify the task space with

the set of all cells in the workspace cell decomposition, and we associate each cell

with a unique task state. Also, we identify actions with cell transitions. A hybrid1

formulation of the point-to-point motion planning problem is then stated as follows.

Problem 1.2 (Hybrid Point-to-Point Motion Planning). Given an initial cell τ0, a

goal cell τf , and an initial vehicle state ξ0, find a sequence {am}Pm=1 ⊂ A of cell

transitions, a number tf ∈ R+, and an admissible control input u ∈ Utf such that

(a) The sequence {τn}Pn=0 of cells, defined by τn := δ(τn−1, an) for each n = 1, . . . , P

satisfies the specification τP = τf , and

(b) The trajectory ξ(t; ξ0, u) enables the vehicle’s traversal through the sequence of

cells {τn}Pn=0.

It is important to note that the point-to-point motion planning problem may be

stated, as below, without reference to a discretization of the workspace.

1Here the term “hybrid” refers to the involvement of a discrete sub-problem (formulated on the
task space) as well as a continuous sub-problem (formulated on the vehicle state space).
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Problem 1.3 (Continuous Point-to-Point Motion Planning). Given an initial vehicle

state ξ0 and a terminal state ξf , find a number tf ∈ R+ and a control input u ∈ Utf
such that the trajectory ξ(t; ξ0, u) satisfies

ξ(t; ξ0, u) ∈ W ∩O, for all t ∈ [0, tf ]

and ξ(tf ; ξ0, u) = ξf .

All of the motion planning problems stated so far refer only to feasible solutions.

For the simpler, point-to-point problem, we may additionally incorporate in the prob-

lem a notion of optimality, as follows.

Problem 1.4 (Optimal Point-to-Point Motion Planning). Let ` : D×U ×R+ → R+

be a pre-specified incremental trajectory cost function. Given an initial vehicle state

ξ0 and a terminal state ξf , solve

min
u∈Utf

∫ tf

0

`(ξ(t; ξ0, u), u, t) dt,

subject to the constraint

ξ(t; ξ0, u) ∈ W ∩O, for all t ∈ [0, tf ] ,

where tf is free, and ξ(tf ; ξ0, u) = ξf .

The motion planning problem and several underlying fundamental issues have

been addressed in the literature pertaining to at least three different research disci-

plines: artificial intelligence, robotics, and automatic control. In the next two sections,

we survey the literature directly related to the motion planning problem, and we re-

view some of the fundamental theoretical background necessary to better understand

and solve this problem.

1.2 Theoretical Background and Literature Review

The following fields of study form the theoretical underpinnings of solutions to the

motion planning problem: optimal control theory addresses the problem of trajectory
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generation for point-to-point motion under differential constraints; classical planning

theory in artificial intelligence addresses the generation of a finite sequence of actions

to satisfy task specifications; hierarchical systems theory analyzes the interactions

between sub-systems in a hierarchical system for ensuring “harmonious” operation

of the overall system; and the emerging field of hybrid systems and control theory

addresses the analysis and control of systems involving both discrete and continuous

state variables.

In light of the multi-disciplinary theoretical background required for addressing

the motion planning problem in its full generality, we provide in Appendix A brief

reviews of these fields of study, and therein we refer the reader to appropriate texts

for further details. We also review briefly in Appendix A the theory of the discrete

wavelet transform, which is a powerful mathematical tool frequently used in signal

processing, and by consequence, in autonomous navigation systems.

Based on the aforementioned theoretical developments, several different ideas have

been considered and developed for path- and motion planning for autonomous mo-

bile vehicles and for robotic manipulators. Figure 1.3 illustrates schematically the

evolution of these ideas; in what follows, we provide a brief summary of the path-

and motion planning literature. The reader interested is referred to the works of

Latombe [90], Hwang and Ahuja [60], Choset et al [30], and LaValle [93] for com-

prehensive surveys; the works of Belta et al [12] and Frazzoli [46] provide surveys of

control theoretic perspectives on this subject.

1.2.1 Geometric Path Planning

Geometric path planning methods are computationally efficient techniques that at-

tempt typically to find obstacle-free paths in the workspace. Three broad ideas have

emerged in geometric path planning [30,90]: roadmaps, and cell decompositions, and

artificial potential fields. Two of these ideas – roadmaps and cell decompositions –
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Figure 1.3: The evolution of the path- and motion planning literature.

involve discretization of the workspace to transform the path planning problem into

a graph search problem. Geometric path planning methods do not typically consider

the vehicle’s kinematic and dynamic constraints.

1.2.1.1 Roadmaps

Conceptually, roadmaps [90, Ch. 4], [30, Ch. 5] are graphs whose vertices are locations

in the free workspace and whose edges are paths or curves lying completely in the

free space. The simplest and the earliest of roadmaps is the visibility graph [103,

126], in which two vertices are connected if they are in line of sight of each other

(see Fig. 1.4). Extensions to the basic visibility graph-based methods include works

addressing reductions in the number of edges of the graph [38,57,66], works addressing

curved obstacles [102], and involving 3D path planning [68]. Path planning methods

based on Voronoi partitions of the environment [38, Ch. 7], [17, 29, 70, 87, 127] form

another class of important roadmap methods.

1.2.1.2 Artificial potential fields

Path planning based on artificial potential fields was introduced by Khatib [76] and

later generalized to the so-called navigation functions by Rimon and Koditschek [124].

Conceptually, an artificial potential field or a navigation function is a scalar field

that has a global minimum at the desired destination point; path planning from any

point in the environment is then performed by following the direction of steepest

descent. The single most important problem involved in the construction of artificial

9



Figure 1.4: Example of a visibility roadmap.

potential fields is the presence of unwanted local minima that may mislead a vehicle

following the direction of the negative local gradient. References [9,48,61,78,79,154]

are examples of applications and extensions of the potential function and navigation

function methods to path planning.

1.2.1.3 Cell decompositions

Geometric path planning based on cell decompositions, introduced by Brooks and

Lozano-Pérez [22], involves partitioning the environment into convex, obstacle-free

regions called cells . A graph G is then associated with the cell decomposition, where

each cell is represented by a vertex in the graph, and geometric adjacency of the cells

is represented by edges. A path in this graph from a pre-specified initial cell to a pre-

specified goal cell then corresponds to a sequence of cells from the initial cell to the

goal cell (see Fig. 1.5). Exact cell decompositions are partitions of the environment in

which the union of all cells is exactly equal to the free workspace. On the other hand,

approximate cell decompositions use convenient geometric shapes such as squares or

rectangles to partition the environment. Because obstacles can be of arbitrary shape,

cells in approximate cell decompositions can be mixed, i.e., contain both free space
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Figure 1.5: Illustration of workspace cell decomposition.

and obstacle space.

Triangular and trapezoidal decompositions [38], [90, Ch.4], [30, Ch.6], are the

most widely used exact cell decomposition techniques, whereas the quadtree method

[71,113,131], which employs recursive decompositions of mixed cells into four square

subcells (children) until all cells are obstacle-free, is the most extensively used ap-

proximate cell decomposition technique.

Configuration space cell decompositions have been applied to solve the piano

mover’s problem [133, 134], and also to path planning for robotic manipulators [55].

Extensions to the standard cell decomposition technique include efficient techniques

of determining if a region in the workspace is obstacle-free [67], and efforts for finding

shortest Euclidean path between the initial point and the goal [26].

Path planning schemes using multi-resolution cell decompositions have been dis-

cussed in the literature. Multi-resolution path planning involves representing the

vehicle’s environment with different levels of accuracy to construct an overall repre-

sentation that allows for efficient online path planning. For example, the quadtree

method [71, 113, 131], generates a planar cell decomposition consisting of small cell
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sizes that accurately capture obstacle boundaries, and larger cell sizes that efficiently

represent large areas in free space. The quadtree method employs recursive decompo-

sitions of mixed cells into four square subcells (children) until all cells are either free

or full, and it is one of the most extensively used multi-resolution cell decomposition

technique. Other path planning schemes using multi-resolution cell decompositions

have been previously proposed in [11]; in [59], where triangular cells are used in a

more efficient cell decomposition; in [119], which discusses a receding horizon path

planning scheme using multi-resolution estimates of object locations; in [77], which

presents a multi-resolution potential field approach; and in [152], which discusses a

hierarchy of imaginary spheres encapsulating the robot for collision avoidance.

The wavelet transform has frequently been applied in multi-resolution path plan-

ning algorithms. For instance, Pai and Reissell [114] present an algorithm for path

planning over a rough terrain. They iteratively refine the path based on successively

finer approximations of the terrain elevation map. At each iteration, the wavelet

transform coefficients of the elevation map are used to compute the approximation

errors, which are then included in the cost function that should be minimized by the

optimal path. Sinopoli et al [140] describe a similar approach for vision-based path

planning for autonomous UAVs. Carrioli [24] describes the use of the Haar wavelet

for reducing computations, while manipulating images representing the environment.

In a slightly different application, Narayanswami and Pang [111] describe a path plan-

ning algorithm for NC machining that uses successively finer approximations to the

required contour as the cutting tool approaches the contour.

1.2.2 Nonholonomic Path Planning

A particular class of kinematical models, namely, nonholonomic models , present spe-

cial challenges in path planning due to the fact that nonholonomicvelocity constraints

cannot be integrated to obtain position constraints (which could then be treated as
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obstacles). The most widely studied nonholonomic models of mobile vehicles are the

Dubins car model (a car-like vehicle that can only move forwards), and the Reeds-

Shepp car model (a car-like model that can move both forwards and backwards).

Nonholonomic constraints in both these models imply that the curvature of the ge-

ometric paths that can be feasibly followed by the vehicle is finitely upper-bounded,

i.e., instantaneous changes in the tangent to the path are not permitted. Conse-

quently, the results of the previously discussed geometric path planners do not suffice

for nonholonomic vehicles.

Curvature-bounded path planning in the absence of obstacles has been studied

in the seminal works of Dubins [40] (for a vehicle that can move only forwards) and

Reeds and Shepp [122] (for a vehicle that can move forwards and backwards). The

primary results of these papers are that, in the absence of workspace obstacles, the

shortest curvature-bounded paths belong to particular families of paths consisting of

concatenations of straight lines segments and arcs of circles of unit radius2. These

families of paths are usually referred to as Dubins paths and Reeds-Shepp paths respec-

tively. Boissonnat et al [19] and Sussmann and Tang [144] reproduce, respectively,

the results of Dubins and Reeds and Shepp using optimal control theory, while Bui

et al [23] and Souères et al [141] present, respectively, synthesis algorithms for those

two problems.

The problem of planning curvature-bounded paths is significantly more involved

in the presence of workspace obstacles. Reif and Wang [123] show that the prob-

lem of constructing shortest curvature- bounded paths in a polygonal environment

with polygonal obstacles or holes is NP-hard. A crucial and fundamental difference

between the Dubins and Reeds-Shepp models is that the latter model is completely

2Because the Reeds-Shepp car can move backwards, cusps are allowed in the path, whereas paths
for the Dubins car cannot involve cusps.
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controllable3 even in the presence of obstacles [10], while the former model is com-

pletely controllable only in the absence of obstacles. Consequently, in the case of path

planning for the Dubins car model, it becomes necessary to first verify if a kinemati-

cally feasible path exists between the initial configuration and the goal configuration.

Fortune and Wilfong [44] present an algorithm for deciding whether an obstacle-

free, curvature-bounded path without cusps exists in a polygonal environment with

polygonal obstacles. However, by the authors’ own admission, their algorithm is very

complicated, and does not find a path (it only guarantees existence). References [2,7,

18,63] present algorithms for efficiently finding approximations to shortest curvature-

bounded paths in polygonal environments. The common theme in those references is

to appropriately choose a finite set of configurations (position and orientation) in the

environment, and connecting these configurations by Dubins paths, and then perform

a graph search using the length of the Dubins paths as edge costs. References [10,

89, 92, 109, 110, 160] deal with the problem of planning curvature-bounded paths for

the Reeds-Shepp car. Laumond et al [91] provide a survey of motion planning and

control techniques for both the Dubins and Reeds-Shepp vehicle models.

References [8, 33, 45, 132, 159] discuss a further extension of non-holonomic path

planning, namely, continuous curvature path planning , where the derivative of the tan-

gent is required to be continuous. Continuous curvature paths are important because

vehicles with bounded control inputs cannot perfectly track paths with instantaneous

changes in the derivative of the tangent to the path.

1.2.3 Randomized Sampling-based Motion Planning

Randomized sampling-based algorithms were first developed for path planning in high

dimensional configuration spaces associated with robotic manipulators and humanoid

3Complete controllability means that a kinematically feasible path exists between any two con-
figurations in the free space.
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robots. Conceptually, these algorithms rely on randomly selected configurations (in-

stead of configurations on a grid) to discretize the configuration space.

Probabilistic roadmap planners [73,74,153], [30, Ch. 7] use uniformly distributed

random sampling of the free space to establish the vertices of a roadmap. A local plan-

ning and collision detection algorithm is used to determine edges between vertices.

Rapidly-exploring Random Trees (RRT), invented by LaValle and Kuffner [95], are

data structures that use efficient sampling strategies to quickly explore high dimen-

sional spaces. LaValle and Kuffner [94], Hsu and Latombe [56] and Frazzoli et al [47]

discuss the applications of RRTs to motion planning in the state space with dynami-

cal constraints. The efficiency of randomized sampling-based algorithms is dependent

on the fast expansion of the data structure (such as the RRT) used to represent the

configuration space/state space, which is typically achieved via linear interpolation

between a configuration/state already present in the tree and a randomly explored

new configuration/state.

Whereas the preceding strategy suffices for planning in configuration spaces with

only geometric constraints, linear interpolation between two states does not, in gen-

eral, correspond to an admissible state trajectory in the presence of differential con-

straints, such as those involved in the equations of motion of a controlled dynamical

system. The expansion of the tree is then achieved by integrating forward with a

randomly selected input [94] the dynamical constraint equations, using as initial con-

dition a state in the tree; or by connecting a known state in the tree with a new

state by solving a numerical optimal control problem. Note that he latter approach

is tantamount to solving the original point-to-point motion planning problem via

numerical optimal control techniques.

A related issue involved with the expansion of RRTs in state spaces in the presence

of differential constraints is the appropriate selection of the nearest neighbor, i.e., the

state in the tree that is “nearest” to a randomly explored new state. Whereas there
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exist efficient algorithms (cf. [94, 130]) for find the “nearest” neighbor in the context

of Euclidean distances, finding the nearest neighbor in terms of other metrics (such

as time of traversal) is not straightforward.

1.2.4 Hierarchical Motion Planning

The literature on path- and motion planning dealing with kinematical/dynamical

constraints is dominated by hierarchical approaches [27, 33, 36, 92, 108, 128, 136, 164]

– representatives of the aforementioned “top-down” approach to motion planning

– that decompose the problem into a high-level, discrete, geometric planning level

and a low-level, continuous, trajectory planning level. In the context of low-level

trajectory planning, Refs. [96, 135, 137, 151] discuss time-optimal trajectory planning

along pre-specified geometric paths for specific vehicle dynamics.

On the other hand, Donald et al [39] introduce the “bottom-up” approach based

on constructing a discrete representation of the vehicle’s motion (as opposed to that

of the environment) – the authors of [39] also introduce the term kinodynamic mo-

tion planning to refer to the problem of planning with kinematical and dynamical

constraints. Another major contribution to the “bottom-up” approach to motion

planning is Frazzoli’s work on the maneuver automaton [46].

Motion planning methods using cell decomposition-based path planning coupled

with feedback control laws comprise another important set of contributions in the

literature that address vehicle’s kinematical and dynamical constraints [13,32,99–101].

These works provide methods to generate reference vector fields within cells that

guarantee transition through any given sequence of cells without intersecting any

other cell. Fainekos et al [42, 43] and Kloetzer and Belta [82] (in the context of

linear control) also use this idea to develop solutions that are guaranteed to satisfy

both aspects of motion planning and control: vehicular task specifications that are

expressed as temporal logic formulae, as well as kinematical and dynamical constraints

16



that expressed as differential equations. The common idea used in all of the preceding

references is to make the geometric planner independent of the vehicle kinematics an

dynamics; i.e., to ensure that every sequence of cell transitions is possible from every

initial vehicle state.

1.3 Thesis Overview and Statement of Contributions

We make the following broad observations concerning the existing literature related to

path- and motion planning: computationally efficient techniques that address path

optimality (geometric path planners) do not typically consider kinematic/dynamic

constraints; computationally efficient techniques that address kinematic/dynamic

constraints (randomized sampling-based algorithms) do not typically address opti-

mality; and finally, techniques that address both optimality and kinematic/dynamic

constraints are not computationally efficient enough for real-time, online implementa-

tions. In this thesis, we address the problem of developing the ideal, computationally

efficient point-to-point motion planning technique that addresses both optimality and

kinematic/dynamic constraints, with the aim of extending easily the proposed tech-

nique to the general motion planning problem.

We address the hybrid point-to-point motion planning problem (Problem 1.2), and

we consider for its solution the hierarchical separation of the solution into a (discrete)

path planning algorithm based on cell decompositions and a trajectory generation

algorithm. This hierarchical separation is advantageous because it relates closely to

the general motion planning problem (Problem 1.1), and the techniques developed

for the solution of Problem 1.2 may be extended for the solution of Problem 1.1.

The primary drawback of hierarchically separated solutions of the point-to-point

motion planning problem is that the sequence of cells resulting from the discrete

path planner may not be traversable due to the vehicle’s kinematic and dynamic

constraints. Furthermore, because nonholonomic kinematic constraints cannot be
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integrated to obtain position constraints, it is fundamentally impossible to encode

these constraints in the cell decomposition graph.

In this thesis, we propose a framework for motion planning which enables an

interaction between the discrete path planner and the trajectory planner to guarantee

compatibility between the two planners. This interaction is enabled by defining costs

on multiple edge transitions of the cell decomposition graph, instead of the usual

single-edge transition costs. We discuss in detail a specific implementation of this

framework, where the discrete path planner is implemented using multi-resolution

cell decompositions, and the trajectory planner is implemented using model predictive

control.

In what follows, we present an overview of the various facets of the proposed

motion planning framework.

1.3.1 History-dependent Costs in Path Planning

It has been noted in several previous works [88, 125, 157] that single-edge transition

costs cannot capture adequately the vehicle’s kinematic and dynamic constraints. In

this thesis, we formalize the notion of associating costs to multiple edge transitions in

the cell decomposition graph. To this end, we introduce the so-called H-cost shortest

path problem in Chapter 2, which is the problem of finding optimal paths in graphs

where transition costs are defined on H + 1 successive edges. We observe that the

H-cost shortest path problem may be transformed to an equivalent standard shortest

path problem on a different graph, which we call the lifted graph. The lifted graph

is the primary conceptual tool enabling the interaction between the discrete path

planner and the trajectory planner.

In Section 2.2, we propose an efficient and flexible algorithm for solving the H-

cost shortest path problem. The proposed algorithm executes significantly faster

than the solution of the equivalent standard shortest path problem on the lifted
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graph. Furthermore, the proposed algorithm includes a user-specified parameter that

allows further reductions in the execution time at the expense of the optimality of the

resultant path. In Section 2.3, we provide numerical simulation data to corroborate

these claims, for both the optimal and sub-optimal implementations.

In Chapter 3, we develop a motion planning framework based on the H-cost

shortest path problem. This framework enables the interaction between the two

levels of planning via a special local trajectory generation problem, which we call the

tile motion planning problem. We provide a precise and general formulation of the

tile motion planning problem, and we discuss the solution of an H-cost shortest path

problem where the H-costs are provided by the tile motion planner.

The novelty of the proposed motion planning framework is that it provides a

clear distinction between the “intelligence” and the “control” aspects involved in

motion planning. More precisely, the tile motion planning problem provides a specific

interface through which control theoretic ideas may be applied to motion planning

without interfering with the higher-level planning algorithm; on the other hand, the

lifted graph provides a specific discrete mathematical structure on which high level

task specifications may be formulated and solved, also without interfering with the

tile motion planner.

To further distinguish the proposed approach to motion planning from the existing

literature, we note three major approaches in the motion planning literature that are

also intended for incorporating vehicle dynamics in motion planning. We state the

perspectives of these competing approaches and we emphasize, in comparison to each,

the novelty of the proposed approach as follows.

1. History-dependent costs are not required if discretizations of the state

space, instead of the workspace, are considered. This approach suffers

from the lack of scalability to higher-dimensional state spaces. Discretization

of the workspace is advisable because the obstacle space is contained within
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the workspace, and because this discretization is independent of the vehicle

dynamical model (in particular, it is independent of the dimension of the state

space). To enable the incorporation of vehicle dynamics in motion planning

independently of the dimension of the state space, we propose a framework that

relies on workspace discretization.

2. Discretization (of either the workspace or the state space) is not nec-

essary; randomized sampling-based algorithms can plan efficiently

even in high dimensional state spaces. The efficiency of randomized

sampling-based algorithms arises mainly from the fast expansion of data struc-

tures such as the RRT, which in turn is enabled by fast linear interpolation

between a known state and a new state. However, in the presence of differential

state constraints (such as vehicle dynamical constraints) and input constraints,

linear interpolation between two states does not, in general, correspond to a

feasible state trajectory. Consequently, the efficiency of randomized sampling-

based algorithms deteriorates significantly [118] when vehicle dynamical con-

straints are considered.

More importantly, randomized sampling-based planners typically do not address

the optimality of the resultant path (with recent notable exceptions [64, 72]).

The standard notion of a posteriori path “smoothing,” which involves the re-

moval of redundant intermediate states in the path, does not apply easily when

dynamical constraints are considered, for reasons discussed in the previous para-

graph.

In comparison with randomized sampling-based planners, our proposed ap-

proach of enabling by a low-level trajectory planner the discrete search for

optimal paths results in trajectories with significantly lower costs, at compa-

rable computational efficiency. In Section 7.2, we corroborate this claim with
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numerical simulation results.

Finally, a discrete representation of the workspace is typically required for stat-

ing high-level task specifications [12, 13] more complex than the point-to-point

navigation task.

3. Local feedback laws within cells can decouple the geometric path

planning from the trajectory generation. An underlying assumption

in the feedback-based motion planning approach (cf. [13, 32]) is the complete

controllability of the vehicle dynamical model in the presence of obstacles, i.e.,

the assumption that there exists a feasible, obstacle-free trajectory from every

initial state to every goal state. Stated differently, an underlying assumption

involved in the design of local feedback laws that enable transitions among

cells is the existence of such feedback laws. However, such feedback laws do not

exist for important vehicle models such as the Dubins car model and the aircraft

navigational model. In this thesis, we do not assume complete controllability

in the presence of obstacles, and we present numerical simulation results for

vehicle models which violate this assumption.

1.3.2 Local Trajectory Generation via Model Predictive Control

As previously mentioned, the tile motion planning problem provides a specific in-

terface through which control theoretic ideas may be applied to motion planning.

We discuss in Chapter 4 a specific example of such an application of control theory,

namely, an implementation of the tile motion planner TilePlan based on the well-

known model predictive control (mpc) paradigm. The tile motion planning problem,

discussed in detail in Section 3.2, involves trajectory generation for the traversal of

a finite sequence of cells. This problem is difficult mainly because the constraint

of containment of the trajectory within the said sequence of cells is, in general, a

non-convex constraint.
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As such, the tile motion planning problem may be solved without further simpli-

fication using nonlinear programming (nlp) or milp techniques in the mpc imple-

mentation. This approach, however, may require significant computational resources,

especially in the context of real-time, online implementations, and numerical nlp

techniques are not, in general, be guaranteed to converge successfully.

We discuss an approach of simplifying the non-convex constraint of containment

within a sequence of cells to the convex constraint of containment within a single cell

using the concept of the so-called effective target sets , first introduced by Bertsekas

and Rhodes [16]. Whereas the application of effective target sets simplify the imple-

mentation of TilePlan, the construction of these sets is challenging. We address

the construction of these sets by first observing that the vehicle’s (nonholonomic)

kinematic and dynamic constraints impose an upper bound on the local curvature of

the geometric paths that can feasibly be traversed by the vehicle.

In light of this observation, we discuss in Chapter 5 a purely geometric scheme for

efficiently constructing the effective target configuration sets, i.e., the intersections of

the effective target sets with the configuration space C. Interestingly, the construction

of the effective target configuration sets is related to the solution of a geometric

problem of independent interest, namely, the problem of determining the existence of

curvature-bounded paths traversing polygonal regions that may be partitioned into

a sequence of rectangles. In Appendix C, we discuss this problem for rectangles

of arbitrary dimensions. The proposed approach is less conservative than the best

known result for curvature-bounded traversal across narrow channels [14], i.e., using

the proposed approach, we can establish the existence of curvature-bounded paths in

channels for which the result provided in [14] is inconclusive.
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1.3.3 Multi-resolution path- and Motion Planning

As a specific example of implementation of the discrete path planner, we consider

multi-resolution planar cell decompositions such that the environment is represented

with high accuracy (i.e., with small cell sizes) in the agent’s immediate vicinity, and

with lower accuracy in regions farther away, similar to the multi-resolution grids

considered in [11, 148]. This approach relates to two perspectives on the practical

implementations of path planning: firstly, this approach relates to the problem of

appropriately compressing too much information about the environment to enable

efficient online computation. To this end, the proposed multi-resolution cell decom-

position significantly reduces the number of vertices in the cell decomposition graph.

On the other hand, this approach also relates to the problem of uncertainty or partial

knowledge about the environment in regions farther away from the vehicle’s loca-

tion. To this end, the proposed path planning scheme requires accurate environment

information only locally.

In light of the widespread use of the wavelet transform in signal processing and,

by consequence, in autonomous navigation (as discussed in Section A.4), Tsiotras

and Bakolas [147] and Jung [69] discuss a path planning scheme that directly uses

a wavelet transform representation of the environment. This approach allows for

the future development of highly efficient navigation and path planning schemes,

where the wavelet transform coefficients may be used for signal analysis in navigation

schemes while simultaneously serving as a data structure for path planning.

In this thesis, we propose a modification of the path planning scheme developed

in [69, 147], and we rigorously prove the completeness of the proposed scheme. Such

proofs of completeness are altogether absent from other works on multi-resolution

path planning (cf. [11, 69, 147, 148]).

Furthermore, we incorporate vehicle dynamical constraints in the multi-resolution

path planning scheme using the H-cost approach previously discussed. In particular,
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Figure 1.6: Schematic illustration of the overall motion planning framework. The hollow
arrows indicate modification of a model by a method. The bold arrows indicate dependencies
between the various methods and models.

we discuss a motion planner based on a “partially” lifted cell decomposition graph,

which is “multi-resolution” both in the sense of representing the environment with

high accuracy only locally, and in the sense of considering the vehicle dynamical

constraints for path planning only locally.

1.3.4 Summary of Contributions

The motion planning framework proposed in this thesis is illustrated schematically

in Fig. 1.6. In brief summary, the main contributions of this thesis are:

1. A motion planning framework based on history-dependent costs (H-costs) in

cell decomposition graphs for incorporating vehicle dynamical constraints: this

framework offers distinct advantages in comparison with the competing ap-

proaches of discretization of the state space, of randomized sampling-based

motion planning, and of local feedback-based, decoupled hierarchical motion

planning,

24



2. An efficient and flexible algorithm for finding optimal H-cost paths,

3. A precise and general formulation of a local trajectory problem (the tile motion

planning problem) that allows independent development of the discrete planner

and the trajectory planner, while maintaining “compatibility” between the two

planners,

4. A local trajectory generation algorithm using mpc, and the application of the

concept of effective target sets for a significant simplification of the local trajec-

tory generation problem,

5. The geometric analysis of curvature-bounded traversal of rectangular channels,

leading to less conservative results in comparison with a result reported in the

literature [14], and also to the efficient construction of effective target sets for

the solution of the tile motion planning problem,

6. A wavelet-based multi-resolution path planning scheme, and a proof of com-

pleteness of the proposed scheme: such proofs are altogether absent from other

works on multi-resolution path planning,

7. A technique for extracting all information about cells – namely, the locations,

the sizes, and the associated image intensities – directly from the set of signifi-

cant detail coefficients considered for path planning at a given iteration, and

8. The extension of the multi-resolution path planning scheme to include vehicle

dynamical constraints using the aforementioned H-cost approach.
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Chapter 2

History-dependent Costs in Path Planning

Geometric path planning algorithms based on workspace cell decompositions provide

no guarantees that the resultant channel of cells can be feasibly traversed by a vehicle

subject to kinematic and dynamical constraints1. At first glance, one may argue that

this is but an artefact of an inappropriate choice of the edge cost function in the

associated graph. We provide a counter-example against this argument.

Consider the path planning problem depicted in Fig. 2.1, where S denotes the

initial position, G denotes the goal, and the dark areas are obstacles. Consider two

vehicles A and B, whose minimum radii of turn are kinematically constrained by rAmin

and rBmin respectively, such that rAmin 6 d and rBmin > d. Clearly, the dashed path in

Fig. 2.1 is feasible for vehicle A, but not for vehicle B.

Figure 2.2 depicts the same problem with a uniform cell decomposition. The

channel containing the dashed path of Fig. 2.1 is denoted by cells with bold outlines.

Such a channel is obviously not traversable by vehicle B. However, notice that no

pair of successive cells is by itself infeasible, i.e., a channel defined by two successive

cells alone always contains a feasible path. Stated differently, for any two adjacent

cells, there is no cell-dependent property associated with the two adjacent cells that

can be penalized by an edge cost function in order to prevent the graph search from

generating a channel such as the one shown in Fig. 2.2(a).

It may be further argued that a feasible path is guaranteed to exist in any chan-

nel if the dimensions of the cells are large enough. Indeed, Ref. [14] shows that a

curvature-bounded path with local curvature less than or equal to 1/rmin exists in a

1As previously mentioned, state space decompositions can avoid this problem but are impractical
for high dimensional state spaces.
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Figure 2.1: Counter-example for path planning without kinematic constraints.
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Figure 2.2: Problems with geometric path planning using cell decompositions.

polygonal channel if the width w of the channel satisfies w > τrmin, where τ ≈ 1.55.

The above counter-example also serves to illustrate that such a choice of cells may be

too restrictive in practice. Figure 2.2(b) shows that large cells may not adequately

capture the details of the environment, i.e., the number of mixed cells could be too

large for the cell decomposition to be useful for path planning. Note that this ob-

servation is consistent with the fact that nonholonomicconstraints (which lead to the

curvature constraints) cannot be integrated to obtain equivalent position constraints.

In light of the preceding observations, we propose in this thesis an approach to

find paths in the cell decomposition that minimize a cost defined on multiple edge

transitions – called histories – instead of costs defined on single edge transitions.

2.1 Problem Formulation

In this section, we consider a precise formulation of the first (discrete) sub-problem

of the hybrid point-to-point motion planning problem (Problem 1.2).
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Consider a cell decomposition C of the workspace; for now, we make no assump-

tions about the geometry of the cells involved in this decomposition. The topological

graph associated with the cell decomposition C is a graph G := (V,E), such that

each element in the set of vertices V corresponds to a unique cell. Two vertices are

adjacent if the corresponding cells are geometrically adjacent. The edge set E is the

collection of all two-element subsets {i, j} ⊂ V such that the vertices i and j are

adjacent.

For given initial and goal vertices iS, iG ∈ V , an admissible path π in the graph

G is a finite sequence (j0, j1, . . . , jP ) of vertices (with no repetition) such that jk ∈ V

and {jk−1, jk} ∈ E, for each k = 1, . . . , P , with j0 = iS and jP = iG. We introduce

an edge cost function g0 : E → R+, which assigns to each edge of G a non-negative

cost of transitioning this edge. The standard shortest path problem on the graph G is

then defined as follows.

Problem 2.1 (Standard Shortest Path Problem). Let iS, iG ∈ V be given initial and

goal vertices. The standard cost of an admissible path π = (j0, . . . , jP ) in the graph G

is defined by

J0(π) :=

P∑

k=1

g0 (jk−1, jk) . (2.1)

Find an admissible path π∗ in the graph G such that J0(π
∗) 6 J0(π) for every admis-

sible path π in the graph G.

We introduce next a shortest path problem with costs defined on multiple edge

transitions (histories). To formalize the concept of histories, we define, for every

integer H > 0, the set

VH := {(j0, . . . , jH) : {jk−1, jk} ∈ E, k = 1, . . . , H,

jk 6= jm, for k,m ∈ {0, . . . , H}, with k 6= m} .
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An element of the set VH+1 is called a H-history . Let I ∈ VH ; in what follows,

we will denote by [I]k the kth element of this (H + 1)-tuple, and by [I]`k the tuple

([I]k, [I]k+1, . . . , [I]`), for k < ` 6 H + 1. We associate with each H a non-negative

cost function gH : VH+1 → R+, and state a shortest path problem with transition

costs defined on histories as follows.

Problem 2.2 (H-Cost Shortest Path Problem). Let H > 0, and let iS, iG ∈ V be

given initial and goal vertices, such that any admissible path in G contains at least

H + 1 vertices. The H-cost of an admissible path π = (j0, . . . , jP ) in G is defined by

JH(π) :=
P∑

k=H+1

gH ((jk−H−1, jk−H , . . . , jk)) . (2.2)

Find an admissible path π∗ in the graph G such that JH(π
∗) 6 JH(π) for every

admissible path π in the graph G.

Note that the H-cost of a path is defined as the sum of the costs of H-histories

in that path. According to this convention, the 0-cost of a path is the standard cost

defined in (2.1) because each 0-history in V1 is associated with an unique edge in E.

In other words, the H-cost shortest path problem for H = 0 is the standard shortest

path problem (Problem 2.1).

It is possible to transform Problem 2.2 into an equivalent standard shortest path

problem on a lifted graph GH . This transformation enables a clear conceptualization

of our proposed algorithm to solve Problem 2.2 in light of the fact that the solutions

to the standard shortest path problem are well-known (as we shall discuss in the next

section). The vertices of the lifted graph GH are the elements of VH , and the edge set

EH of the lifted graph GH is the set of all ordered pairs (I, J), such that I, J ∈ VH ,

with [I]k = [J ]k−1, for every k = 2, . . . , H + 1, and [I]1 6= [J ]H+1. The notion of the

lifted graph is illustrated in Fig. 2.3 for H = 1.

For given initial and terminal vertices iS, iG ∈ V , an admissible path Π in GH is

a finite sequence (J0, . . . , JQ) of vertices (with no repetition) such that (Jk−1, Jk) ∈
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(a) Original graph G

(1, 2, 4) (2, 4, 3)

(4, 3, 1)(3, 1, 2)
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(4, 2, 1)(2, 1, 3)

(b) Lifted graph G1

Figure 2.3: Illustrative example of the lifted graph with H = 1.

EH , for each k = 1, . . . , Q, with [J0]1 = iS, and [JQ]H+1 = iG. Note that every

admissible path Π = (J0, . . . , JQ) in GH uniquely corresponds to an admissible path

π = (j0, . . . , jP ) in G, with P = Q+H and [Jk]m = jkH+m−1, for each k = 0, 1, . . . , Q−

1, and JQ = (jP−H , . . . , jP ). We introduce a non-negative cost function g̃H : EH → R+

defined by g̃H((I, J)) := gH
(
([I]H+1

1 , [J ]H+1)
)
, for every pair (I, J) ∈ EH . It follows

that Problem 2.2 is equivalent to the standard shortest path problem on the graph

GH , where the cost of an edge (I, J) ∈ EH given by g̃H((I, J)).

The lifted graph GH is a discretization of the workspace with richer properties in

the context of motion planning, in that it can represent the vehicle kinematic/dynamic

constraints, as we shall clarify in what follows.

2.2 Path Planning with History-Dependent Costs

The standard shortest path problem can be solved by a class of algorithms called

the label-correcting algorithms . Well-known examples of label correcting algorithms

include the Bellman-Ford, the Dijkstra [15, 34], and the A∗ [93, 112] algorithms.

A label-correcting algorithm progressively searches for the least cost path starting

from iS and ending at vertex i ∈ V , by iteratively reducing an estimate of the least

cost to the initial vertex i, called the label of the vertex i. Let d : V → R+ denote

the label function, i.e., d(i) is the current estimate of the least cost from iS to i. The

algorithm also maintains a set P of vertices, called the fringe [130], that contains the

vertices whose labels can potentially be reduced from their current value (referred to
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General Label-Correcting Algorithm

Input: iS ∈ V , Output: Label d, Backpointer b

procedure Initialize(iS)

1: P ← {iS}, d(iS)← 0

2: for all j ∈ V \{iS} do
3: d(j) =∞

procedure Main

1: Initialize(iS)

2: while P 6= ∅ do

3: i← Remove(P)
4: for all j ∈ V such that {i, j} ∈ E do

5: if d(i) + g(i, j) < d(j) then

6: d(j)← d(i) + g(i, j)

7: b(j)← i

8: P ← Insert(P, j)

Figure 2.4: Pseudo-code for the general label-correcting algorithm.

as the open list in [15,34]), and it maintains a backpointer function b : V → V , which

records the immediate predecessor of each node i ∈ V in the optimal path from iS to

i. The pseudo-code for a general label-correcting algorithm is shown in Fig. 2.4.

The H-cost shortest path problem can be solved by first transforming it to a

standard shortest path problem on the graph GH , and then executing a standard

label-correcting algorithm such as Dijkstra’s algorithm. A näıve, brute-force imple-

mentation of this approach is ill-advised because (a) |VH | and |EH | grow exponentially

with H , and (b) the explicit construction of the graph GH may be unnecessary to find

the shortest path in GH .

In this section, we describe an algorithm that is equivalent to executing a label-

correcting algorithm on the graph GH ; however, the proposed approach does not

construct the entire graph GH beforehand. Since |VH| and |EH | grow exponentially
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with H , the execution time of any algorithm that solves the H-cost shortest path

problem exactly grows exponentially with H . This fact holds true for the proposed

algorithm; however, we include in our algorithm a user-specified parameter that can

dramatically reduce the execution time at the expense of (exact) optimality of the

resultant path. In other words, the proposed algorithm exhibits a flexibility that

allows the user to trade off execution time against optimality of the resultant path.

For the sake of clarity, we present first a basic version of our algorithm, namely, one

that finds the optimal path and solves the H-cost shortest path problem exactly. In

Section 2.3.1, we introduce the aforementioned user-specified parameter and discuss

the effects of this parameter on the algorithm’s execution time.

Recall that the standard label-correcting algorithm maintains a collection of ver-

tices, namely, the fringe, whose labels can potentially be reduced, and that it asso-

ciates with each vertex a label and a backpointer. Also, observe that the definition

of an admissible path in GH from iS to any vertex i ∈ V requires only [JQ]H+1 = i,

where JQ ∈ VH is the last vertex in this path. The first H elements of JQ are unspec-

ified, which implies that different admissible paths in GH may have different terminal

vertices in VH . In the proposed algorithm, we recognize this fact by associating with

each vertex i ∈ V multiple H-histories instead of the (single) backpointer in the

standard label-correcting algorithm. Each history of i is a unique element I ∈ VH+1

such that [I]H+2 = i. The proposed algorithm is a label-correcting algorithm that

associates with each history of each vertex i ∈ V a label. Accordingly, the fringe in

the proposed algorithm is a collection of pairs, where each pair consists of a vertex in

V and an index that refers to a particular history of that vertex.

A detailed pseudo-code of the proposed algorithm is presented in Fig. 2.5. At each

iteration, the algorithm updates the label corresponding to a vertex-index pair, i.e., a

particular history. Lines 8–11 update the fringe, the labels, and the histories, similar

to Lines 4-8 of the standard label-correcting algorithm in Fig. 2.4. Line 5 chooses the
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H-Cost Shortest Path Algorithm

Input: iS ∈ V , Output: Label d, History h

procedure Initialize(iS)

1: for all i ∈ V , m = 1, . . . , |Hi| do
2: d(i,m)←∞, h(i,m)← null

3: P ← {(i,m) : Ni 6= ∅, and History(i,m) ∈ Ni}
4: for all (i,m) ∈ P do

5: I ← History(i,m)

6: d(i,m)← g̃H+1 (I), h(i,m)← [I]H+1
1

procedure Main

1: Initialize(iS)

2: while P 6= ∅ do

3: (i,m)← Remove(P)
4: for all j ∈ V such that (i, j) ∈ E do

5: n← Index(([h(i,m)]H+1
3 , i, j), j)

6: J ← History(j, n)

7: Di,m ← d(i,m) + g̃H+1([h(i,m)]2, J)

8: if d(j, n) > Di,m then

9: d(j, n)← Di,m

10: h(j, n)← ([h(i,m)]H+1
2 , i)

11: P ← Insert(P, (j, n))

Figure 2.5: Pseudo-code for the basic version of the proposed algorithm.

index corresponding to the particular history (of the newly explored vertex j) being

updated in that iteration. We use the following notation: for each vertex i ∈ V , Hi

and Ni are defined by

Hi := {I ∈ VH : [I]H+1 = i}, (2.3)

Ni := {I ∈ VH+1 : [I]1 = iS, [I]
H+2
2 ∈ Hi}. (2.4)

Here P denotes the fringe; for each vertex i ∈ V and m ∈ {1, . . . ,Hi}, h(i,m) denotes

the mth history of i and d(i,m) denotes the label associated with the mth history of i.
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Finally, the procedure History(i,m) returns the mth element of the set Hi; and the

procedure Index(I, i) returns the index of the history I in the set Hi if I ∈ Hi, or

returns 0 otherwise. The procedures Insert and Remove depend on the specific

data structure used for implementing the fringe.

The algorithm terminates when P = ∅ (in Section 2.3, we note a condition

for terminating the algorithm earlier). After termination, the algorithm returns the

labels d and the histories h. For every vertex i 6= iS in V , we may then calculate the

optimal path from iS to i by recursively tracing the (H + 1)th element of histories

recorded by h: a process similar to recursively tracing the backpointer in the standard

label-correcting algorithm. We illustrate the execution of the algorithm with a simple

example.

Example 2.3. Consider the graph shown in Fig. 2.6(a), where iS = 1. Let H = 1.

Let g̃2 be a non-negative cost function given by the lookup table in Fig. 2.6(b) (for

brevity, the values of some of the elements of V2 are not shown). Note that

|Hi| =







2, i ∈ {1, 4, 13, 16},

3, i ∈ {2, 3, 5, 8, 9, 12, 14, 15},

4, otherwise,

i.e., the algorithm maintains at most 4 histories and labels for each vertex. Also note

that N3 = {(1, 2, 3)}, N6 = {(1, 5, 6), (1, 2, 6)}, N9 = {(1, 5, 9)}, and Ni = ∅ for

i ∈ {1, . . . 16}\{3, 6, 9}.

We index the elements ofHj as 1, 2, 3, 4 corresponding toUp, Right, Down, Left

edges of j, with reference to Fig. 2.6(a). If a particular edge is absent, the correspond-

ing index applies to the next edge in the order listed above. For example, the indices

of (5, 6), (10, 6), (7, 6), (2, 6) ∈ H6 are 1, 2, 3, and 4 respectively, while the indices of

(5, 1), (2, 1) ∈ H1 are 1 and 2 respectively.

Line 3 of procedure Initialize results in P = {(3, 1), (6, 1), (6, 4), (9, 3)}. By

Fig. 2.6(b), Line 6 of procedure Initialize results in
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(a) Graph G

I ∈ V2 g1(I) I ∈ V2 g1(I)

(1, 2, 3) 5 (5, 6, 2) 5
(1, 2, 6) 6 (5, 6, 7) 7
(1, 5, 6) 2 (5, 6, 10) 8
(1, 5, 9) 8 (2, 6, 5) 12

(2, 6, 10) 5 (2, 6, 7) 8

(b) H-costs for H = 1

Figure 2.6: The graph and the history-based cost function used in Example 1.

d(3, 1) = 5, d(6, 1) = 2, d(6, 4) = 6, d(9, 3) = 8,

h(3, 1) = (1, 2), h(6, 1) = (1, 5), h(6, 4) = (1, 2), h(9, 3) = (1, 5).

Next, suppose we remove (i,m) = (6, 1) from the fringe in Line 3 of proce-

dure Main. Then P = {(3, 1), (6, 4), (9, 3)}, and the for loop in Line 4 is exe-

cuted for vertices 2, 5, 7 and 10. In particular, for vertex j = 2, Lines 5 and 6

result in n = 2, and J = (6, 2), respectively. By Table 2.6(b), it follows that

d(6, 1)+g1([h(6, 1)]2, 6, 2) = 2+5 = 7 < d(2, 2) =∞ (by Line 2 of procedure Initial-

ize). Hence, Lines 9 and 10 result in d(2, 2) = 7, and h(2, 2) = ([h(6, 1)]2, 6) = (5, 6),

while Line 11 results in P = {(3, 1), (6, 4), (9, 3), (2, 2)}.

Similarly, the execution of the for loop in Line 4 of procedure Main for vertices

5, 7, and 10, results in P = {(3, 1), (6, 4), (9, 3), (2, 2), (7, 1), (10, 4), (5, 2)}. The labels

and histories at the end of the first iteration are

d(5, 2) = 18, d(7, 1) = 9, d(10, 4) = 10,

h(5, 2) = (2, 6), h(7, 1) = (5, 6), h(10, 4) = (5, 6).

2.3 Theoretical Analysis and Numerical Simulation Results

Different instances of label-correcting algorithms are obtained by implementing the

fringe using different data structures. For example, implementing the fringe as a

LIFO stack results in a breadth-first search; implementing the fringe as a list sorted by

current labels results in Dijkstra’s algorithm. In this section, we consider an instance

35



of the proposed algorithm with the fringe implemented as a list sorted by the current

labels, i.e., the procedure Remove returns (i,m) = argmin{d(i,m) : (i,m) ∈ P}.

Proposition 2.4. For every vertex i ∈ V, suppose there exists at least one admissible

path from iS to i containing History(i,m), for any m ∈ {1, . . . , |Hi|}. Let π∗ be such

an admissible path in G with the least cost. Then the proposed algorithm terminates

with d(i,m) = J̃H(π
∗). Otherwise, the algorithm terminates with d(i,m) =∞.

Proof. See Appendix B.

Proposition 2.4 asserts that the algorithm computes the minimum H-cost of paths

from iS to every vertex i ∈ V and every history in Hi. However, because we need to

compute only the minimum H-cost from iS to iG for any history in HiG , it is possible

to terminate the algorithm earlier, as shown by the following result.

Proposition 2.5. Each pair (j,m), j ∈ V , m = 1, . . . , |Hi| enters the set P at most

once during the execution of the algorithm.

Proof. See Appendix B.

The conditions in Lines 8 and 11 of the procedure Main imply that a pair (j,m)

is inserted in P only when the value of d(j,m) can be reduced. It follows from Propo-

sition 2.5 that once a pair (j,m) is removed from P, the value of d(j,m) cannot be

further reduced. The implication of this fact is that we may terminate the algorithm

after Line 3 if i = iG.

Note that Proposition 2.5 closely resembles a similar, known result regarding

the execution of Dijkstra’s algorithm: namely, that each vertex enters the fringe at

most once (see, for instance, [15, 34]). We may use Proposition 2.5 to characterize

the execution time of the basic version of the proposed algorithm as follows: in the

worst case, every pair (j,m) enters the set P exactly once. Thus, the maximum
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number of iterations (of the while loop in procedure Main) is upper bounded by

∑|V |
j=1 |Hj | = |VH| = O(|V |H).

2.3.1 Modifications for Further Efficiency

As mentioned previously, the execution time of the basic version of the proposed al-

gorithm increases exponentially with H , which may slow down the algorithm for large

values of H . To address this issue, we present in this section a simple modification

of the basic version of the algorithm that dramatically reduces its execution time at

the expense of optimality of the resultant path.

The algorithm presented in Fig. 2.5 maintains, for each node j ∈ V , a record of

the costs-to-come to that node through each of its histories. To reduce the execution

time of the algorithm, we may modify the algorithm such that it maintains, for each

node j ∈ V , the costs-to-come through a fixed number L of histories. In particular, we

modify the proposed algorithm by inserting the following statements between Lines 5

and 8 in procedure Main:

Li ← {d(i,m) <∞ : m = 1, . . . , |Ti|}

if |Li| = L and Di,m > max{Li} then

continue

Accordingly, we delete from the set Ni defined in (2.4) all but the first L histories,

ranked by increasing H-costs.

2.3.2 Numerical Simulation Results

Figure 2.7 shows, on a logarithmic scale, the maximum, the minimum, and the average

ratios of the time required for constructing the lifted graph GH and then executing

Dijkstra’s algorithm to the execution time of the execution time of the proposed

algorithm. Each data point in Fig. 2.7 corresponds to a different combination of H

and the size |G| of the cell decomposition graph. The specific values for H and |G|
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corresponding to the data points from left to right in Fig. 2.7 are as follows:

H = 1, |G| = N2, for each N = 10, 20, . . . , 150,

H = 2, |G| = N2, for each N = 10, 20, . . . , 130,

H = 3, |G| = N2, for each N = 10, 20, . . . , 100,

H = 4, |G| = N2, for each N = 10, 20, . . . , 60,

H = 5, |G| = N2, for each N = 5, 15, 25, 35,

H = 6, |G| = N2, for each N = 10, 15, 20, 25,

H = 7, |G| = N2, for each N = 5, 10, 15.

Table 2.1 shows sample values of the data represented in Fig. 2.7: the fourth, fifth, and

sixth columns show, respectively, the absolute values of the maximum, the minimum,

and average ratios of execution times. The graph G used in these simulations is the

graph arising out of a uniform cell decomposition with 4-connectivity, i.e., a graph

of the form shown in Fig. 2.6(a). For each combination of H and |G|, 30 trials were

performed. In each of these trials, the structure of the graph G was kept constant and

the costs of transitioning H-histories, i.e., the costs of edge transitions in GH , were

assigned randomly. The initial and goal nodes iS and iG were randomly assigned in

each trial.

The simulation results shown in Fig. 2.7 and Table 2.1 indicate that the proposed

algorithm executes up to three orders of magnitude faster on average, and may execute

up to four orders of magnitude faster in the best-case, than the alternative approach

of first constructing the lifted graph and then executing the search. Furthermore,

the memory required to store the graph GH is approximately K times the memory

required by the proposed algorithm to store multiple histories of each node j ∈ V,

where K is the valency of the graph G. Note, however, that the minimum ratios of

execution times are close to unity in a large number of the cases, indicating that the

complexity of the H-cost shortest path algorithm is the same as that of the alternative

approach of executing Dijkstra’s algorithm on the lifted graph.
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Figure 2.7: Comparison of execution time of exact H-cost shortest path algorithm with
the execution of Dijkstra’s algorithm on the lifted graph.

|G| H |GH | Max. ratio Min. ratio Avg. ratio

6,400 1 25,280 95.49 0.937 5.039
10,000 1 39,600 56.78 0.993 4.756
14,400 1 57,120 17.07 1.017 3.726
22,500 1 89,400 36.19 1.221 4.574
6,400 2 74,888 43.01 1.199 4.646
10,000 2 117,608 59.43 1.249 5.901
14,400 2 169,928 222.4 1.396 13.15
16,900 2 199,688 73.27 1.322 6.901
2,500 3 85,056 141.3 1.263 8.831
4,900 3 169,456 238.4 1.215 11.26
6,400 3 222,456 630.7 1.231 29.87
10,000 3 350,056 359.7 1.182 21.47

900 4 79,472 155.1 1.440 16.63
1,600 4 145,872 1264 1.410 75.14
2,500 4 232,272 399.8 1.287 20.57
625 5 147,952 1294 1.788 93.06

1,225 5 306,072 2 761 0.834 125.2
225 6 120,532 1399 3.604 267.1
400 6 237,232 2091 1.697 226.6

Table 2.1: Comparison of execution time of exact H-cost shortest path algorithm with
the execution of Dijkstra’s algorithm on the lifted graph: sample values.
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Figure 2.8 shows, on a logarithmic scale, the maximum, the minimum, and the

average ratios of the execution time of the exact H-cost shortest path algorithm to the

execution time of the modified H-cost shortest path algorithm of Section 2.3.1 and

the corresponding sub-optimality of the resultant paths in terms of the percentage

increase in cost. Each data point in Fig. 2.8 corresponds to a different combination

of H , the size |G| of the cell decomposition graph, and the parameter L. The specific

values for H , |G|, and L corresponding to the data points from left to right in Fig. 2.8

are as follows:

H = 1, |G| = 10, 000, 14, 400, 22, 500, L = 1, 2,

H = 2, |G| = 8, 100, 10, 000, 14, 400, L = 1, 3, 5,

H = 3, |G| = 4, 900, 8, 100, 10, 000, L = 2, 4, 5,

H = 4, |G| = 1, 600, 2, 500, L = 3, 5, 7,

H = 5, |G| = 625, 1, 225 L = 3, 5, 7,

H = 6, |G| = 225, 625 L = 2, 5, 11.

Table 2.2 shows a few sample cases of the data presented in Fig. 2.8. For each

combination of H , |G|, and L, 30 trials were performed. In each of these trials, the

structure of the graph G was kept constant and the costs of transitioning H-histories,

i.e., the costs of edge transitions in GH , were assigned randomly. The initial and goal

nodes were kept fixed in each trial: in particular, iS = 1 and iG = |G| were assigned.

The simulation results shown in Fig. 2.8 and Table 2.2 indicate that relatively

small values of L speed up the original algorithm by up to three orders of magnitude,

with relatively low increases in the cost of resultant paths. A similar observation has

been reported in [125], for the specific case of H = 1 and L = 1.
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Figure 2.8: Comparisons of execution time and sub-optimality of the modified H-cost
shortest path algorithm with the exact algorithm.

|G| H L maxi{|Hi|} Time ratio Cost diff. (%)

22,500 1 1 4 2.424 18.13
22,500 1 2 4 1.434 0.144
14,400 2 1 12 8.055 34.43
14,400 2 3 12 2.645 0.108
14,400 2 5 12 1.698 0.000
10,000 3 2 36 15.62 2.379
10,000 3 4 36 7.119 0.146
10,000 3 5 36 5.521 0.036
2,500 4 3 100 31.90 0.662
2,500 4 5 100 17.75 0.155
2,500 4 7 100 12.20 0.038
1,225 5 3 284 121.7 1.170
1,225 5 5 284 69.11 0.543
1,225 5 7 284 47.15 0.243
625 6 2 780 681.0 4.727
625 6 5 780 257.6 0.496
625 6 11 780 107.1 0.148

Table 2.2: Comparisons of execution time and sub-optimality of the modified H-cost
shortest path algorithm with the exact algorithm: sample values.
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Chapter 3

Motion Planning Framework based on

H-Cost Shortest Paths

We develop in this chapter a hierarchical motion planning framework based on H-cost

shortest paths. In this framework, the high-level geometric path planner repeatedly

invokes a special trajectory generation algorithm, called the tile motion planner , to

determine the costs of H-histories. To motivate the discussion and the potential

benefits of the proposed motion planning framework, we first discuss a preliminary

result of using H-costs in motion planning.

3.1 A Preliminary Result

Consider two vertices I, J ∈ VH such that (I, J) ∈ EH . We define the tile associated

with the edge (I, J) as the sequence of cells associated with the tuple ([I]1, [J ]
H+1
1 )

of vertices in G. In this thesis, we will use the symbol R to denote a tile, and we

will denote by (IR, JR) the edge in EH associated with this tile. In this chapter,

we consider an approximate cell decomposition consisting of uniformly sized (and

spaced) squares.

For every H > 1, it is possible to identify a finite collection TH =
{
RH

1 ,RH
2 , . . . ,

}

of sequences of cells such that the tile associated with every edge in EH is equivalent,

up to rigid geometric transformations, to a unique element of the set TH . Let

φ : EH → TH denote the map associating with each edge in EH an element of TH ,

and consider now a H-cost function defined as follows. Let Tfeas
H ⊆ TH be a collection

of sequences of cells which are deemed “feasible” following, perhaps, some a priori
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Figure 3.1: Illustration of the sequences of cells in the collection T
feas
3 .
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Figure 3.2: Preliminary result illustrating the potential benefits of motion planning based
on H-cost path planning.

geometric considerations, and let g3 be a H-cost function defined by

g3((I, J)) :=







1, φ((I, J)) ∈ Tfeas,

∞, otherwise.
(3.1)

We may define, for the sake of a concrete example, Tfeas
3 as the collection of

sequences of cells illustrated in Fig. 3.1.

In Fig. 3.2(a), the sequence of red-colored cells indicates the result of H-cost path

planning with the H-costs defined by (3.1), whereas the blue-colored cells indicate

the result of solving the standard shortest path problem on the cell decomposition

graph with all edge costs equal to unity. The curvature of the red-colored curve is

bounded above by 1/3 units (the size of each cell is 1 unit), and this curve was fitted a

43



posteriori within the red-colored sequence of cells. On the other hand, the curvature

of the blue-colored curve is bounded above by 1 unit, and it was not possible to fit a

curve with maximum curvature 1/3 units within the blue-colored sequence of cells.

Most interestingly, Fig. 3.2(b) shows the corresponding optimal velocity profile

from the solution of the minimum-time problem along each path [151]. In other

words, although the red-colored path is longer, a vehicle traversing this path will

require lesser time than a vehicle following the shorter (but with more and sharper

turns) blue path. Furthermore, if the vehicle is kinematically constrained to traversing

paths of curvature at most 1/3, then the blue-colored sequence of cells is infeasible.

3.2 General Hierarchical Motion Planning Framework

The H-cost function defined by (3.1) characterized ad hoc the feasibility of traversal

of tiles. In this section, we discuss a general technique for assigning an H-cost to each

edge in EH based on the feasibility of traversal of the tile associated with that edge,

considering the vehicle kinematic, dynamic, and control input constraints.

In what follows, we continue using the notation and terminology introduced in

Section 1.1. Additionally, we will denote by x(ξ) the projection of the vehicle state

ξ ∈ D on R2, i.e., the position components of the state ξ. Finally, we will denote by

cell(i) the cell in C associated with the vertex i ∈ V .

We define a special state trajectory planner called the tile motion planner

(TilePlan) as a trajectory generation algorithm that determines if a given tile may

be feasibly traversed by the vehicle from a specific initial state. The cost of traversal

of a tile is the integral along the state trajectory of a pre-specified incremental cost

`(ξ, u, t). A precise and general definition of TilePlan is given in Fig. 3.3.

Briefly, TilePlan determines if there exists a finite time tf and a control u ∈ Utf
such that the corresponding vehicle state trajectory satisfies the constraints (3.2) and

(3.3). The constraint (3.2) states the requirement that the position components of
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Tile Motion Planning Algorithm

Input: Tile R, State ξ0, Output: Time t1, State ξ1, Control u[0,t1], Cost Λ

procedure TilePlan(R, ξ0)
1: Determine if there exist tf ∈ R and admissible control input u ∈ Utf such that

ξ(· ; ξ0, u) satisfies

x(ξ(t; ξ0, u)) ∈
⋃H

k=1cell([J
R]k0), t ∈ (0, tf) , (3.2)

x(ξ(tf ; ξ0, u)) ∈ cell([JR]H) ∩ cell([JR]H+1) (3.3)

2: if ∃tf and ∃u then

3: Find t1 such that

x(ξ(t1; ξ0, u)) ∈ cell([JR]1) ∩ cell([JR]2) (3.4)

4: Return t1, u[0,t1], ξ1 := ξ(t1; ξ0, u), and

Λ :=

∫ t1

0

`(ξ(t; ξ0, u), u, t) dt (3.5)

5: else

6: Return Λ =∞

Figure 3.3: General form of the tile motion planning algorithm.

the vehicle state trajectory remain within the tile R at all times in the interval (0, tf),

whereas the constraint (3.3) states the requirement that the position components leave

the tile in a finite time tf . The algorithm returns the time t1 required to traverse the

first cell of the tile R, the time history u[0,t1] over the interval [0, t1] of the control

input u that enables traversal of the tile, the vehicle state ξ1 at the boundary between

the first and second cells of the tile R (see Fig. 3.4), and the cost Λ of traversal of

the first cell as defined in (3.5).

Note that expression (3.2) does not depend explicitly on θ or ψ. In practice, θ

or ψ may be subject to other constraints: for example, if ψ = (ẋ, ẏ) represents the

vehicle’s velocity, then ‖ψ(t)‖ may be subject to lower and upper bounds. However,
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Figure 3.4: Illustration of tile motion planning for square cells, with H = 3.

these constraints are of no concern at the geometric planning level; their satisfaction

will be ensured internally by TilePlan.

We discuss the implementation of TilePlan in the next chapter. Suppose, for

now, that a tile motion planning algorithm satisfying the requirements in Fig. 3.4

is available. Figure 3.5 then describes the overall motion planning framework. It

consists of a geometric path planner that repeatedly invokes TilePlan to determine

H-costs of histories. The proposed motion planner associates with each node I ∈ VH
(in addition to the label d(I) and backpointer b(I) of the standard label correcting

algorithm) a vehicle state Ξ(I) ∈ D, a time of traversal Θ(I) ∈ R+, and an admissible

control input Υ(I) ∈ UΘ(I).

For the sake of clarity, the overall motion planning framework is described as

a standard label correcting algorithm on the lifted graph. In practice, the motion

planning framework may be implemented using the H-cost path planning algorithm

described in Chapter 2.

Informally, the proposed planner searches for a path in the graph GH by traversing

one edge during each iteration, while simultaneously propagating the vehicle state

forward. As previously mentioned, the choice of an appropriate control input for

propagating the vehicle state are left to TilePlan.

The proposed planner produces a path Π∗ = (J0, . . . , JP ) in GH , where [J0]1 = iS

and [JP ]H+1 = iG. As discussed previously, Π∗ corresponds to a sequence of cells, and
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H-Cost Motion Planning Framework

Input: IS, ξ0, Output: d, b,Ξ,Θ,Υ

procedure Initialize((IS, ξ0))

1: P ← {IS}, d(IS)← 0;

2: for all I ∈ VH\{IS} do
3: d(I) =∞;

4: Ξ(I) = ξ0, Θ(I) = 0

procedure Main

1: Initialize(IS, ξ0)

2: while P 6= ∅ do

3: I ← Remove(P)
4: for all J ∈ VH such that (I, J) ∈ EH do

5: τ ← Tile([I]1, [J ]
H+1
1 )

6: (t1, u[0,t1], ξ1,Λ)← TilePlan(R,Ξ(I))
7: if d(I) + Λ < d(J) then

8: d(J)← d(I) + Λ

9: b(J)← I, Ξ(J)← ξ1

10: Θ(J)← t1, Υ(J)← u[0,t1]

11: Insert(P, J)

Figure 3.5: Pseudo-code for the overall motion planner.

the control input for traversing this sequence of cells is given by

u(t) := Υ(Jk), t ∈
[

k−1∑

m=1

Θ(Jm),
k−1∑

m=1

Θ(Jm) + Θ(Jk)

)

, (3.6)

for each k = 1, . . . , P .

In the next section, we show that, with increasing H , the costs of trajectories

resulting from the proposed motion planner are non-increasing. An informal in-

terpretation of this result is that as H is increased, the proposed motion planner

erroneously rejects fewer admissible paths in G as infeasible. This result guides the

selection of the value of H for implementing the proposed motion planner, in that

it assures benefits (in terms of optimality of the resultant trajectory) in return for
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expending computational resources for using larger values of H .

3.3 Dependence of Path Optimality on H

We assume here that the proposed motion planner solves exactly an H-cost shortest

path problem, where the H-cost of an edge in GH is determined by the tile motion

planning algorithm. We discuss the variation of the minimum H-cost with respect to

H via the following results. Here we denote by P̄ the maximum number of nodes in

any path in G from iS to iG.

Lemma 3.1. Let π = (j0, . . . , jP ) be an admissible path in G. Then for each H ∈ N,

J̃H+1(π) 6 J̃H(π), (3.7)

Proof. See Appendix B.

Proposition 3.2. Let J ∗
H denote the minimum H-cost of paths in G. Then {J ∗

H}P̄H=1

is a non-increasing sequence.

Proof. Let π be an admissible path in G. By Lemma 3.1,

J̃P̄ (π) 6 . . . 6 J̃1(π). (3.8)

For H ∈ {1, . . . , P̄}, let π∗
H denote the H-cost shortest path in G. Then for each

admissible path π, J ∗
H = J̃H(π

∗
H) 6 J̃H(π) by optimality. In particular, for π = π∗

H−1,

J ∗
H = J̃H(π

∗
H) 6 J̃H(π

∗
H−1)

6 J̃H−1(π
∗
H−1) = J ∗

H−1 (due to (3.8)),

and the result follows.
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Chapter 4

TilePlan via Model Predictive Control

The implementation of TilePlan is difficult mainly because (3.2) imposes a non-

convex constraint on the state trajectory. To alleviate this difficulty, we take ad-

vantage of the fact that each cell in the sequence of cells associated with a tile is a

convex region. We apply the concept of effective target sets introduced by Bertsekas

and Rhodes [16], which enable the transformation of the constraint (3.2) to a convex

constraint defined over a single cell.

The concept of effective target sets is described informally as follows. Consider a

discrete-time dynamical system described by the difference equation

ξ(k + 1) = fd(ξ(k), u(k)), k ∈ N, (4.1)

where u(k) ∈ U , for each k ∈ N. Let ξ0 = ξ(0) be the initial state of the system, and

let a horizon N ∈ N and a target set XN ⊆ D be pre-specified. Consider now the

problem of finding an admissible control input sequence u(0), . . . , u(N − 1) such that

ξ(N) ∈ XN . To simplify this problem, consider the set XN−1 ⊆ D defined by

XN−1 := {ξ ∈ D : there exists uN−1 ∈ U such that fd(ξ, uN−1) ∈ XN}.

Now suppose that there exists an admissible input sequence that solves the prob-

lem of driving the system state from ξ(0) = ξ0 to ξ(N) ∈ XN . It follows that that

ξ(N − 1) ∈ XN−1. In other words, the original problem of finding a sequence of N

admissible inputs can be reduced to the problem of finding a sequence of N−1 inputs

with the constraint ξ(N − 1) ∈ X(N − 1). Continuing the argument recursively, we

may define sets Xk for k = 1, . . . , N − 2 by

Xk := {ξ ∈ D : there exists uk ∈ U such that fd(ξ, uk) ∈ Xk+1},
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u(0) u(N − 1)

X1 XN−1 XN

Figure 4.1: Illustration of the idea of effective target sets; arrows indicate a one-step
evolution of (4.1).

and reduce the original problem of finding a sequence of N inputs to the problem of

finding a single admissible input u(0) such that f(ξ(0), u(0)) ∈ X1 (see Fig. 4.1).

4.1 Definitions of Effective Target Sets for TilePlan

Consider the tile associated with the H-history (I, J) ∈ EH . We define a sequence

{Xk}H+1
k=1 of subsets of the state space called the effective target sets as follows. Let

XH := ([J ]H ∩ [J ]H+1)× [−π, π]×M.

For each k = 1, . . . , H− 1, we define the effective target set Xk as the set of all states

ξk ∈ D such that

x(ξk) ∈ cell([J ]k) ∩ cell([J ]k+1), (4.2)

and such that there exists tk+1 ∈ R+ and an admissible control input uk+1 ∈ Utk+1

such that the state trajectory ξ(· ; ξk, uk+1) satisfies

x(ξ(t; ξk, uk+1)) ∈ cell([J ]k+1), t ∈ (0, tk+1) , (4.3)

ξ(tk+1; ξk, uk+1) ∈ Xk+1. (4.4)

The preceding definition of effective target sets allows a simplification of the tile

motion planning problem as follows. Suppose there exist a time t1 and a control

u1 ∈ Ut1 such that the resultant state trajectory ξ(· ; ξ0, u1) satisfies

x(ξ(t; ξ0, u1)) ∈ cell([J ]1), t ∈ (0, t1) , (4.5)

ξ1 := ξ(t1; ξ0, u1) ∈ X1. (4.6)
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Note that, due to (4.2), the conditions (4.5)-(4.6) imply the satisfaction of (3.2)-(3.3)

for H = 1. Next, because ξ1 ∈ X1, it follows by (4.3)-(4.4) that there exists a t2 ∈ R+

and an admissible control input u2 ∈ Ut2 such that

x(ξ(t; ξ1, u2)) ∈ cell([J ]2), t ∈ (0, t2) ,

ξ(t2; ξ1, u2) ∈ X2.

In other words, the admissible control input u1−2 enables the vehicle’s traversal

through the cells corresponding to the vertices [J ]1 and [J ]2, where u1−2 is defined as

the concatenation of the inputs u1 and u2 by

u1−2(t) :=







u1(t), t ∈ [0, t1) ,

u2(t), t ∈ [t1, T2] ,

with T2 := t1 + t2.

It follows that

x(ξ(t; ξ0, u1−2)) ∈ cell([J ]1) ∪ cell([J ]2), t ∈ (0, T2) , (4.7)

ξ(T2; ξ0, u1−2) ∈ X2. (4.8)

Due to (4.2), the conditions (4.7)-(4.8) imply the satisfaction of (3.2)-(3.3) for H = 2.

Continuing recursively the preceding arguments, it follows that, for each H > 2, there

exist tk+1 ∈ R+ and inputs uk+1 ∈ Utk+1
, for k = 1, . . . , H−1, such that the admissible

input u defined by

u(t) :=







u1(t), t ∈ [0, T1) ,

u2(t), t ∈ [T1, T2) ,

...
...

uH(t), t ∈ [TH−1, TH ] ,

(4.9)

with Tk :=
∑k

m=1 tm,

solves the tile motion planning problem.
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Thus, if the effective target sets Xk, the corresponding times of traversal tk+1 and

the control inputs uk+1 in (4.9) are known for each k = 1, . . . , H − 1, then the tile

motion planning problem is equivalent to the problem of finding u1 and t1 as described

above. Crucially, (4.5) constrains the position components of the state trajectory to

lie within a convex set. Furthermore, we may replace X1 in (4.6) by an interior convex

approximating set X̃1 ⊂ X1 thus transforming the tile motion planning problem into

the problem of finding u1 and t1 subject to convex constraints.

4.2 MPC Problem Formulation

In the mpc formulation of the tile motion planning problem, we consider a linear

approximation to the vehicle dynamical model as

ξ̇ = Aξ +B1u+B2, (4.10)

where

A :=
∂f

∂ξ

∣
∣
∣
∣
(ξ0,u0)

, B1 :=
∂f

∂u

∣
∣
∣
∣
(ξ0,u0)

,

and B2 := f(ξ0, u0) − Aξ0 − B1u0. A discrete-time approximation of (4.10), with a

sampling period ts, is given by

ξ(k + 1) = Adξ(k) +B1du(k) +B2d,

where Ad := eAts , Bid :=
∫ ts

0
eA(ts−τ)Bidτ , for i = 1, 2.

We denote by HP the prediction horizon, by ˜̀ : D × U → R+ a pre-specified

incremental cost function, and by Λ̃f : D → R+ a pre-specified terminal cost function.

The mpc problem is then described as follows:

min
HP∈N,(u(0),...,u(HP))

{

Λ̃f(ξ(HP)) +

HP−1∑

k=0

˜̀(ξ(k), u(k))

}

,

subject to ξ(HP) ∈ X̃1, ξ(k) ∈ cell([J ]1), (4.11)

and u(k) ∈ U, for each k ∈ {0, . . . , HP − 1}.
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Note that the incremental cost ˜̀ in (4.11) need not be the same as the incremental

cost ` in (3.5): the role of TilePlan in the overall motion planning framework is

that of ensuring feasibility of traversal of tiles, whereas it is the higher-level discrete

planner that searches for an optimal sequence of cell transitions. To solve the tile

motion planning problem, the mpc-problem (4.11) is solved; the first input of the

resulting input sequence is chosen and a new state is obtained by integrating over

time ts the actual (nonlinear) vehicle model; the linearization (4.10) is performed

about the new state [105]; and the preceding steps are repeated.

4.3 Computation of Effective Target Sets

As discussed in the preceding section, effective target sets simplify the mpc imple-

mentation of TilePlan. The computation of the effective target sets themselves,

however, is challenging for general nonlinear dynamical systems.

In light of the fact that the vehicle state includes the configuration (x, y, θ), we

consider first the computation of the intersections of the effective target sets with

the configuration space C = R2 × S1. To this end, we define the effective target

configuration sets by Ck := Xk ∩ C, and, in what follows, we outline a geometric

scheme of computing the sets Ck.

Assumption 4.1. The geometric curves in the plane that can be feasibly traversed

by the vehicle satisfy a local upper bound on their curvatures.

To justify this Assumption, we characterize as follows the curvature of the geo-

metric paths corresponding to projections on R2 of feasible state trajectories. Note

that the following kinematical equations relate the inertial position coordinates x, y

to the orientation θ irrespective of the vehicle dynamical model:

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t). (4.12)
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The curvature of the planar curve p(t) = (x(t), y(t)) is [86]:

κ(t) =

√

〈ṗ, ṗ〉〈p̈, p̈〉 − 〈ṗ, p̈〉2
〈ṗ, ṗ〉3 =

∣
∣
∣
∣
∣

θ̇

v

∣
∣
∣
∣
∣
, (4.13)

by (4.12). In the context of the vehicle dynamical model, the curvature of feasible

paths is related to the set of admissible control values via the term in the numerator

of (4.13), i.e.,

min
u(t)∈U

∣
∣
∣
∣
∣

θ̇(ξ(t), u(t))

v(t)

∣
∣
∣
∣
∣
6 κ(t) 6 max

u(t)∈U

∣
∣
∣
∣
∣

θ̇(ξ(t), u(t))

v(t)

∣
∣
∣
∣
∣
.

The upper bound κmax on the curvature of a feasible path over a given time interval

of interest [0, tf ] is mint∈[0,tf ] κ(t), and it follows that

κmax
6 min

t∈[0,tf ]
max
u(t)∈U

∣
∣
∣
∣
∣

θ̇(ξ(t), u(t))

v(t)

∣
∣
∣
∣
∣
. (4.14)

In light of Assumption 4.1, we, compute the sets Ck by solving the following

problems in plane geometry.

Let ABCD be a rectangle. We attach a Cartesian axes system as shown in Fig. 4.2.

Let the dimensions of the rectangle be d1 and d2, and let r > 0 be fixed.

Definition 4.2 (Type 1 Admissible Path). Let β(x), β(x), x ∈ [0, d2] be functions

such that −π
2
6 β(x) 6 β(x) 6

π
2
. Let Y = (d1, y), Z = (d1, z) be points on the

segment BC with y 6 z. A path Γ is a Type 1 admissible path if it satisfies the

following properties:

1. (Curvature Boundedness): The curvature at any point on Γ is at most r−1,

2. (Containment): Γ intersects the segment BC in exactly one point X = (d1, x)

such that x ∈ [y, z], and it may intersect segment AB and/or segment CD in

at most one point each, and

3. (Terminal Orientation): Γ′ (X) ∈
[
β(x), β(x)

]
.
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(a) Type 1 admissible path.
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α

X
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β(x)β(x)

A B

C
D

ZY

(b) Type 2 admissible path.

Figure 4.2: Setup for Problems 4.4 and 4.5, which is used in the computation of effective
target configuration sets.

A Type 2 admissible path is defined analogously for traversal across adjacent

edges.

Definition 4.3 (Type 2 Admissible Path). Let β(x), β(x), x ∈ [0, d1] be functions

such that −π
2
6 β(x) 6 β(x) 6 π

2
. Let Y = (y, 0), Z = (z, 0) be points on the segment

CD with y 6 z. A path Γ is a Type 2 admissible path if it satisfies the following

properties:

1. (Curvature Boundedness): The curvature at any point on Γ is at most r−1,

2. (Containment): Γ intersects the segment CD in exactly one point X = (x, 0)
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such that x ∈ [y, z], and it may intersect segment AB and/or segment BC in

at most one point each, and

3. (Terminal Orientation): Γ′ (X) + π
2
∈
[
β(x), β(x)

]
.

We state two geometric problems as follows. Let β, β, Y, and Z be as in the

preceding definitions. Let W = (0, w) and r > 0 be fixed.

Problem 4.4 (Traversal across parallel edges). Find bounds α, α such that for all

α ∈ [α, α], there exists a Type 1 admissible path Γ with Γ(0) = W and Γ′ (W ) = α.

Problem 4.5 (Traversal across adjacent edges). Find bounds α, α such that for all

α ∈ [α, α], there exists a Type 2 admissible path Γ with Γ(0) = W and Γ′ (W ) = α.

Problems 4.4 and 4.5 appear in the recursive computation of effective target con-

figurations as follows. Suppose that the effective target configuration set Ck+1 is

known, for k ∈ {1, . . . , H − 1}. Then we may express Ck+1 as the product set of

a line segment on the boundary between cells cell([J ]k+1) and cell([J ]k+2) with an

interval of allowable orientations on this line segment. In other words, we may ex-

press Ck+1 in terms of the points Y, Z and the functions β, β used in Definitions 4.2

and 4.3. We may then solve Problem 4.4 or 4.5, as applicable for the cell cell([J ]k+1),

for each point on the line segment forming the boundary between cells cell([J ]k) and

cell([J ]k+1) and obtain allowable orientations for each point on this line segment.

The product set of these allowable orientations and this line segment is precisely

the set Ck. The effective target configuration sets may thus be computed recur-

sively by repeatedly solving Problems 4.4 and 4.5 as applicable for each cell, with

CH := (cell([J ]H) ∩ cell([J ]H+1))×
[
−π

2
, π
2

]
.

The solutions to Problems 4.4 and 4.5 are discussed Chapter 5 and in Appendix C;

first, we discuss the characterization of the curvature constraints on feasible paths for

different vehicle models.
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4.4 Illustrative Examples

We illustrate the computation of the curvature constraints and of the effective target

sets for three vehicle models: the Dubins car kinematic model, a particle dynami-

cal model with “friction ellipse” type input constraints, and an aircraft point-mass

navigational model.

4.4.1 Dubins Car Model

The Dubins car kinematic model is described by

ẋ(t) = v cos θ(t), ẏ(t) = v sin θ(t), θ̇(t) = u(t),

where x, y, and θ are, respectively, the position coordinates and the orientation of

the vehicle with respect to a pre-specified inertial axes system; v > 0 is the (fixed)

forward speed of the vehicle; and u is the steering control input. The set of admissible

control inputs is U := [−1/r, 1/r], for a pre-specified r > 0.

By (4.14), it follows that

κmax
6 min

t∈[0,tf ]
max
u(t)∈U

∣
∣
∣
∣

u(t)

v(t)

∣
∣
∣
∣
=

∣
∣
∣
∣

1/r

v

∣
∣
∣
∣
= (rv)−1.

For the Dubins car model, the configuration space C and the state space D are identi-

cal, and hence the effective target sets coincide with the effective target configurations

sets.

4.4.2 Particle Dynamical Model

We consider a vehicle dynamical model described by

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t),

θ̇(t) = u2(t), v̇(t) = u1(t),

where v > 0 is the forward speed of the vehicle; u1 is the acceleration input, and u2

is the steering input. The speed v is constrained to lie within pre-specified bounds
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vmin and vmax; these bounds may be different for different regions of the workspace.

The set of admissible control inputs is

U := {(a, ω) :
(
vω

fmax
r

)2

+

(
a

fmax
t

)2

6 1}, (4.15)

where fmax
r and fmax

t are pre-specified. The input constraint defined by (4.15) is an

example of a “friction ellipse” constraint that models the limited tire frictional forces

available for acceleration and steering of the vehicle. Finally, we denote by vmax
j and

vmin
j pre-specified bounds on the vehicle speed inside the cell corresponding to the

vertex j ∈ V .

We may now compute the effective target sets for this vehicle model as follows.

We may assume, as in [151], that the input constraint (4.15) is tightened, as in (4.16)

below, to ensure controllability of the vehicle at all times:

U := {(a, ω) :
(
vω

fmax
r

)2

+

(
a

fmax
t

)2

6 1− ε2}, (4.16)

where ε � 1. The constraint (4.16) implies that acceleration/deceleration of the

vehicle with |v̇| > εfmax
t is always feasible. Also note that for cells involving traversal

across parallel edges, the vehicle traverses at least a distance d.

Let XH := cell([J ]H) ∩ cell([J ]H+1) × [−π, π] × [vH , vH ], where vH := vmax
jH+1

and

vH := vmin
jH+1

, where jk := [J ]k for k ∈ {1, . . . , H + 1}. It follows by the arguments in

the preceding paragraph that upper and lower bounds for the vehicle speed v at each

of the boundaries of adjacent cells in the tile are given by

vk = min{vmax
jk

, vmax
jk+1

,
√

vk+1 + 2εfmax
t d},

vk = max{vmin
jk
, vmin

jk+1
,
√

vk+1 − 2εfmax
t d},

whenever the cell corresponding to jk involves traversal across parallel edges, and by

vk = min{vmax
jk

, vk+1}, vk = min{vmin
jk
, vk+1},

whenever the cell corresponding to jk ∈ V involves traversal across adjacent edges.

The upper bound κmax
k on the curvature of paths traversing the cell corresponding to
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jk ∈ V for k = 1, . . . , H − 1, is, by (4.14),

κmax
k =

fmax
r

√
1− ε2

(max {vk, vk+1})2
. (4.17)

The bound (4.17) on the curvature of feasible paths is conservative because the

bound on the vehicle speed in the denominator does not involve the initial speed v0,

i.e., the maximum reachable speed within each of the cells in the tile may be lower

than max{vk, vk+1}, and may be a less conservative bound on the speed (and conse-

quently, on the curvature). The exact calculation of the maximum reachable speed

involves the (numerically intensive) solution of an optimal control problem; however,

an easily computable, heuristic approximation may be obtained by considering max-

imum acceleration along the longest linear path within the cell (i.e., the diagonal of

length
√
2d). Thus, a less conservative, heuristic bound on the curvature is given by

κmax
k =

fmax
r

√
1− ε2

(min{max{vk, vk+1},
√

v20 + 2
√
2fmax

t d})2
.

4.4.3 Aircraft Navigational Model

We consider a point-mass aircraft navigational model described by

ẋ(t) = v(t) cos γ(t) cosψ(t),

ẏ(t) = v(t) cos γ(t) sinψ(t),

ż(t) = v(t) sin γ(t),

ψ̇(t) = − q(t)CL(t)

mv(t) cos γ(t)
,

v̇(t) =
(
T (t)− q(v(t))CD,0 −KC2

L(t)
)
/m,

γ̇(t) =
1

mv(t)
(q(v(t))CL(t) cosφ(t)−mg cos γ(t)) ,

where x, y, and z denote the inertial position coordinates, v denotes the speed, ψ

denotes the aircraft heading, γ denotes the flight path angle, q(v) := 1
2
ρv2S de-

notes the dynamic pressure, m denotes the mass of the aircraft, and CD,0 and K
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are pre-specified constants. The control inputs are the thrust T ∈ [Tmin, Tmax], the

lift coefficient CL ∈ [CL,min, CL,max], and the bank angle φ ∈ [φmin, φmax], where the

bounds for the admissible control inputs are pre-specified.

We consider the motion of the aircraft in the horizontal plane, i.e., γ(t) = 0 and

γ̇(t) = 0, and to this end we set1

CL(t) = mg/(q(v(t)) cosφ(t)).

We may assume the aircraft’s cruise speed to be a constant vcr. The thrust input is

then given by

T (vcr, φ(t)) = q(vcr)CD,0 −KC2
L

= q(vcr)CD,0 −
K(mg)2

(q(vcr))
2 cos2 φ(t)

.

Alternatively, we may assume a constant thrust input of value T (vcr, 0), and allow

small decreases in the aircraft speed during turning flight. In either case, the upper

bound on the curvature, by (4.14), is given by κmax
k = g tan (min |φmin|, |φmax|)/vcr,

for k = 1, . . . , H − 1.

1We assume CL,min 6
mg
q

6
mg

q cosφmax

6 CL,max, which physically implies that the lift coefficient
can be sufficiently varied to allow the vertical component of the lift to equal the aircraft’s weight at
any bank angle.
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Chapter 5

Curvature-bounded Paths inside

Rectangular Channels: Special Case

In this chapter, we discuss the constructions of the effective target configuration sets

introduced in the previous chapter. These constructions directly lend themselves

to a problem of independent interest, namely, that of determining the existence of

curvature-bounded paths traversing rectangular channels (i.e., a channel consisting

of a sequence of rectangular cells). In what follows, we first introduce this problem

of curvature-bounded traversal of rectangular channels, we discuss its relation to

the construction of effective target configuration sets, and we discuss its solution

by recursively solving Problems 4.4 and 4.5 previously introduced. Finally, we will

outline the solutions of Problems 4.4 and 4.5 themselves. In this chapter, we provide a

computational procedure for solving these problems for the special case of square cells

with the upper bound on the curvature sufficiently small relative to the dimensions of

the square; in Appendix C, we treat the general case of rectangular cells of arbitrary

dimensions with no assumptions on the curvature bound relative to the rectangle

dimensions.

We begin by introducing some terminology that will be used in the rest of this

chapter and in Appendix C. A path between points W and X in the plane is a

continuously differentiable curve Γ := {s 7→ (x(s), y(s)) ∈ R2 : 0 6 s 6 1} such

that W = (x(0), y(0)) and X = (x(1), y(1)). We will denote by Γ(w) the point

(x(w), y(w)) ∈ R2 on the path Γ, and by Γ′ (W ) the angle of the tangent to Γ at the

point W = (x(w), y(w)) for all w ∈ [0, 1], i.e.,

Γ′ (W ) := tan−1

(
dy/ds

dx/ds

)∣
∣
∣
∣
s=w

.
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Also, we will denote by (W,α) the configuration in C specified by the positionW ∈ R2

and the orientation α ∈ [−π, π]. A path between a configuration (W,α) and a point X

is a path Γ between the points W and X satisfying Γ′ (W ) = α. Similarly, a path

between two configurations (W,α) and (X, β) is a path Γ between the points W and

X satisfying Γ′ (W ) = α and Γ′ (X) = β.

Definition 5.1 (Rectangular channel). A rectangular channel R̄C is a finite sequence

of rectangles {Rn}Cn=1, C ∈ N, with disjoint interiors, such that

(i) For each n ∈ {1, . . . , C−1}, exactly one edge of Rn has a non-empty intersection

with exactly one edge of Rn+1, ,

(ii) For all m,n ∈ {1, . . . , C}, the edges of Rn and Rm do not intersect or overlap

whenever m /∈ {n− 1, n, n+ 1}.

Problem 5.2 (Curvature-bounded Traversal of Rectangular Channels). Let R̄C be

a rectangular channel, and let W be a point on any one of the three edges of R1 that

do not intersect R2. Let α ∈ [−Γ,Γ] be a specified angle. For any set of positive real

numbers rn > 0, n = 1, . . . , C, determine if there exists a path Γ such that:

(i) Γ(0) = W and Γ′ (W ) = α,

(ii) The point X := Γ(1) lies on an edge of the rectangle RC (pre-specified from

among the three edges of RC that do not overlap with any edge of RC−1), and

Γ′ (X) lies in a specified set of allowable terminal tangent angles,

(iii) The path Γ does not leave R̄C , i.e. (x(s), y(s)) ∈ ∪Cn=1Rn for every s ∈ [0, 1],

(iv) For each n = 1, . . . , C, the curvature of Γ at any point in rectangle Rn is at

most r−1
n .

Problem 5.2 can be solved using the recursive procedure outlined in Section 4.3,

which we discuss in detail in the next section. In the context of uniform square cell
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Figure 5.1: Shrunken channel within a tile, to incorporate the vehicle’s finite size into the
motion planning algorithm.

decompositions, each tile corresponds to a channel consisting of square cells of equal

dimensions. However, in Problem 5.2, we allow rectangles of arbitrary dimensions for

three main reasons: (1) the problem of curvature-bounded traversal in constrained

environments is of independent interest, and it has been studied in several works in the

literature (cf. [2,14,18,44] and references therein), (2) channels consisting of squares

of different dimensions arise in multi-resolution cell decompositions (as discussed in

Chapter 6), and (3) to incorporate the finite size of vehicles in motion planning,

the traversal of tiles may constrained to allow paths only within a shrunken channel

lying within the original channel (see Fig. 5.1). In this case, the new channel can be

decomposed into rectangles, but not necessarily squares.

5.1 Recursive Constructions of

Effective Target Configuration Sets

We attach a coordinate axes system to each rectangle of R̄C in a manner consistent

with the axes system used in the statement of Problems 4.4 and 4.5 (see Fig. 5.2).

The dimensions of each rectangle along the x and y axes are denoted, respectively, as

dn,1 and dn,2. For example, the axes system attached to the rectangle R3 in Fig. 5.2

has its origin at the point U3, with the positive x-axis along the segment U3Y3, and

the positive y-axis along the segment U3V3. We denote the length of the rectangle Rn

(dimension along the local x-axis) by dn,1 and the height of the rectangle (dimension

along the local y-axis) by dn,2. We may identify rigid geometric transformations
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(b) Illustrative example for the proposed algorithm.

Figure 5.2: Supporting figures for Section 5.1.

(i.e., a sequence of rotations and reflections) that align the entry and exit segments

of Rn to the segments AD and BC, respectively, for traversal across parallel edges,

or to the segments AD and CD, respectively, for traversal across adjacent edges. We

will denote by %n the minimum number of reflections involved in the transformation

associated with the rectangle Rn.

For each rectangle Rn, n = 2, 3, . . . , C−1, we refer to the segments formed by the

intersections Rn−1 ∩Rn and Rn ∩Rn+1, respectively, as the entry and exit segments .

For the rectangle R1 (resp. rectangle RC), the entry segment (resp. exit segment) is

specified arbitrarily; however, the entry segment of R1 (resp. exit segment RC) must

lie on an edge of R1 (resp. RC distinct from the edge intersecting R2 (resp. Rn−1).

We denote the endpoints of the entry segment by Un and Vn, and the endpoints of

the exit segment by Yn and Zn. We specify the coordinates of the points Un, Vn, Yn,

Zn, by the corresponding lower case letters, i.e., Vn = (0, vn), etc.

Recall from Section 4.3 that the effective target configuration sets are the product

sets of line segments on the boundaries between successive cells with intervals of

allowable orientations. In the context of the terminology introduced in this chapter,

the effective target configuration sets are the product sets of segments lying on the

exit segments of each rectangle with intervals of allowable orientations. We outline

in what follows the computation of the upper and lower bounds of these intervals.
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Recursive Computations of Effective Target Configuration Sets

Input: Rectangular channel R̄C , Output: αn, αn, for each n ∈ {1, . . . , C}
1: αC+1(q)← π

2
and αC+1(q)← −π

2
,

for all q ∈ [0, dC,2] if RC involves traversal across parallel edges, or otherwise,

for all q ∈ [0, dC,1] if RC involves traversal across adjacent edges.

2: %C+1 ← 0

3: for n = C,C − 1, . . . , 1 do

4: if %n + %n−1 is odd then

5: β
n
(q)← −αn+1 (yn − (p− vn+1)), for all p ∈ [un+1, vn+1], q ∈ [yn, zn]

6: βn(q)← −αn+1 (yn − (p− vn+1)), for all p ∈ [un+1, vn+1], q ∈ [yn, zn]

7: else

8: β
n
(q)← αn+1(p), for all p ∈ [un+1, vn+1], q ∈ [yn, zn]

9: βn(q)← αn+1(p), for all p ∈ [un+1, vn+1], q ∈ [yn, zn]

10: Find the values of αn(q) and αn(q) for all q ∈ [un, vn] by solving Problem 4.4

or Problem 4.5 for rectangle Rn−1, as applicable.

Figure 5.3: Pseudo-code of the recursive procedure for computing the effective target

configuration sets.

For every point Q = (q, 0) (or Q = (dn,1, q), as applicable), on the segment

YnZn, n = 1, . . . , C, we denote by β
n
(q) and βn(q), respectively, the lower and upper

bounds of the allowable terminal orientations for q ∈ [yn, zn]. Similarly, for every

point P = (0, p) on the segment UnVn, n = 1, . . . , C, we denote by αn(p) and αn(p),

respectively, the lower and upper bounds resulting from the solution of Problem 4.4

(or Problem 4.5, as applicable), for p ∈ [un, vn]. Note that [αn(p), αn(p)] is the

interval of allowable orientations at point P in the effective target configuration set

of the rectangle Rn−1. The angles αn(·), αn(·), βn
(·), and βn(·) are all measured with

respect tothe local coordinate axes system attached to Rn.

The recursive algorithm for constructing the effective target configuration sets, i.e.,

for computing the bounds on the intervals of allowable orientations at the boundaries

of successive cells, is provided in Fig. 5.3. To better explain the notation introduced
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in this section and the algorithm described in Fig. 5.3, we illustrate the execution of

this algorithm using an example.

5.1.1 Illustrative Example

Let R̄4 = {Rn}4n=1 be a rectangular channel with four rectangles, as shown in

Fig. 5.2(b), and let rn > 0, n = 1, . . . , 4, be given. The points Un, Vn, n = 1, . . . , 4

and the points Y4, Z4 are shown in Fig. 5.2(b). We note that Y1 = U2, Z1 = V2,

Y2 = V3, Z2 = U3, Y3 = V4, and Z3 = U4. Given a prescribed initial entry point W on

the segment U1V1 and given a prescribed initial tangent angle α ∈
[
−π

2
, π
2

]
, we wish

to determine if there exists a path satisfying the conditions described in Problem 5.2.

Following the algorithm stated above, we note that the last rectangle in the chan-

nel, i.e., R4, involves traversal across parallel edges, and by Line 1, we initialize α5

and α5 as

α5(q) =
π

2
, α5(q) = −

π

2
, q ∈ [0, d4,2] .

Next, we note that the entry and exit segments of rectangle R4 are aligned, re-

spectively, with segments AD and BC of Fig. 4.2. Thus, the number of reflections

%4 occurring in the transformation required for R4 is zero, and by the condition in

Line 4, we set

β4 = α5 =
π

2
, β

4
= α5 = −

π

2
.

Next, by Line 10, we solve Problem 4.4 for each point Q = (0, q), q ∈ [0, d4,2] on

the segment U4V4, and we obtain the values taken by the functions α4(q) and α4(q).

Repeating Lines 4-9 for n = C − 1 = 3, we first note that tectangle R3 involves

traversal across adjacent edges, and the entry and exit segments of R3 may be aligned

with segments AD and DC of Fig 4.2 after a reflection about an axis parallel to the

segment U4V4, followed by a rotation through π
2
rad. Thus, %3 = 1, and %3 + %4 =
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1 + 0 = 1, and by the condition in Line 4, we set

β3(q) = −α4(y3 − (q − v4)),

β
3
(q) = −α4(z3 − (q − u4)), q ∈ [y3, z3],

where z3 = d3,1, y3 = ` (U3V4), v4 = d4,2, and u4 = 0 (see Fig. 5.2(b)). By Line 10,

we solve Problem 4.5 for each point P = (0, p), p ∈ [0, d3,2] on the segment U3V3

to obtain values taken by the functions α3(p) and α3(p). Proceeding further in a

similar manner, we may obtain the values taken by the functions α2(q), α2(q), for all

q ∈ [0, d2,2] and by the functions α1(q), α1(q), for all q ∈ [0, d1,2].

Let the prescribed entry point W have coordinates (0, w) in the coordinate axes

attached to R1. Then we conclude that there exists a path satisfying the requirements

stated in Problem 5.2 if the prescribed initial tangent angle α satisfies

α ∈ [α1(w), α1(w)] .

In light of the recursive analysis described in Fig. 5.3, we may now concentrate on

the solutions of Problems 4.4 and 4.5, as discussed in the next section.

5.2 Analysis of Traversal of a Single Rectangle

Recall from Section 4.3 that Problem 4.4 (resp. Problem 4.5) concerns finding lower

and upper bounds α and α such that, if α ∈ [α, α], then there exists a Type 1 (resp.

Type 2) admissible path Γ with Γ(0) = W and Γ′ (W ) = α. We adopt a constructive

approach to the solution of these problems, i.e., for every point X = (d1, x) on the exit

segment Y Z, we construct Type 1 admissible paths Υx and Λx between the points

W and X satisfying the following properties:

(P1) Λ′
x (W ) 6 Υ′

x (W ),

(P2) For every α ∈ [Λ′
x (W ) ,Υ′

x (W )], there exists a Type 1 admissible path from W

to X with tangent angle α at W ,
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(P3) The tangent angles Υ′
x (W ) and Λ′

x (W ) vary continuously with x,

(P4) There exists no other Type 1 admissible path Γ from W to X which satisfies

(P1), (P2), and (P3) such that Γ′ (W ) > Υ′
x (W ) ,

(P5) There exists no other Type 1 admissible path Γ from W to X which satisfies

(P1), (P2), and (P3) such that Γ′ (W ) < Λ′
x (W ).

The following result enables the solution of Problems 4.4 and 4.5 using the con-

structions of Λx and Υx.

Theorem 5.3. Suppose there exists a closed interval I ⊂ [y, z] such that Type 1 ad-

missible paths (respectively, Type 2 admissible paths) Υx and Λx satisfying properties

(P1)-(P5) exist for each x ∈ I. Then α and α defined by

α := min
x∈I
{Λ′

x (W )} , α := max
x∈I
{Υ′

x (W )} , (5.1)

solve Problem 4.4 (respectively, Problem 4.5).

Proof. The numbers α and α are well-defined by (5.1) because I is closed and

bounded, and because Λ′
x (W ), Υ′

x (W ) are continuous in x by (P3). We claim

that for every α ∈ [α, α], there exists xα ∈ I such that α ∈
[
Λ′

xα
(W ) ,Υ′

xα
(W )

]
.

To see this, note that otherwise, for any x ∈ I, either α < Λ′
x (W ) 6 Υ′

x (W ) or

α > Υ′
x (W ) > Λ′

x (W ). Since α ∈ [α, α], neither of these two conditions can exclu-

sively hold for all x ∈ I, and, in particular, there exists x̃ ∈ I where the first condition

α < Λ′
x (W ) switches at x̃ either from true to false or vice versa. By continuity of

Λ′
x (W ) in x, it follows that α = Λ′

x̃ (W ) 6 Υ′
x (W ), which contradicts the second

condition α > Υ′
x̃ (W ).

Now it follows by (P2) that there exists a Type 1 admissible path (respectively,

Type 2 admissible path) Γ between W and X = (d1, xα) such that Γ′ (W ) = α. Thus

α and α solve Problem 4.4 (respectively, Problem 4.5).
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Computation of Υ′
x (W ) for Problem 4.4

1: α∗(w)← cos−1

(

1− d− w
r

)

2: n2 ← w +
√

r2 − (r sin (α∗(w))− d)2 − r cos (α∗(w))

3: Compute γ∗(x), for all x ∈ [y, n2], as the solution in
[
−π

2
, π
2

]
to

(x− w) cos (γ∗(x))− d sin (γ∗(x)) = (d2 + (x− w)2)/2r

4: if γ∗(x) < β(x) then

5: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

(

cos β(x) +
x− w
r

)

cos (Υ′
x (W )) +

(

sin β(x)− d

r

)

sin (Υ′
x (W ))

+
x− w
r

cos β(x)− d

r
sin β(x) +

d2 + (x− w)2
2r2

= 1

6: if β(x) 6 γ∗(x) < β(x) then

7: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

−(x− w) cos (Υ′
x (W )) + d sin (Υ′

x (W )) = (d2 + (x− w)2)/2r

8: if β(x) < γ∗(x) then

9: There exists no Type 1 admissible path between W and X , in particular, Υx

does not exist

Figure 5.4: Computation of Υ′
x (W ) for the problem of traversal across parallel edges.

The underlying constructions of the paths Υx are provided in Appendix C.

In Appendix C, we discuss the details of constructions of the paths Λx and Υx.

Here we provide computational procedures based on these constructions for deter-

mining the tangent angles Λ′
x (W ) and Υ′

x (W ). In particular, Fig. 5.4 shows the

computation of Υ′
x (W ) for the problem of traversal across parallel edges (i.e., Prob-

lem 4.4); Fig. 5.5 shows the computation of Υ′
x (W ) for traversal across adjacent

edges (i.e., Problem 4.4); and Fig. 5.6 shows the computation of Λ′
x (W ) for traversal

across adjacent edges. Note that the computation of Λ′
x (W ) for traversal across par-

allel edges may be performed using the procedure shown in Fig. 5.4 after a reflection
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Computation of Υ′
x (W ) for Problem 4.5

1: Compute γ∗(x), for all x ∈ [y, z] as the solution in
[
−π

2
, π
2

]
to

x cos (γ∗(x))− w sin (γ∗(x)) = w2 + x2/2r

2: if γ∗(x) < β(x) then

3: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

(

sin β(x)− w

r

)

cos (Υ′
x (W )) +

(

− cos β(x)− x

r

)

sin (Υ′
x (W ))

+
x

r
cos β(x)− w

r
sin β(x) +

w2 + x2

2r2
= 1

4: if β(x) 6 γ∗(x) < β(x) then

5: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

w cos (γ∗(x)) + x sin (γ∗(x)) = w2 + x2/2r

6: if β(x) < γ∗(x) then

7: There exists no Type 2 admissible path between W and X , in particular, Υx

does not exist

Figure 5.5: Computation of Υ′
x (W ) for the problem of traversal across parallel edges.

The underlying constructions of the paths Υx are provided in Appendix C.

about the horizontal, i.e., by replacing w with d−w, β(x) with −β(d−x), β(x) with

−β(d− x), and by reversing the sign of the result.

For the sake of simplicity, the procedures in Figs. 5.4–5.6 apply to the special case

where each cell in the channel is a square, and all squares of the same dimension

d. Additionally, the minimum radius of turn r is assumed to satisfy r > d; in

Appendix C, we remove both these restrictions.
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Computation of Λ′
x (W ) for Problem 4.5

1: n1 ← r −
√
r2 − w2

2: Compute γ∗(x), for all x ∈ [n1, z], as the solution in
[
−π

2
, π
2

]
to

−x cos (γ∗(x)) + w sin (γ∗(x)) = w2 + x2/2r

3: if β(x) < γ∗(x) then

4: Λ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

(

sin β(x)− w

r

)

cos (Λ′
x (W )) +

(

− cos β(x)− x

r

)

sin (Λ′
x (W ))

+
x

r
cos β(x)− w

r
sin β(x) +

w2 + x2

2r2
= 1

5: if β(x) 6 γ∗(x) < β(x) then

6: Λ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

−w cos (γ∗(x))− x sin (γ∗(x)) = w2 + x2/2r

7: if γ∗(x) < β(x) then

8: There exists no Type 2 admissible path between W and X , in particular, Λx

does not exist

Figure 5.6: Computation of Λ′
x (W ) for the problem of traversal across parallel edges. The

underlying constructions of the paths Λx are provided in Appendix C.
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Chapter 6

Multi-resolution Path- and Motion Planning

In this chapter, we consider multi-resolution planar cell decompositions such that

the environment is represented with high accuracy (i.e., with small cell sizes) in the

agent’s immediate vicinity, and with lower accuracy in regions farther away. This

approach relates to two perspectives on the practical implementations of path plan-

ning: firstly, this approach relates to the problem of appropriately approximating

large environment maps to enable efficient online computation. To this end, the pro-

posed multi-resolution cell decomposition significantly reduces the number of vertices

in the cell decomposition graph. On the other hand, this approach also relates to the

problem of uncertainty or partial knowledge about the environment in regions farther

away from the vehicle’s location. To this end, the proposed path planning scheme

requires accurate environment information only locally.

In light of the prevalence of the wavelet transform in signal processing applications

for autonomous navigation, as discussed in Chapter 1, we develop in the next sec-

tion a multi-resolution cell decomposition scheme based on the 2-D discrete wavelet

transform.

6.1 Multi-resolution Cell Decompositions using

the Discrete Wavelet Transform

We define an image as a pair (R,F ), where R ⊂ R2 is a compact, square region, and

L2(R) 3 F : R → R is an intensity map. We will assume that R =
[
0, 2D

]
×
[
0, 2D

]
,

with D ∈ Z, and that the image intensity map F is known at a finite resolution

mf > −D, i.e., the function F is piecewise constant over each of the square regions

Smf ,k,`, for k, ` = 0, 1, . . . , 2D+mf − 1. In what follows, we will assume, without

loss of generality, mf = 0. In the context of path planning, the intensity map F
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may represent, for instance, the terrain elevation [114], a risk measure [147], or a

probabilistic occupancy grid [41, 163] representing the environment.

In what follows, we will assume that the smallest cell size of interest is 2−mf = 1.

We define a cell decomposition C consisting of uniformly spaced square cells of size 1:

C := {Smf ,k,` : k, ` ∈ {0, 1, . . . , 2D − 1}}.

The intention of the geometric path planner is to find a path in the graph associated

with C. Note that the number of cells in C is 22D, which makes the graph search im-

practical when D is large. In the context of using multi-resolution cell decompositions

to approximate large environment maps for enabling efficient online computation, the

multi-resolution cell decomposition graph consists of significantly fewer vertices, thus

requiring lesser computational resources for path planning at each iteration. On the

other hand, in the context of availability of only partial information about the en-

vironment, the intensities of all cells in C may not be known accurately due to the

vehicle’s sensing limitations. In this context, the multi-resolution cell decomposi-

tion scheme discussed below may be considered as a model of the vehicle’s partial

knowledge about the environment.

Let am0,k,` and d
p
m,k,` be the 2-D discrete wavelet transform (dwt) coefficients of

the function F , where m0 ∈ Z is pre-specified. Let A be a set of triplets of integers,

and let d̂pm,k,` be defined as

d̂pm,k,` :=







dpm,k,` p = 1, 2, 3, and (m, k, `) ∈ A,

0 otherwise.

Then the image (R, F̂ ), where F̂ is obtained by the reconstruction (i.e., the inverse

dwt) of am0,k,` and d̂
p
m,k,` is called the approximation of (R,F ) associated with the

set A. Informally, an approximation is obtained by ignoring certain detail coefficients

in the reconstruction of the wavelet transform of F ; the set A contains the indices of

detail coefficients that are “significant” for the approximation (R, F̂ ).
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(a) Original image (b) Approximation

Figure 6.1: Example of an image and its approximation

The cell decomposition Cmr associated with (R, F̂ ) is a partition of R into square

cells of different sizes such that F̂ is constant over each of the cells. For example,

Fig. 6.1(a) shows the intensity map of an image of dimension 16 units, i.e. D = 4.

Figure 6.1(b) shows the intensity map of its approximation associated with m0 = −2,

and the following set of significant detail coefficients:

A = {(−2, 0, 2), (−2, 3, 2), (−1, 3, 4), (−1, 4, 2), (−1, 4, 3), (−1, 5, 2), (−1, 6, 5)}. (6.1)

In Section 6.1.1, we describe a procedure to determine the locations, the sizes, and the

values of F̂ over each of the cells in Cmr. First, we discuss a specific approximation that

is of interest in this thesis, namely, an approximation that retains detail coefficients

only in the immediate vicinity of the vehicle’s current position and gradually discards

them in regions farther away.

Let (x0, y0) ∈ R be the location of the vehicle, and let % : Z → N be a “window”

function that specifies, for each level of resolution, the distance from the vehicle’s

location up to which the detail coefficients at that level are significant. The set A of

significant detail coefficients is then defined by

A :=
{
dpm,k,` : m0 6 m < 0, p = 1, 2, 3, (6.2)

b2mx0c − %(m) 6 k 6 b2mx0c+ %(m), b2my0c − %(m) 6 ` 6 b2my0c+ %(m)} ,
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(a) Original image (b) Approximation

Figure 6.2: Example of an image and its approximation using the approximation scheme
in (6.2).

where m0 ∈ N is pre-specified. An example of an image and its approximation using

(6.2) is shown in Fig. 6.2. In this example, m0 = −10, and (x0, y0) = (390, 449). The

window function % was chosen as the constant function %(m) = 4 for eachm0 6 m < 0.

6.1.1 Computing Cell Locations and Intensities

In this thesis, we use the Haar family of scaling function and wavelet. The Haar

scaling function satisfies the following dilation equation [121, Sec. 2.3.2]:

φ(t) = φ(2t) + φ(2t− 1). (6.3)

The dilation equation (6.3) implies that the support of the function φm,k is exactly

equal to the union of the supports of the functions φm+1,k and φm+1,k−1. For the 2-D

case, (6.3) implies that the square support of Φm,k,` is exactly the union of the supports

of Φm+1,k,`, Φm+1,k−1,`, Φm+1,k,`−1, and Φm+1,k−1,`−1. Consequently, an intensity map

F is constant over the support of Φm,k,` if and only if the detail coefficients of F at

level m and at higher-resolution levels m+ 1, m+ 2, . . . are all zero.

The Haar scaling function and wavelet have compact support; furthermore, the
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translations of the wavelet and scaling functions are orthogonal to each other. There-

fore, one may associate the detail coefficients with specific regions in R2, such that the

values of those coefficients affect the values of the intensity map only in that region.

More precisely, we make the following association:

dpm,k,` ↔ Sm,k,` =
[
2−mk, 2−m(k + 1)

]
×
[
2−m`, 2−m(`+ 1)

]
, (6.4)

for each m0 6 m < 0, where m0 ∈ Z is pre-specified.

Based on the preceding observations, we present the following Rules to determine

the locations and the sizes of cells in the cell decomposition Cmr associated with a

given set A of significant detail coefficients, with m0 ∈ Z pre-specified.

1) {Sm0,k̂, ˆ̀
: 0 6 k̂, ˆ̀< 2D+m0} ∈ Cmr. If A is empty, then these cells form a uniform

grid where each cell is a square of size 2−m0 .

2) {Sm+1,k̂, ˆ̀ : k̂ ∈ {2k, 2k + 1}, ˆ̀∈ {2`, 2`+ 1}} ∈ Cmr whenever (m, k, `) ∈ A. This

Rule is a consequence of the fact that the support of the Haar scaling function at

a given level is equal to the union of the four supports of the scaling functions at

the next higher resolution level.

3) {Sm̂+1,k̂, ˆ̀ : k̂ ∈ {b2m̂−mkc − 1, b2m̂−mkc}, ˆ̀ ∈ {b2m̂−m`c − 1, b2m̂−m`c}, m0 6

m̂ < m} ∈ Cmr, whenever (m, k, `) ∈ A. This Rule decomposes into squares non-

convex regions that arise when a detail coefficient at the level m is in A, but detail

coefficients at all levels lower than m associated with the same region (where the

region of association is given by (6.4)) are not in A.

4) {Sm̂,k̂, ˆ̀ : k̂ = b2m̂−mkc, ˆ̀ = b2m̂−m`c, m0 6 m̂ 6 m} /∈ Cmr, whenever (m, k, `) ∈

A. This Rule indicates that a cell Sm,k,`, once decomposed, cannot belong to Cmr.

Note that some cells prescribed for inclusion in Cmr by Rule 3), are also prescribed

for exclusion from Cmr by Rule 4). Furthermore, some cells are prescribed for inclusion
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(a) Rule 2) applied to level 2 coef-
ficients, along with Rule 1)

(b) Rule 2) applied to level 1 co-
efficients

Figure 6.3: Illustration of application of the Rules used to extract cell locations and
dimensions from the wavelet coefficients.

(a) Rule 3) applied to level 1 coef-
ficients

(b) Resultant cell decomposition

Figure 6.4: Illustration of application of the Rules used to extract cell locations and
dimensions from the wavelet coefficients.

in Cmr by both Rule 2) and Rule 3). The implementation of the above Rules for

determining the elements of Cmr must therefore resolve the conflict between Rules 3)

and 4) and the possible redundancy. In particular, exclusions from Cmr prescribed by

Rule 4) take precedence over inclusions prescribed by Rule 3); and the redundancy

between Rules 2) and 3) may be avoided by checking for non-zero coefficients at lower

resolutions levels associated with the same region, as given by the association (6.4).

Figures 6.3 and 6.4 illustrate the application of the preceding Rules for the ap-

proximation defined in (6.1). Figure 6.3(a) shows the grid due to the approximation
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coefficients alone, and the cells due to the non-zero coefficients at the coarsest level,

i.e., m = 2. The shaded cells in Fig. 6.3(b) illustrate the non-convex regions that

may arise due to non-zero coefficients at finer levels, which need to be decomposed

using Rule 3). The shaded cells in Fig. 6.4(a) are those which arise twice: due to

Rule 2) for level m = 2 coefficients and due to Rule 3) for level m = 3 coefficients.

Figure 6.4(b) shows the final cell decomposition, which may be compared with the

actual reconstructed approximate image in Fig. 6.1(b).

Remark 6.1. After determining the elements of the cell decomposition Cmr(n), i.e.,

the locations and sizes of each cell in Cmr(n), the adjacency relations between cells

can be determined by geometric arguments (cf. Ref. [69]).

To calculate the cell intensities, we use recursively the following relations:

F̂ (Sm0,k,`) = 2m0am0,k,`, 0 6 k, ` < 2D+m0 , (6.5)











F̂ (Sm+1,2k,2`)

F̂ (Sm+1,2k+1,2`)

F̂ (Sm+1,2k,2`+1)

F̂ (Sm+1,2k+1,2`+1)












= 2m0












1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1























2−mF̂ (Sm,k,`)

d1m,k,`

d2m,k,`

d3m,k,`












, (6.6)

for 0 6 k, ` < 2D+m. In particular, (6.5) provides directly the intensities of cells

arising due to Rule 1). The intensities of the cells arising by the application of Rule 2)

for a triplet (m, k, `) ∈ A are given by (6.6). The intensities of cells arising by the

application of Rule 3) for a triplet (m, k, `) ∈ A, are each equal to F (Sm1,k1,`1), where

(m1, k1, `1) ∈ A is the triplet with the greatest m1 < m satisfying Sm,k,` ⊂ Sm1,k1,`1. If

no such triplet exists, then the intensities of these cells are each equal to F (Sm0,k1,`1),

where k1, `1 are the unique indices satisfying Sm,k,` ⊂ Sm0,k1,`1.

Figure 6.5 shows another example of an image (with D = 5) and its approxima-

tion, with the cell decomposition superimposed for comparison. The approximation
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(a) Original image (b) Approximation

Figure 6.5: Example of multi-resolution decomposition using the approximation (6.7).

corresponds to the following set of significant detail coefficients, with m0 = −4:

A = {(−4, 0, 1), (−3, 1, 2), (−2, 2, 4), (−2, 2, 5),

(−2, 3, 5), (−1, 7, 11), (−1, 8, 11)}. (6.7)

Note that, in the “fourth quadrant” region {(x, y) ∈ R2 : 16 6 x < 32, 16 6 y < 32},

only one detail coefficient, namely, (−1, 8, 11) is significant; the cells in the fourth

quadrant shown in Fig. 6.5(b) arise due to Rule 3) previously discussed.

We reiterate the fact that all information needed to define completely the cell

decomposition Cmr – namely, the locations, the sizes, and the intensities of all cells –

is encoded in the set A of significant detail coefficients, and that it is straightforward

to extract this information from the set A. Furthermore, the expression (6.2) lends

itself to a fast update of the set A in accordance with changes in the vehicle’s position

in the environment. In the next section, we discuss a path planning scheme based

on the multi-resolution cell decompositions discussed in this section. In the context

of this path planning scheme, we also discuss the incremental computation of the set

A (i.e., the efficient recomputation of the set A) and the associated multi-resolution

cell decomposition graph in accordance with the vehicle’s motion.
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6.2 Multi-resolution Path Planning

We denote by Ḡ = (V̄ , Ē) the graph associated with the cell decomposition C, i.e.,

each cell in C corresponds to a unique vertex in V̄ . Two vertices are adjacent if the

corresponding cells are geometrically adjacent, and Ē is the collection of all ordered

pairs (̄i, j̄) of vertices in V̄ , such that ī and j̄ are adjacent. In what follows, symbols

denoting vertices, paths, or functions associated with C or Ḡ will be distinguished by

an overline. We introduce an edge cost function ḡ : Ē → R+, which assigns to each

edge of Ḡ a non-negative cost of transitioning this edge.

For given initial and terminal vertices īS, īG ∈ V̄ , an admissible path π̄(̄iS, īG) in Ḡ

is a finite sequence (̄i0, . . . , īP̄ ) of vertices (with no repetition) such that {̄ik−1, īk} ∈ Ē

for each k = 1, . . . , P , with ī0 = īS and īP = īG. For brevity, and when there is no

ambiguity, we will henceforth suppress the arguments in π̄. The cost J̄ (π̄) of an

admissible path π̄ in Ḡ is the sum of costs of edges in π̄, and the path planning

problem is to find an admissible path π̄∗(̄iS, īG) with minimum cost.

Next, we associate with the multi-resolution cell decomposition C
mr a graph G =

(V,E) such that each vertex in V corresponds to a unique cell in Cmr. Note that

each vertex j ∈ V also corresponds to a set W (j, V ) ⊂ V̄ such that the collection

{W (j, V )}j∈V is a partition of V̄ . Specifically, the set W (j, V ) is defined by

W (j, V ) :=
{
j̄ ∈ V̄ : cell(j̄;C) ⊆ cell(j;Cmr)

}
.

The multi-resolution cell decomposition graph G approximates the graph Ḡ by repre-

senting each set of vertices W (j, V ) ⊂ V̄ with a single vertex j ∈ V . For the Haar

wavelet, it can be shown that for each j ∈ V ,

F̂ (cell(j;Cmr)) =
1

|W (j, V )|
∑

j̄∈W (j,V )

F (cell(j̄;C)). (6.8)

Finally, two vertices i, j ∈ V are said to be adjacent in G, i.e., (i, j) ∈ E, if and only

if there exist ī ∈ W (i, V ) and j̄ ∈ W (j, V ) such that {̄i, j̄} ∈ Ē. We will denote by
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cell(j;Cmr) the cell in C
mr associated with the vertex j ∈ V , and by vert(S;G) the

vertex in G associated with the cell S ∈ Cmr.

6.2.1 Path Planning Scheme

In this section, we present a scheme to find an admissible path π̄ in Ḡ by repeatedly

constructing multi-resolution cell decompositions and finding paths in these multi-

resolution cell decompositions. This path planning scheme is a modification of the

multi-resolution path planning scheme presented in [147]: these modifications ensure

that the proposed path planning scheme is complete.

We assume that F (cell(j̄;C)) ∈ [0, 1] for each j̄ ∈ V̄ , such that more favorable

cells in the environment have a lower intensity, and such that cell(j̄;C) represents an

insurmountable obstacle if F (cell(j̄;C)) > 1− ε, for some pre-specified ε ∈ (0, 1). We

define the transition cost of an edge (̄i, j̄) ∈ Ē by

ḡ((̄i, j̄)) :=







λ1F (cell(j̄;C)) + λ2, F (cell(j̄;C)) 6 1− ε,

M, otherwise,
(6.9)

where λ1, λ2 ∈ (0, 1] and M � 2|V̄ | are pre-specified constants.

We denote by F̂n the approximation of the environment constructed at iteration n

of the proposed algorithm, by A(n) the associated set of detail coefficients, by Cmr(n)

the associated multi-resolution cell decomposition, and by G(n) = (V (n), E(n)) the

associated topological graph. We define the goal vertex iG,n ∈ V (n) as the unique

vertex that satisfies īG ∈ W (iG,n, V (n)).

For each vertex j̄ ∈ V̄ , the proposed algorithm maintains an estimate KG(j̄) of

the least cost of any path in Ḡ from the vertex j̄ to the goal vertex īG, and a record

KS(j̄) of the least cost of any path in Ḡ from the initial vertex īS to the vertex

j̄. The algorithm also associates with each vertex j̄ ∈ V̄ another vertex b(j̄) ∈ V̄

called the backpointer of j̄. At each iteration, the algorithm performs a computation

(specifically, in Line 18 or Line 20 of procedure Main in Fig. 6.6) whose result is a
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unique vertex in V̄ . We refer to this computation as a visit to this vertex, and we

denote by j̄n the vertex visited by the algorithm at iteration n, with j̄0 := īS. Let

jn := vert(cell(j̄n;C
mr(n));G(n)), i.e., jn is the vertex in V (n) corresponding to the

cell represented by the vertex j̄n ∈ V̄ .

An admissible path πn(jn, iG,n) is a finite sequence (i0, . . . , iP (n)) of vertices (with

no repetition) in V (n) that does not include the backpointer of j̄n and does not include

vertices in V (n) corresponding to cells in the path from īS to j̄n, i.e.,

ip 6= vert(cell(b(j̄n);C
mr(n));G(n)), ip 6= jq, p ∈ {0, . . . , P (n)},

where jq ∈ V (n) is the unique vertex satisfying j̄q ∈ W (jq, V (n)), for each q =

0, . . . , n− 1. Note that this definition precludes cycles in the path in G(n) obtained

by the concatenation of the path (j0, . . . , jn−1) with πn. We introduce an edge cost

function gn : E(n) → R+, which assigns to each edge of G(n) a non-negative cost of

transitioning this edge, defined by

gn((i, j)) :=







(

λ1F̂ (cell(j;C
mr(n))) + λ2

)

|W (j, V (n))|, F̂ (cell(j;Cmr(n))) 6 1− ε,

M, otherwise.
(6.10)

The cost J (πn) of the path πn(jn, iG,n) is the sum of the costs of edges in the path.

Note that, by (6.8) and (6.10), the cost of an obstacle-free path in G(n) is less than or

equal to 2|V̄ |, and hence a path πn in G(n) is obstacle-free if and only if J (πn) < M.

The proposed path planning algorithm associates with each vertex j̄ ∈ V̄ a binary

value Visited(j̄) that records whether the vertex j̄ has previously been visited by

the algorithm. That is, at any iteration of the algorithm’s execution and for any

j̄ ∈ V̄ , Visited(j̄) = 0 indicates that the algorithm has never visited j̄ in any

previous iteration, whereas Visited(j̄) = 1 indicates that the algorithm has visited j̄

at least once during a previous iteration. The algorithm also maintains a cumulative

cost J̄ (π̄) of the path π̄(̄iS, j̄n) in Ḡ. The proposed multi-resolution path planning

algorithm is described by the pseudo-code in Fig. 6.6. Here x(j̄) and y(j̄) denote,

respectively, the x and y coordinates of the center of the cell cell(j̄; Ḡ).
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Multi-resolution Path Planning Scheme

procedure MR-Approx(j̄)

1: A ←
{

dpm,k,` : m0 6 m < 0, p = 1, 2, 3,

b2mx(j̄)c − %(m) 6 k 6 b2mx(j̄)c + %(m),

b2my(j̄)c − %(m) 6 ` 6 b2my(j̄)c + %(m)
}

.

procedure Main

1: π̄ ← īS, j̄0 ← īS, n← 0, reachedGoal← 0, J̄ (π̄)← 0

2: For each j̄ ∈ V̄ , Visited(j̄)← 0

3: while !reachedGoal and J̄ (π̄) < M and KG(j̄n) < M do

4: b(j̄n)← j̄n−1

5: A(n)← MR-Approx(j̄n),

6: G(n)← MR-Graph(A(n))
7: if Visited(j̄n) = 1 then

8: π∗
n = (i0, . . . , iP (n)) ← argmin {J (π) : π obstacle-free in G(n)}, subject to

J (π∗
n) > KG(j̄n)

9: J̄ (π̄)← KS(j̄n)

10: else

11: π∗
n ← argmin {J (π) : π obstacle-free in G(n)}

12: KS(j̄n)← J̄ (π̄)
13: Visited(j̄n)← 1

14: if π∗
n does not exist then

15: if j̄n = īS then

16: Report failure

17: else

18: j̄n+1 ← b(j̄n)

19: else

20: j̄n+1 ← vert(cell(i1;G(n)); Ḡ)
21: KG(j̄n)← J (π∗

n)

22: reachedGoal← (KG(j̄n) = 0),

23: π̄ ← (π̄, j̄n)

24: J̄ (π̄)← J̄ (π̄) + ḡ(j̄n, j̄n+1)

25: n← n+ 1

26: if J̄ (π̄) >M or KG(j̄n) >M then

27: Report failure

Figure 6.6: Pseudo-code for the proposed multi-resolution path planning algorithm.
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Before proving the completeness of the proposed algorithm, we make some com-

ments regarding its execution.

Remark 6.2 (Provision of back-tracking). The preceding algorithm differs from the

path planning algorithm of [147] in that we explicitly allow the algorithm to “back-

track”, i.e., re-visit previously visited vertices, whereas in [147], visited vertices are

removed from the set V (n) before finding a path in G(n).

Remark 6.3. The constrained optimization problem in Line 8 can be solved by an

algorithm that finds the k shortest paths in a graph. Such algorithms have been

reported, for instance, in [58]. We implicitly assume that the k shortest paths will

be of strictly increasing costs. This assumption is not required for the algorithm’s

successful execution, but it enables a concise statement of the algorithm.

Remark 6.4 (Cost of back-tracking). Due to Line 9, the cost of “back-tracking” is

not added to the cumulative cost J̄ (π̄). Also, it follows from (6.10) and Line 21 that

KG(j̄) = 0 if and only if j̄ = īG.

Remark 6.5 (Choice of window size). The procedure MR-Approx in Fig. 6.6 and

the procedure Mod-MR-Approx discussed in Section 6.2.3 assume that the window

function % is time-invariant, i.e., it does not change over the duration of the execution

of the entire algorithm. However, this restriction is easy to remove, and it does not

affect the completeness of the proposed algorithm. The window function may be

required to change values to model, perhaps, a less accurate or a more accurate map

of the environment, or to allow more space for recovery from cul-de-sacs at higher

vehicle speeds and/or large minimum turning radii.

Notice that the algorithm in Fig. 6.6 execution at each iteration the procedure

MR-Approx, and also notice that the window function % is “internal” to the pro-

cedure MR-Approx. Consequently, changes of the values taken by the window

function can be easily incorporated in the procedure MR-Approx without affecting
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the rest of the algorithm. Moreover, the proof of completeness does make any as-

sumptions concerning the window function, other than the assumption that the cells

immediately neighboring the vehicle’s current position are accurately known.

However, the performance and optimality of the overall algorithm does depend on

the window function. In Section 7.3, we provide sample results regarding the effect

of window size on the number of vertices in the multi-resolution cell decomposition

graph (which is related to the performance of the algorithm), and on the optimality

of the overall algorithm. Results regarding the effect of the window size on the time

required for construction of the graph G(n) are available in [69].

The incremental computation of A(n), G(n), and Cmr(n) discussed in Section 6.2.3

specifically assume that the window function is the same as the previous iteration.

Consequently, if the window function % changes at iteration n, then the set A(n)

and the graph G(n) must be computed “from scratch” using, respectively, procedures

MR-Approx and MR-Graph. Thus, frequently changing the window function may

be computationally less efficient than an invariant window function.

6.2.2 Proof of Completeness

We associate with each path πn(jn, iG,n) = {i0, . . . , iP (n)} in G(n) the set W(πn)

defined by

W(πn) :=

P (n)
⋃

p=0

W (ip, V (n)). (6.11)

The algorithm is said to meet a setback at iteration n if there exists no obstacle-free

path πn(jn, iG,n) in G(n) satisfying W(πn) ⊆ W(π∗
n−1). A series of technical results

concerning the execution of the algorithm are provided in Appendix B.2. We use

these results here to prove the main result of this section.

Proposition 6.6. The proposed algorithm is complete: if there exists an obstacle-

free path in Ḡ from īS to īG, then the algorithm finds an obstacle-free path in a finite
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number of iterations. Otherwise, the algorithm reports failure after a finite number

of iterations.

Proof. Note that because the set of vertices in V̄ is finite, it follows by Proposition B.4

that the algorithm terminates after a finite number N ∈ N of iterations. To show

completeness, first suppose that there exists an obstacle-free path in Ḡ from īS to īG.

Suppose that the algorithm never visits any vertex in V̄ more than once, and that

the algorithm does not meet any setbacks. By Proposition B.3, KG(j̄n−1)−KG(j̄n) >

λ2 and the sequence KG(j̄n) decreases strictly monotonically. Since KG(j̄n) > 0 for

each n ∈ N, and since KG(j̄1) is finite (by Corollary B.2), there exists Q 6 N , such

that KG(j̄n) = 0 for each n > Q. It follows by Line 22 that the algorithm terminates

after Q iterations, and since KG(j̄Q) = 0, the algorithm visits the goal vertex īG at

iteration Q.

Next, suppose that the algorithm visits some vertices in V̄ multiple times and that

the algorithm never meets any setbacks. Note that the number of multiply visited

vertices is finite because the algorithm terminates in a finite number of iterations.

Then either of the following statements hold: (a) the algorithm terminates at iteration

Q 6 N such that j̄Q is a multiply visited vertex, or (b) there exists Q < N such that

for each n = Q+ 1, Q+ 2, . . . , the vertex j̄n is visited exactly once by the algorithm.

If Statement (a) holds, then j̄Q 6= īG due to Lines 3 and 22, which in turn implies that

the algorithm reports failure in Line 16. It follows by Line 15 that j̄Q = īS. Then, by

Proposition B.1 and Proposition B.5, there exists no admissible path in Ḡ from īS to

īG, which is a contradiction. On the other hand, if Statement (b) holds, then by the

monotonicity arguments in the preceding paragraph, the algorithm visits the goal in

a finite number of iterations after iteration Q.

Next, suppose that the algorithm never visits any vertex in V̄ more than once, and

suppose that the algorithm meets some setbacks. The number of setbacks met by the

algorithm is finite because the algorithm terminates in a finite number of iterations.
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Then either of the following statements hold: (c) the algorithm terminates at iteration

Q 6 N such that the algorithm meets a setback at iteration Q or (d) there exists

Q < N such that for each n = Q + 1, Q + 2, . . . , such that the algorithm does not

meet any setbacks after iteration Q. Statement (c) leads to the same contradiction

that follows Statement (a), whereas Statement (d) leads to the same conclusion that

follows Statement (b).

Next, suppose that the algorithm visits some vertices in V̄ multiple times and that

algorithm meets some setbacks. We may combine the arguments in the two preceding

paragraphs to conclude that either the algorithm visits the goal after a finite number

of iterations, or (by contradiction) that there exists no obstacle-free path in Ḡ from

īS to īG.

Finally, suppose that there exists no obstacle-free path in the graph Ḡ from the

initial vertex īS to the goal vertex īG. The set of vertices V̄ is finite, hence it follows

by Proposition B.4 that the algorithm terminates after a finite number of iterations.

Suppose, for the sake of contradiction, that the algorithm erroneously finds a path

π̄ from the initial vertex īS to the goal vertex īG. Then J̄ (π̄) > M , since π̄ is not

obstacle-free. It follows by Line 24 that J̄ (π̄) > M at some intermediate iteration of

the algorithm. However, by Line 3, the algorithm terminates whenever J̄ (π̄) > M ,

thus leading to a contradiction. Thus, the algorithm does not erroneously find a path

from the vertex īS to the vertex īG if no obstacle-free path exists, and by Line 26, it

reports failure in this case.

6.2.3 Efficient Updates of A(n) and G(n)

The set of significant detail coefficients A(n), as computed by the procedure MR-

Approx, and the associated multi-resolution cell decomposition graph both depend

on the vehicle’s current position. Consequently, both A(n) and G(n) must be updated

in Lines 5–6 at each iteration of the algorithm in Fig. 6.6. In this section, we describe
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a method to obtain A(n) efficiently by adding and removing elements from A(n− 1):

specifically, we first compute the elements of the sets

B1 := A(n) ∩ Ac(n− 1) and B−1 := A(n− 1) ∩ Ac(n),

and we then evaluate the set A(n) by A(n) = A(n − 1) ∪ B1\B−1. To this end, we

observe that for each j̄ ∈ V̄ , x(j̄) = bx(j̄)c + 1/2. It follows that for every m 6 0,

b2mx(j̄n)c = b2m(bx(j̄)c+ 1/2)c. (6.12)

Next, we note that

bx(j̄n)c = bx(j̄n−1)c+∆x, (6.13)

where ∆x = 1 if the vehicle moves one cell to the right at iteration n, ∆x = −1 if

the vehicle moves one cell to the left at iteration n, and ∆x = 0 otherwise. It follows

from (6.12) and (6.13) that

b2mx(j̄n)c = b2m(bx(j̄n)c+ 1/2)c = b2m(bx(j̄n−1)c+∆x + 1/2)c

= bb2mx(j̄n−1)c + ς + 2m∆xc,

where ς := 2mx(j̄n−1)− b2mx(j̄n−1)c. We note that

ς = 2mx(j̄n−1)− b2mx(j̄n−1)c = 2m (bx(j̄n−1)c+ 1/2)− b2mx(j̄n−1)c,

and it follows that

b2mx(j̄n+1)c = bb2mx(j̄n)c+ 2m∆x + rmx c, (6.14)

where rmx := 2m (b2mx(j̄n)c+ 1/2)− b2mx(j̄n)c. Similarly, we may show that

b2my(j̄n+1)c = bb2my(j̄n)c+ 2m∆y + rmy c. (6.15)

where rmy := 2m (b2my(j̄n)c + 1/2)− b2my(j̄n)c.
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The elements of the sets B1 and B−1 are then determined from (6.14)-(6.15) as

follows. We define scalars δx and δy as

δx :=







−1, 0 > 2m∆x + rmx ,

0, 0 6 2m∆x + rmx < 1,

1, 1 6 2m∆x + rmx ,

δy :=







−1, 0 > 2m∆x + rmy ,

0, 0 6 2m∆x + rmy < 1,

1, 1 6 2m∆x + rmy ,

(6.16)

and for each p ∈ {−1, 1}, we define the sets Bm,x
p and Bm,x

p by

Bm,x
p := {(m, k, `) : k = b2mx(j̄n)c+ pδx, b2my(j̄n)c − %(m) 6 ` 6 b2my(j̄n)c+ %(m)} ,

Bm,y
p := {(m, k, `) : ` = b2my(j̄n)c + pδy, b2mx(j̄n)c − %(m) 6 k 6 b2mx(j̄n)c+ %(m)} .

Then the sets B−1 and B1 are given by the following relation

Bp =
⋃

α={x,y}

⋃

m06m<0

Bm,α
p , p ∈ {−1, 1}. (6.17)

The advantage of computingA(n) using the modified procedureMod-MR-Approx

described in Fig. 6.7 instead of computing it with procedure MR-Approx is that the

sets B−1 and B1 have significantly fewer elements than A(n). More precisely, let

%̄ := maxm06m60{%(j)}. Then the number of elements in the set A(n) is O(%̄2),

whereas the numbers of elements in the sets B−1 and B1 are both O(%̄).

Furthermore, the procedure Mod-MR-Graph described in Fig. 6.7 efficiently

determines the elements of the cell decomposition Cmr(n) associated with A(n) by

adding and removing elements from Cmr(n − 1), i.e., we first compute the elements

of the sets Cmr
1 := C

mr(n) ∪ (Cmr(n− 1))c and C
mr
−1 = C

mr
−1 := C

mr(n − 1) ∪ (Cmr(n))c.

Alternatively, the elements of Cmr(n) can be computed directly from the set A(n)

by executing Line 2-4 of the procedure by replacing Line 2 with the following line:

for all (m, k, `) ∈ A(n) do
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Recomputation of Multi-resolution Cell Decomposition

Input: Cmr(n− 1), A(n− 1), Output: Cmr(n),A(n)
procedure Mod-MR-Approx(A(n− 1))

1: Compute B−1 and B1 with (6.17)

2: A(n)← A(n− 1) ∪ B1\B−1

procedure Mod-MR-Graph(Cmr(n−1),B−1,B1)
1: Cmr

−1 ← ∅, Cmr
1 ← ∅

2: for all (m, k, `) ∈ B1 do

3: Cmr
1 ← Cmr

1 ∪ {Sm+1,k̂, ˆ̀ : 2k 6 k̂ 6 2k + 1, 2` 6 ˆ̀6 2`+ 1}
4: Cmr

−1 ← Cmr
−1 ∪ {Sm̂,k̂, ˆ̀ : k̂ = b2m̂−mkc, ˆ̀= b2m̂−m`c, m0 6 m̂ 6 m}

5: for all (m, k, `) ∈ B−1 do

6: Cmr
−1 ← Cmr

−1 ∪ {Sm+1,k̂, ˆ̀ : 2k 6 k̂ 6 2k + 1, 2` 6 ˆ̀6 2`+ 1}
7: Cmr

1 ← Cmr
1 ∪ {Sm,k,`}

8: Cmr(n)← Cmr(n− 1) ∪ Cmr
1 \Cmr

−1

Figure 6.7: Pseudo-code for the procedure Mod-MR-Graph.

However, this approach requires O(%̄2) iterations of Lines 3-4 because A(n) has

O(%̄2) elements. Because Lines 3-4 are constant time operations, the computation

of Cmr(n) directly from A(n) requires O(%̄2) execution time. In comparison, the

procedure Mod-MR-Graph requires O(%̄) iterations of Lines 3-4 (constant time

operations) and O(%̄) of Lines 6-7 (also constant time operations), and it follows that

procedure Mod-MR-Graph described above executes in O(%̄) time.

Remark 6.7 (Incremental path search). The graph G(n− 1) can be transformed to

the graph G(n) after adding and deleting a relatively small number of vertices and

edges. In light of this observation, the operation of finding the shortest path in G(n)

(Line 11) using standard search algorithms may seem wasteful, especially given the

availability of incremental graph search algorithms discussed in Section A.2. However,

in the context of our multi-resolution path planning algorithm, the strategy of using

an incremental search algorithm to find the shortest path in the graph G(n) using
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information about the shortest path in the graph G(n − 1) does not offer significant

improvements in the execution time of the overall algorithm. The primary explanation

for this observation is that the number of vertices in G(n) is relatively small, and for

graphs with a small number of vertices, incremental search algorithms do not offer

significant benefits of computational efficiency [84].

We summarize the arguments of this section as follows: the computation of A(n)

by the procedure Mod-MR-Approx requires O(%̄) execution time, as compared

to the procedure MR-Approx, which executes in O(%̄2) time. Also, the proce-

dure Mod-MR-Graph executes in O(%̄) time, as compared to direct computation

of Cmr(n) from A(n), which executes in O(%̄2) time.

Figure 6.8(a) shows the results of evaluating through numerical simulations the ra-

tio of the execution time required by the combination of the procedures MR-Approx

and MR-Graph to the execution time required by the combination of the proce-

dures Mod-MR-Approx and Mod-MR-Graph for computing the graph G(n). As

predicted by the preceding theoretical analysis, the execution time ratios increase as

the size %̄ of the high-resolution “window” increases. The execution time ratios also

increase with the number of pixels in the environment (22D). The execution time

ratios shown in Fig 6.8(a) were computed by averaging the execution time ratio over

30 simulations for each data point in Figure 6.8(a). Figure 6.8(b) shows the results

of evaluating through numerical simulations the ratio of the execution time of the

entire path planning algorithm using procedures MR-Approx and MR-Graph to

the execution time of the entire path planning algorithm using procedures Mod-MR-

Approx and Mod-MR-Graph. The multi-resolution path planning algorithm with

the modified procedures of construction of A(n) and G(n) executes up to 10 times

faster than that with the original procedures.
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(a) Sample data of numerical comparisons of execution times illustrating the effi-
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(b) Sample data of n umerical comparisons
of execution times illustrating the benefits in
overall path planning.

6.3 Multi-resolution Motion Planning

In this section, we discuss an extension of the preceding multi-resolution path plan-

ning scheme to include vehicle dynamical constraints. To this end, we discuss the

application of H-costs in multi-resolution path planning, and we develop a multi-

resolution motion planning scheme illustrated schematically in Fig. 1.6.

Informally, the overall motion planner searches for H-cost short paths on the

graphs associated with the multi-resolution cell decompositions described in Sec-

tion 6.2. However, it is unnecessary and computationally expensive to consider

history-based transition costs on the entire multi-resolution cell decomposition graph
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due to the following reasons: (a) large cells in C
mr correspond to coarse information

about the environment in the regions associated with those cells, and hence trajec-

tories passing through large cells will need to be refined and/or replanned in future

iterations, (b) curvature-constrained paths are guaranteed to exist [14] in rectangular

channels wider than a certain threshold width (compared to the upper bound on cur-

vature), and (c) despite the relatively small numbers of vertices in the multi-resolution

cell decomposition graphs, searches for H-cost short paths are computationally ex-

pensive because the numbers of vertices in the lifted graph are large.

In light of the preceding observations, and in keeping with the multi-resolution

idea of using high-accuracy information only locally, the proposed motion planner

searches for H-cost short paths on a “partially” lifted graph, such that the vehicle

dynamical constraints are considered (via history-based transition costs) only locally.

This notion of a “partially” lifted graph is stated precisely as follows.

For each J = (j0, . . . , jH) ∈ VH , and each L ∈ {1, . . . , H − 1}, we define the

projection PL(J) of J onto VL, by

PL(J) := (j0, . . . , jL) ∈ VL.

For each L ∈ {1, . . . , H}, we define the set UL ⊆ VL by

UL :=
{
(j0, . . . , jL) ∈ VL : size(cell(jk)) < d̄,

for k = 0, . . . , L− 1, and size(cell(jL)) 6 d̄
}
, (6.18)

where d̄ is pre-specified, and size(cell(jk)) denotes the size of the cell corresponding

to the vertex jk in the multi-resolution cell decomposition graph. By (6.18), the set

UL consists of (L+1)-tuples of vertices in the cell decomposition graph such that the

sizes of the first L cells in each (L + 1)-tuple are strictly lower than d̄, whereas the

size of the (L+ 1)th cell is at most d̄. This definition alludes to the previously stated

notion of including in the “partially” lifted graph only the cells small enough for the
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curvature constraints to be significant. The “partially” lifted graph G̃H = (ṼH , ẼH)

is then defined by

ṼH := UH ∪
H−1⋃

L=1

UL\PL(UH), (6.19)

ẼH := {(I, J) : I, J ∈ UH and (I, J) ∈ EH} ∪
H−1⋃

L=1

{
(I, J) : I ∈ UL, J ∈ UL−1 with [I]L1 = J

}
. (6.20)

To clarify the definitions of ṼH and ẼH , we provide a simple illustrative example.

Consider the graph associated with the cell decomposition shown in Fig. 6.8, and let

d̄ = 2 units (the various sizes of the cells shown in Fig. 6.8 are 1, 2, and 4 units). Let

H = 2. According to the above definitions,

U1 = {(3, 2), (3, 5), . . . , (8, 7), (8, 10), . . . , (9, 3), (9, 6),

(9, 8), . . . , (10, 7), (10, 8)},

U2 = {(3, 9, 8), (3, 9, 6), (3, 9, 2), . . . , (8, 9, 3), (8, 9, 2),

(8, 9, 6), . . . , (9, 8, 10), (9, 8, 7), . . . , (10, 3, 5), . . .}

Note that elements such as (1, 2), (1, 5), (2, 3), (4, 7), etc. that are in V1 do not appear

in U1. Similarly, elements such as (3, 2, 1), (3, 5, 10), etc. that are in V2 do not appear

in U2. Next, note that the projection P1 of U2 onto V1 is

P1(U2) = {(3, 9), (3, 10), (8, 9), (8, 10), (9, 3), (9, 8),

(10, 3), (10, 8)}.

By (6.19), the set Ṽ2 of vertices of the “partially” lifted graph is

Ṽ2 = U2 ∪ (U1\P1(U2))

= {(3, 9, 8), . . . , (10, 3, 5), . . . (3, 2), (3, 5),

(8, 6), (8, 7), (9, 2), (9, 6), (10, 5), (10, 7)},
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Figure 6.8: A sample multi-resolution cell decomposition.

and by (6.20), the edge set Ẽ2 is

Ẽ2 = {
edges common with E2

︷ ︸︸ ︷

((3, 9, 8), (9, 8, 6)) , ((3, 9, 8), (9, 8, 7)) , . . .,

((3, 9, 6), (9, 6)) , ((3, 10, 7), (10, 7)) , . . .
︸ ︷︷ ︸

edges (I,J) of the type I∈U2,J∈U1

}

The overall motion planner then operates as follows. At each iteration, a multi-

resolution cell decomposition is first constructed. The cells in this decomposition

may be categorized according to their sizes into two classes, namely, cells with sizes

at most d̄, and cells with sizes greater than d̄. We define boundary cells in the multi-

resolution cell decomposition as the cells of sizes at most d̄ that have at least one

neighboring cell in each of the two previously defined classes (see Fig. 7.13(a)). A

multiple-source, single-goal implementation of the A∗ algorithm is used to determine

the costs of optimal paths in the multi-resolution cell decomposition graph from the

vertices associated with each of the boundary cells to the goal vertex. These costs are

then used as terminal penalty costs in the execution of the H-cost path planner on

the “partially” lifted graph previously discussed. This H-cost path planner returns

a sequence of cells from the current location to one of the boundary cells, along with

an admissible vehicle control input that enables the traversal of this sequence of cells.

The vehicle state is advanced by traversing one cell using this control input, and the
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process is repeated until the vehicle reaches the goal.
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Chapter 7

Simulation Results and Discussion

7.1 Path Planning for the Dubins Car

As discussed in Section 4.4.1, the upper bound on the curvature of feasible geometric

paths for the Dubins car model is κmax = (rv)−1. The configuration space C and

the state space D are identical, and hence the effective target sets coincide with

the effective target configurations sets. Additionally, the feasible paths specified in

TilePlan can also be constructed geometrically.

Figure 7.1 shows results of the simulations of the proposed motion planner for the

Dubins car model in an environment similar to the motivating example of Chapter 2.

Note, in particular, that different channels are obtained for different bounds on the

curvature, whereas any cost function defined on single-edge transitions of the cell

decomposition graph G will result in the channel shown in Fig. 7.1(a). For this

example, the H-cost of an edge in GH was defined as the time of traversal of the tile

corresponding to that edge, i.e., `(ξ, u, t) := 1 in (3.5).

Figure 7.2 shows the results of the simulations of the proposed motion planner for

the Dubins car model in a maze-like environment. For this example, as before, the

H-cost of an edge in GH was defined as the time of traversal of the tile corresponding

to that edge. Note the significant difference in the resultant channel when different

curvature bounds (in accordance, perhaps, with different speeds of travel or different

steering rate constraints) are imposed. It should be stressed that in each of the

sample results shown in Figs. 7.1 and 7.2, the sequence of cells from the initial cell

to the goal cell is obtained by the proposed motion planner simultaneously with the

curvature-bounded path lying within that channel.

As previously mentioned in Section 3.1, when a uniform cell decomposition is
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(c) r = 3.5 (d) r = 4.5

Figure 7.1: Making U-turns with different curvature bounds. The curvature bound in
each case is r−1. Here, H = 3.

used, the rectangular channel corresponding to any tile belongs to an equivalence

class of geometrically equivalent (up to the rigid geometric transformations) tiles.

The number of such equivalence classes is a small, finite number (e.g., there are

13 equivalence classes with H = 3). To reduce the execution time of the overall

motion planner, we may pre-process offline the computation of effective target sets

for each equivalence class, and perform only the synthesis of paths iteratively during

the execution of the motion planner. The sample results shown in Figs. 7.1 and 7.2

were obtained using such pre-processed computations.

7.2 Comparative Simulation Results and Discussion

In Section 1.3, we discussed briefly and qualitatively the advantages of the proposed

motion planning framework over existing approaches in the literature. Here, we dis-

cuss these advantages in detail, and we corroborate our claims with numerical simu-

lation data.
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(b) Patch-wise varying curvature bound, rwhite =
1, ryellow = 2.25, rblue = 3.5.

Figure 7.2: Simulation result: simple maze-like environment. The curvature bound in
each case is r−1. For this simulation, we chose H = 3.

7.2.1 Comparisons with Randomized Sampling-based Motion Planners

As discussed in Section 1.2.3, randomized sampling-based algorithms based on RRTs [94]

are fast algorithms for solutions of the point-to-point motion planning problem in high

dimensional spaces. In this section, we present a thorough comparison of the proposed

motion planner with RRT-based algorithms. In particular, we present numerical sim-

ulation data demonstrating the superiority of the proposed motion planner in terms

of the costs of resultant trajectories. For the simulation results that follow, we con-

sidered the particle dynamical model discussed in Section 4.4.2, and as before, we

defined the H-cost of an edge in GH as the time of traversal of the tile correspond-

ing to that edge. We implemented TilePlan using the based on mpc and effective

target sets, discussed in Chapters 4 and 5.

We compared the proposed motion planner against the following two RRT-based
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planners: (1) the standard RRT-based planner1 as reported in [94], and (2) the T-

RRT planner recently reported in [64]. The T-RRT planner finds low-cost trajectories

with respect to a pre-specified state space2 cost map. Note that the minimum-time

criterion cannot be expressed as a state space cost map; therefore, we execute the

T-RRT planner with the objective “travel as fast as possible,” which is immediately

defined by the state space cost map c(x, y, θ, v) = v.

Figure 7.3(a) shows the first of two environments used for the comparative numer-

ical simulation examples. This environment consists of “lanes” separated by obstacles

(black regions), with a different upper bound on the allowable speed of the vehicle

(lighter areas represent higher upper bounds). The “friction ellipse” parameters were

fixed at fmax
r = 1, fmax

t = 0.25 over the entire environment. The initial and goal

cells are marked in Fig. 7.3(a); as before, the objective was to find a minimum time

trajectory from the initial cell to the goal cell.

As mentioned previously, linear interpolation between two states does not, in

general, correspond to a feasible state trajectory. Hence, for extending known states

towards randomly selected new states, the RRT-based planners were programmed to

randomly select an input vector from the set of admissible inputs and integrate the

vehicle model for a fixed time δ, as recommended in [94]. For the “lanes” environment,

we used three different values of δ, namely, δ = 0.5s, δ = 1s, and δ = 1.5s, and we

conducted 30 trials of both algorithms (standard RRT and T-RRT) for each value

of δ. For comparison, we executed the proposed algorithm on the same environment

with three different values of H , namely, H = 4, H = 5, and H = 6, with L = 10 in

each case.

1Several improvements to the standard RRT planner of [94] have been reported (see [64,118] and
references therein); however, with the exception of [64], these improvements focus mainly on the
efficiency of the motion planner. We choose to compare against the standard RRT planner as we
are mainly interested in the comparison of costs of resultant trajectories.

2In [64], the authors deal with a configuration space cost map, but their approach extends easily
to state spaces.
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Figure 7.3: The “lanes” environment. Black colored regions are obstacles; areas with other
colors represent different speed limits: vmax = 1.25 units/s for the darkest area, vmax = 2
units/s, vmax = 2.5 units/s, and vmax = 3.5 units/s, respectively, for progressively lighter
areas. The dark green curve is the geometric path corresponding to a sample trajectory
returned by the T-RRT algorithm, with δ = 1 s. The blue curve is the geometric path
corresponding to the trajectory returned by the proposed approach, with H = 6.
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Figure 7.5(a) shows comparative data for the trajectory costs (i.e., time of traver-

sal) resulting from the simulations described above. The proposed motion planner

returned trajectories with almost identical costs for each H , in particular, the trajec-

tory cost corresponding to H = 6 was 26.626 s. On the other hand, both the standard

RRT and T-RRT planners returned, on an average, significantly costlier trajectories.

For instance, the trajectory costs returned by the standard RRT planner with δ = 1

were, in the best case 24% higher, on an average 78% higher, and in the worst case

181% higher. Similarly, the trajectory costs returned by the standard RRT planner

with δ = 1 were, in the best case 8.9% higher, on an average 29% higher, and in the

worst case 46% higher.

Figure 7.3(a) shows the geometric path corresponding to the trajectory returned

by the proposed planner with H = 6 (blue curve) in comparison to the geometric

path corresponding to a trajectory returned by the T-RRT planner in one of the 30

trials with δ = 1 (green curve); Fig. 7.3(b) shows the speed profiles corresponding to

these two trajectories. This example illustrates that the “travel as fast as possible”

objective is not always a practically acceptable alternative to the minimum-time

criterion: Figure 7.3(b) shows that the vehicle achieves higher speeds along the T-

RRT trajectory but the travel time is 35.2% higher than the trajectory found by

the proposed planner. This result is a consequence of the input constraint (4.15),

which forces the vehicle to traverse paths of lower curvature at higher speeds, thus

producing longer geometric paths.

Figure 7.4 shows the second, maze-like environment used for our comparative

analysis. As before, different upper bounds on the speed were assigned to different

areas in the environment, and the friction ellipse parameters were fixed at fmax
r =

1, fmax
t = 0.25 over the entire environment. As before, the objective is to find a

minimum-time trajectory from the initial cell to the goal cell. We compared the
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Figure 7.4: The “maze” environment. Black colored regions are obstacles; areas with other
colors represent different speed limits: vmax = 1.25 units/s for the darkest area, vmax = 2
units/s, and vmax = 2.25 units/s, respectively, for progressively lighter areas. The dark
green curve is the geometric path corresponding to a sample trajectory returned by the
RRT-based planner, with δ = 1.5 s. The blue curve is the geometric path corresponding to
the trajectory returned by the proposed approach, with H = 5.
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proposed motion planner against the standard RRT planner alone, because the T-

RRT planner was found to be impractically slow for this case. As shown in Fig. 7.4,

the environment has a narrow “short-cut” between the initial cell and the goal cell.

Figure 7.5(b) shows comparative data for the trajectory costs for this maze-like

environment. The proposed motion planner returned trajectories with almost iden-

tical costs for each H ; in particular, the trajectory cost corresponding to H = 5 was

56.23 s. The trajectory costs returned by the standard RRT planner were significantly

higher, mainly because it failed to traverse the aforementioned “short-cut” on several

occasions, as illustrated in Fig. 7.4. For instance, the trajectory costs returned by the

standard RRT planner with δ = 1 were, in the best case 48% higher, on an average

107% higher, and in the worst case 185% higher. Clearly, the average costs of tra-

jectories returned by RRT-based planners may be further worsened in environments

where the differences between the costs of trajectories corresponding to “short-cuts”

and the costs of alternative trajectories is larger.

Figure 7.6(a) shows on a logarithmic scale the number of states explored by

each of the algorithms discussed in the previous section for the “lanes” environment;

Fig. 7.6(b) shows similar data for the maze-like environment. In both cases, the num-

ber of states explored by the RRT-based planners were higher by at least an order of

magnitude. However, the time required for the RRT-based planners to explore a new

state (including the nearest neighbor search and collision checking) was found to be

approximately an order of magnitude lower than the execution time of the MPC-based

TilePlan. Consequently, the comparison of the performance of the proposed plan-

ner against the aforementioned RRT-based planners showed no conclusive evidence

of the superiority of either planner over the other in that respect. Direct comparisons

of the execution times of these algorithms corroborated this observation. However,

Fig. 7.6 shows that the proposed planner is preferable in cases where the exploration

of new states is expensive due to complex dynamics or due to expensive collision
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(a) Data for the “lanes” environment in Fig. 7.3(a).
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(b) Data for the maze-like environment in Fig. 7.4.

Figure 7.5: Comparison of trajectory costs: for the RRT and T-RRT data, the blue (left),
red (middle), and green (right) bars represent, respectively, the maximum, the minimum,
and the average values over 30 trials.

checking. In this context, it may be noted that the number of states explored in

RRT-based planners can be significantly reduced by “intelligent” sampling heuristics

that ensure efficient coverage of the entire search space (cf. Refs. [64, 65, 118, 162]).

7.2.1.1 Qualitative Comparisons with Randomized Sampling-based Motion Planners

The exploration of the state space is difficult with standard RRT-based motion plan-

ners when the states and control inputs are coupled via complex, nonlinear differential

equations [118], because linear interpolation between two states no longer corresponds,
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Figure 7.6: Comparison of number of states explored: for the RRT and T-RRT data, the
blue (left), red (middle), and green (right) bars represent, respectively, the maximum, the
minimum, and the average values over 30 trials.

in general, to an admissible state trajectory. Whereas [118] and similar earlier works

focus on aiding the efficiency of sampling-based algorithms using a discrete search,

we focus on the complementary aspect of optimality by ensuring that the result of a

discrete shortest-path search remains compatible with the vehicle dynamics.

In addition to the benefits of the proposed planner over randomized sampling-

based planners in terms of optimality, the proposed planner also offers the benefit

of a clear distinction between the discrete and continuous layers of motion planning.
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The idea of planning on the lifted graph, introduced in Chapter 2, allows this dis-

tinction to be maintained, while providing guarantees of consistency between the two

levels of planning. Consequently, changes to the discrete planning strategy and/or

the (continuous) tile motion planning may be incorporated with relative ease. In this

paper, we used the shortest-path search as a concrete, important example of a discrete

search strategy; in the future, we envision extensions of the proposed planner where

the discrete planner attempts to satisfy vehicular tasks specified as formulae of pred-

icate or temporal logic [12] instead of solving a shortest path problem. On the other

hand, complex vehicle dynamics can be easily incorporated in TilePlan without

affecting the discrete planning strategy.

In the context of the shortest path problem alone, different trajectory quality cri-

teria can be incorporated easily to meet different motion planning objectives. For

example, Fig. 7.7 shows the result of simulating the proposed planner by defining the

H-cost as a weighted sum of the time of traversal and the terrain elevation. Con-

sequently, the planner finds paths that traverse low-elevation portions of the terrain

(lighter regions in Fig. 7.7), while ensuring kinematic feasibility guarantees of the

resultant paths. The Dubins car model was used for this simulation; the two curves

in Fig. 7.7 indicate the resultant paths for different curvature constraints. It should

be noted that the problem of finding low cost trajectories with respect to configura-

tion space cost maps using randomized sampling-based methods has been addressed

in [64]; however, many important trajectory quality criteria such as time optimal-

ity (considered in the preceding section) and fuel optimality cannot be expressed as

configuration space cost maps.

7.2.2 Comparisons with Feedback-based Motion Planners

An underlying assumption in the feedback-based motion planning approach described

in Section 1.2.4 is the complete controllability of the vehicle dynamical model in the
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Figure 7.7: Application of proposed motion planning framework for finding “low-
elevation” paths: lighter areas represent more favorable regions of the workspace. The
Dubins car kinematical model is used in TilePlan. The red curve represents a path with
r = 1, whereas the blue curve represents a path with r = 2.

presence of obstacles, i.e., the assumption that there exists a feasible, obstacle-free

trajectory from any initial state to any goal state. In the context of mobile vehicles,

complete controllability in the presence of obstacles is a strong assumption: fixed-

wing aircraft moving in the horizontal plane do not satisfy this assumption; terrestrial

vehicles constrained to move only forward, or high-speed vehicles for which stopping

and reversing the direction of motion may not be desirable, also do not satisfy this

assumption. In contrast with the planners presented in [13,32,99–101], the proposed

motion planning framework does not assume complete controllability in the presence

of obstacles.

When the complete controllability assumption is violated, the central tenet of

the preceding feedback-based motion planning schemes is no longer valid: arbitrary

108



j -9 -8 -7 -6 -5 -4 -3 -2 -1

%1 1 1 2 2 2 2 2 2 3
%2 1 2 2 3 4 5 6 7 7
%3 3 3 5 5 6 7 8 8 9

Table 7.1: Values of the three window functions chosen for simulating the multi-resolution
path planning algorithm

sequences of cell transitions cannot in principle be guaranteed from arbitrary initial

states. A simple example of a vehicle kinematic model that violates the complete

controllability assumption is the Dubins car model. For any given sequence of cell

transitions in the workspace, there exists a set of initial states of the vehicle from which

it is impossible for the vehicle to execute that sequence. The proposed framework

does not require this assumption because the geometric planner ensures by computing

an admissible control input, given in (3.6), the feasibility of traversal of its resultant

path (i.e., the sequence of cell transitions from the initial position to the goal).

7.3 Multi-resolution Path- and Motion Planning

In this section, we present numerical simulation results of implementations of the

multi-resolution path- and motion planning schemes presented in Chapter 6. First,

we focus on the path planning algorithm, which does not consider vehicle dynamics.

7.3.1 Optimality and Performance of the Path Planning Scheme

Recall that in Section 6.2.2, we proved rigorously the completeness of the multi-

resolution path planning algorithm, which concerns the algorithm’s capability of

finding a feasible path whenever such a path exists. Figures 7.8 and 7.9 illustrate

a simulation example demonstrating the capability of the multi-resolution path plan-

ning scheme to recover from a cul-de-sac. As shown in Fig. 7.8(a), we designed

the shape of the obstacle and the location of the goal to lead the multi-resolution

path planning algorithm into the cul-de-sac in the “central” region of the obstacle,

whereas the goal can only be reached from the “top” region of the obstacle. Figure 7.9
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Start

Goal

(a) Map of the environment. (b) Final path found by the multi-resolution
path planning algorithm: the red-colored cells
were multiply visited by the algorithm.

Figure 7.8: Demonstration of the multi-resolution path planning algorithm’s ability to
recover from a cul-de-sac.

illustrates some intermediate iterations in the execution of the multi-resolution path

planning algorithm on this environment; in particular, the algorithm leads the vehicle

into the cul-de-sac but in later iterations, it successfully recovers and finds a path to

the goal.

Whereas we can guarantee the algorithm’s capability of finding a feasible path

whenever such a path exists, we do not yet have theoretical results concerning the

optimality of the resultant path. Consequently, we study using numerical simula-

tion results the optimality of paths resulting from the multi-resolution path planning

algorithm.

To this end, we compared the cost of the resultant paths with the cost of an

optimal path found by executing the A∗ algorithm on the graph Ḡ associated with

the finest-level cell decomposition.

For these comparative simulations, we chose an environment represented by the

image shown in Fig. 6.2(a), and we defined the cost of a path in Ḡ by (6.9), with

λ1 = 1 and λ2 = 0.1. We chose three different “window” functions, as described in
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(a) An intermediate iteration before the cul-de-
sac is explored. Note that due to the peculiar
shape of the obstacle space, the “central” re-
gion of the obstacle containing the cul-de-sac is
approximated by cells of lower intensities than
the cells approximating the “top” region of the
obstacle.

(b) The intermediate iteration at which the
cul-de-sac is encountered, i.e., the algorithm
fails to find an admissible path (as defined in
Section 6.2) from the vehicle’s current location
to the goal.

(c) The location of the vehicle in the environ-
ment at the iteration illustrated in Fig. 7.9(b).

(d) The intermediate iteration (after encoun-
tering the cul-de-sac) at which the path plan-
ning algorithm finds a multi-resolution channel
containing the actual path to the goal.

Figure 7.9: Intermediate iterations in the multi-resolution path planning algorithm’s im-
plementation for the environment shown in Fig. 7.8(a).
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Figure 7.10: Histogram showing the distribution according to percentage sub-optimality of
simulated cases, for different window functions. Whereas the sub-optimality was restricted
to less than 20% for most cases for all window sizes, note that the “largest” window function
%3 has the fewest cases of highly sub-optimal results.

Table 7.1; informally, the window %1 results in a multi-resolution cell decomposition

with very few significant detail coefficients, (i.e., the environment is represented with

high fidelity in a very small neighborhood of the vehicle’s location) whereas the win-

dows %2 and %3 result in decompositions with progressively larger neighborhoods of

high fidelity representation of the environment. We scaled the environment with four

different values of D, namely, D = 6, 7, 8, 9, and we chose m0 = −D. We performed

30 simulations for each value of D with the initial and goal cells chosen randomly

for each simulation, and we executed the multi-resolution path planning algorithm

proposed in Section 6.2 with each window function for each simulation (i.e., a total

of 120 simulations for each window function).

Figure 7.10 shows the distribution according to percentage sub-optimality of the

simulated cases. As intuitively expected, the window %3 results in the most cases of

sub-optimality under 20%. Overall, Fig. 7.10 shows that very few cases of extremely
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Figure 7.11: Comparison of the number of vertices in the topological graphs associated
with multi-resolution cell decompositions with different window functions and with the
finest-level cell decomposition C.

high sub-optimality occurred: these cases typically occurred when the algorithm en-

countered cul-de-sacs.

Figure 7.11 shows the comparison of the (average) number of vertices in the graphs

associated with the multi-resolution cell decompositions corresponding to different

window functions and with the finest-level cell decomposition C. As expected, the

window function %3, which has the largest neighborhood of high fidelity approximation

of the environment (i.e., a large number of significant detail coefficients), results in

cell decompositions with the largest number of cells among the three multi-resolution

decompositions. Note, however, that the numbers of vertices in each of the three

multi-resolution decompositions are of the same order of magnitude; on the other

hand, the numbers of vertices in the graph Ḡ corresponding to the finest-level cell

decomposition C are one to three orders of magnitude greater than those in the

multi-resolution cell decomposition graphs. For instance, with D = 9, the number

of vertices in Ḡ was 262, 144, whereas the average number of vertices was 561 for

the multi-resolution cell decomposition with window %1, 2, 395 with window %2, and
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Figure 7.12: Result of motion planning simulation using the aircraft navigational model.
The blue curve is the geometric path corresponding to the resultant state trajectory, while
the channel of cells in black is the result of executing A* algorithm (without incorporating
vehicle dynamical constraints). The initial position is at the top left corner of the map.
The units for the x and y axes are kilometers.

4, 016 with window %3. In this context, one may recall that the time complexity of

the execution on a sparse graph G = (V,E) of Dijkstra’s algorithm is O(|V | ln |V |),

whereas the memory complexity is O(|V |).

7.3.2 Simulation Results of the Multi-resolution Motion Planning Scheme

Figure 7.12 shows the result of simulating the proposed motion planner for the aircraft

navigational model with the following parameters: CD,0 = 0.02, K = 0.04, S = 30 m2,

mg = 50 kN, and vcr = 85 m/s. The aircraft speed was assumed to be constant,

and the (asymmetric) bounds on the bank angle control input were φmin = −45◦ and

114



90

92

94

96

98

100

102

104

8 10 12 14 16 18 20 22

(a) Intermediate iteration: local perspective. The
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(b) Intermediate iteration: global perspective. The multi-resolution cell decom-
position represents the environment with high accuracy (small cell sizes) in the
immediate vicinity of the vehicle’s position. The x and y axes indicate inertial
position coordinates, in kilometers.

Figure 7.13: Illustration of an intermediate iteration of the overall motion planning frame-
work.
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φmax = 20◦. The objective is to minimize a cost defined on the environment (indicated

by regions of different intensities in Fig. 7.12; the darker regions correspond to higher

costs).

Figure 7.13 illustrates an intermediate iteration in this simulation example. Fig-

ure 7.13(a) shows the cells of size at most d̄, with the boundary cells indicated in red.

The sequence of cells outlined in blue and the blue-colored curve within this sequence

are the results of the H-cost motion planner (the yellow-colored cells indicate the

vertices explored during the H-cost search). Figure 7.13(b) shows the overall multi-

resolution cell decomposition at the same iteration; the blue-colored cells indicate the

optimal path to the goal from the boundary cell chosen by the H-cost motion planner.

The blue-colored curve in Fig. 7.13(b) indicates the geometric path traversed by the

vehicle in previous iterations. In this simulation example, we chose d̄ = 2 km.

7.4 Curvature-bounded Traversal of Rectangular Channels

As mentioned in Chapter 5, the constructions of the effective target configuration sets

is closely related to the problem of determining the existence of curvature-bounded

paths traversing a rectangular channel. In this context, we present a simulation result

illustrating the effectiveness of the geometric analysis presented in Chapter 5 and in

Appendix C.

Figure 7.15 shows a rectangular channel of non-uniform width. The size of the

entire environment is 200 units. First consider the problem of planning a path with a

(constant) minimum radius of curvature rmin = 13 units. Bereg and Kirkpatrick [14]

guarantee the existence of a path of minimum radius of curvature rmin if the (uniform)

width of the channel is at least τrmin, where τ is a constant which satisfies a certain

polynomial equation, and τ ≈ 1.50. The channel shown in Fig. 7.15 is of non-uniform

width, but suppose we consider a uniform width channel lying completely within the

given channel. The width d of such a channel is less than or equal to the width of
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Figure 7.14: Allowable orienations at the entry segments of each rectangle.

the first rectangle, which is chosen as 18 units. Then, the specification of rmin = 13

units violates the condition d > τrmin. Thus, there is no guarantee that a path with

a minimum radius of curvature of 13 units exists within the given channel.

It may be argued that the given rectangular channel may be treated as a special

case of a polygonal channel, and the geometric techniques presented in [18] or [2]

could be applied. This is true if the specified lower bound on the radius of curvature

is constant. However, if the specified bounds are different inside different cells, then

these methods cannot be applied directly because there is no method to select the

terminal conditions within each rectangle.

The proposed approach addresses both these issues. The gray path shown in Fig.

7.15 has a minimum radius of curvature of 13 units, while the black path satisfies

the local curvature conditions. Figure 7.14 shows the result of executing the cone

analysis algorithm of Section 5.1 for the channel shown in Fig. 7.15. Each of the gray

curves indicates the functions αn in degrees, and each of the black curves indicates

the functions αn in degrees, measured in the local coordinate system attached to
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Figure 7.15: Path planning through a channel: The gray path has a constant curvature
bound of 13 units, while the black path has variable curvature bound. The numbers within
each rectangle indicate local curvature bounds for the latter.

each rectangle. The dots on each plot indicate the initial condition (position and

orientation) for each rectangle, measure from the local coordinate system attached to

each rectangle. The cone analysis shows that, for any initial condition (position and

orientation) at the entry segment of any of the intermediate rectangles, there exists

a path which satisfies the specified curvature conditions and traverses through the

remainder of the channel if and only if the initial condition lies in region enclosed by

the upper and lower curves of Fig. 7.14 for that rectangle.
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Chapter 8

Conclusions and Directions of Future Work

In this thesis, we discussed a hierarchical motion planning framework that considers

vehicle dynamical constraints. The proposed motion planner attempts to find optimal

trajectories without sacrificing heavily on its computational efficiency.

To this end, we proposed a novel discretization of the workspace: namely, the lifted

graph, which is based on multiple successive edge transitions in the topological graph

associated with a workspace cell decomposition. We developed a motion planning

framework based on finding optimal paths in the lifted graph, enabled by an efficient

and flexible algorithm that we proposed for finding optimal paths in the lifted graph.

The edge transition costs in the lifted graphs, i.e., the H-costs, are provided by a

local trajectory generation algorithm called TilePlan.

We provided precise and general specifications for the development of TilePlan.

In contrast with local trajectory generation problems that arise frequently in other

hierarchical approaches to motion planning, the specifications on TilePlan give

rise to a highly structured problem. We demonstrated the advantages of dealing

with a highly structured problem by simplifying the trajectory generation problem

using the concept of effective target sets. In particular, the structure of the tile

motion planning problem allowed the transformation of non-convex state constraints

to convex constraints, via effective target sets.

We addressed the computation of effective target sets based on the observation

that vehicle dynamical constraints impose upper bounds on the local curvature of the

geometric paths corresponding to feasible state trajectories. We illustrated the pre-

cise calculations of these curvature constraints, and we developed geometric analyses
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to enable the computation of the effective target sets based on these curvature con-

straints. The said geometric analyses were noted to enable the solution of a problem

of independent interest, namely, the existence of curvature-bounded paths in polygo-

nal environments with a special structure. Using the computation of effective target

sets, we provided an implementation of TilePlan for general vehicle models based

on model predictive control.

As an example of an efficient discrete path planner, we extended a multi-resolution

path planning algorithm previously introduced in the literature. In particular, we

modified the existing algorithm to guarantee its completeness. Furthermore, we de-

veloped a multi-resolution motion planning scheme that considers vehicle dynamical

constraints via H-cost approach in the aforesaid multi-resolution path planner.

The existing literature related to path- and motion planning displays the following

traits: computationally efficient techniques that address path optimality (geometric

path planners) do not typically consider kinematic/dynamic constraints; computa-

tionally efficient techniques that address kinematic/dynamic constraints (randomized

sampling-based algorithms) do not typically address optimality; and finally, tech-

niques that address both optimality and kinematic/dynamic constraints are not com-

putationally efficient enough for real-time, online implementations. In this thesis, we

addressed the problem of developing the ideal, computationally efficient point-to-point

motion planning technique that addresses both optimality and kinematic/dynamic

constraints, with the aim of extending easily the proposed technique to the general

motion planning problem. Numerical simulation data corroborated our claim that

the proposed motion planning framework is a significant, novel contribution towards

the development of such an motion planning technique.

In what follows, we outline the possible future extensions of the proposed motion

planning framework.
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8.1 Motion Planning with Complex Task Specifications

The point-to-point motion planning problem is a special case of the general motion

planning problem, in that the search for a feasible path in the cell decomposition graph

may be considered as an example of a planning task. As mentioned in Section 1.1,

the (discrete) task specification is typically associated with a state transition system,

and the satisfaction of the task specification is equivalent to finding a feasible path in

this transition system. In the case of the point-to-point problem, this state transition

system corresponds directly with the cell decomposition graph.

For the sake of a concrete example, consider a surveillance task where the au-

tonomous vehicle is required to visit a finite number of locations in the environment

in a temporally constrained order. For another example, consider the problem of

transporting multiple types of cargo between multiple warehouse locations, akin to

the classic “man-goat-wolf” problem. Another example, which encompasses the addi-

tional aspect of optimality in the general motion planning problem, is the well-known

traveling salesperson problem. Depending on the relative locations of the points of

interest (i.e., the regions to be surveyed, or the warehouses, in the former two exam-

ples) in context with the curvature constraints imposed by the vehicle dynamics, the

natural approach of separating the solutions of the task satisfaction problem and the

motion control problem may lead to incompatibility issues similar to that illustrated

in the motivating example of Chapter 2.

The proposed motion planning framework is currently applicable only to the point-

to-point problem due to two restrictions: firstly, we constructed the lifted graph based

on multiple edge transitions in the cell decomposition graph (instead of those in a

general state transition system), and secondly, we focused on a discrete planner that

attempts to find shortest paths in the lifted graph (instead of finding via other means

paths satisfying constraints).

It is easy to envision the development of a motion planner that removes these two
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restrictions. In particular, one may construct a “lifted transition system” associated

with multiple transitions in the transition system associated with the task specifica-

tion. Note, crucially, that these transitions need not correspond to cell transitions

because multiple task states may be associated with the same cell. However, the

interaction between the two planning levels in the proposed framework occurs due

to the consideration of multiple cell transitions. The “lifted transition system” will

hence need to be designed to capture multiple cell transitions instead of multiple state

transitions alone.

Also, finding feasible and/or optimal paths in the natural state transition sys-

tem associated with a task specification need not be the easiest, or even a practical

approach to satisfying the task specification. For example, Kloetzer and Belta [82]

discuss the satisfaction of temporal logic specifications by executing a model checking

algorithm on the so-called Büchi automaton associated with the cell decomposition

graph. The proposed motion planning framework may be extended by developing ef-

ficient implementations of such task satisfaction methods in the context of the “lifted

transition system”.

8.2 Incremental Planning on the Lifted Graph

The search for feasible and/or shortest paths on the lifted graph GH (or the “lifted

transition system” previously described) is computationally intensive because the

number of vertices in the lifted graph grows exponentially with H . For autonomous

vehicles with limited on-board computational resources, such as small UAVs, the

search for H-cost optimal paths may be infeasible for all but the smallest values of

H . Whereas online path finding on GH may be slow, online path repair may be a

computationally efficient alternative. Incremental algorithms such as D∗ and LPA∗,

discussed in Section A.2 are based on path repair, which refers to the appropriate

modification of a previously known path.
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Figure 7.12 illustrates that a sequence of cells containing a feasible trajectory may

differ only slightly from the sequence of cells found without considering dynamics.

This observation can form the basis of an incremental H-cost search, described infor-

mally as follows: The higher level geometric planner first searches for a path π in the

cell decomposition graph without considering the vehicle dynamical constraints. The

path π corresponds to a path Π in the lifted graph GH . It is possible, using Tile-

Plan, to verify if the edges of GH contained in the path Π are in fact traversable,

considering the vehicle dynamical constraints. In this context, one may envision the

implementation of an incremental search algorithm such as LPA∗ on the lifted graph

to repair the path Π if some of its edges are found by TilePlan to be infeasible for

traversal.

Indeed, this approach of path repair may be used for solving the general mo-

tion planning problem. As previously mentioned, it may be computationally inten-

sive/infeasible to search for a path “lifted transition system”. However, an incremen-

tal algorithm that repairs a path found by the natural hierarchical decomposition of

the motion planning problem (e.g., by the geometric planner for the point-to-point

problem) may be computationally efficient.

8.3 Generalizations and Extensions of the Proposed Work

8.3.1 Path Planning with Uncertainties

In this thesis, we assumed perfect knowledge of the vehicle’s environment map. In

practice, the environment map is typically uncertain, and transitions through cells is

modeled by a Markov decision process (mdp), and the objective of the path planner

is to find a path of minimum expected cost. The environment may be modeled by

probabilistic occupancy grids, and additionally, the environment model may have

a multi-resolution characteristic, similar to the multi-resolution cell decompositions

discussed in Chapter 6.
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To incorporate vehicle dynamical constraints, the motion planning problem may

be modeled by a “lifted mdp,” where the states of this “lifted mdp” are sequences

of states of the original mdp. As before, the challenge is to extend the methods of

solving mdps to efficiently solve the “lifted mdp,” as the number of states in the

“lifted mdp” will be extremely large. Note however, that in the context of modeling

an uncertain environment with probabilistic occupancy grids and the path planning

problem by a mdp, only the discrete planner in the proposed motion planner need be

changed: the tile motion planning problem remains the same.

The tile motion planning problem does change in the presence of uncertainties in

the vehicle dynamical model. In this case, the tile planning problem may be posed in

terms of robustness, i.e., the problem of guaranteeing that the vehicle remains within

the specified tile during the tile traversal in the presence of bounded uncertainties in

the vehicle dynamical model.

8.3.2 Variable Lengths of Histories

In this thesis, we mainly considered implementations of the proposed H-cost motion

planner for fixed values of H . However, it is easy to envision implementations of the

proposed motion planner with dynamically changing values of H . Different lengths of

histories may be required, for instance, to accommodate vehicle models that exhibit

large variations in speed and, consequently, in the minimum radii of turn: agile

rotorcraft, for example. In such cases, variable lengths of histories may allow for

an effective trade-off between the computational efficiency of the planner and the

optimality of the resultant path: whereas longer histories better represent the vehicle

dynamical constraints, H-cost searches with (uniformly) large values of H are slow.

The implementation of an H-cost motion planner with variable H is not difficult.

In fact, we have already illustrated one such implementation, namely, the multi-

resolution motion planner based on the partially lifted graph in Chapter 6. There,
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the lengths of histories were varied according to the sizes of the cells; appropriate

definitions of history lengths varying according to the vehicle speed/minimum radius

of turn may be accommodated similarly in an H-cost search algorithm with variable

lengths of histories.

The more important and challenging problem is of choosing appropriately the

lengths of histories corresponding to the vehicle’s speed and/or the (local) minimum

radius of turn. In this thesis, we resorted to trial-and-error for selecting H ; automatic

selection of H will be an important generalization of the proposed work.

8.3.3 Planar Motion with Larger Configuration Spaces

The idea of attaching history-dependent costs in workspace cell decomposition graphs

is closely related to differential flatness. The states and inputs of a differentially flat

system can be expressed in terms of the so-called flat outputs and their derivatives.

In this context, the idea of attaching history-dependent costs may be thought of as

a method of recovering derivative information about the vehicle’s position. Due to

flatness, this derivative information allows the planner to calculate the orientation by

the relation θ = tan−1 (ẏ/ẋ) .

In light of the preceding observation, it is conceivable to extend the proposed

framework for motion planning of all differentially flat vehicle models with the position

coordinates (of some point on the vehicle, not necessarily the center of mass) as the flat

outputs. For example, the kinematical model of a car with n trailers is differentially

flat [129] with the position coordinates of the last trailer as the flat outputs.

The extension of the proposed motion planner to such vehicle models may be

achieved by solving appropriately the tile motion planning problem. The flatness

property suggests that the tile motion planning problem may at least in principle be

solvable, as all the other configuration variables of the vehicle model may be extracted

from the history of the position coordinates (flat outputs).
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Appendix A

Theoretical Background

A.1 Optimal Control

Optimal control theory, which can be traced historically as far back as the 17th century

to the brachistochrone problem, addresses the following problem:

Find an admissible control input u∗ and an admissible state trajectory ξ∗ that

minimize the performance measure
∫ tf
0
`(ξ(t; ξ0, u), u, t) dt, subject to the differential

constraint ξ̇ = f(ξ, u).

The works of Kirk [80], Athans and Falb [6], and Bertsekas [15] provide comprehen-

sive introductions to optimal control theory. Here we review briefly and qualitatively

the major ideas involved in the solution of the problem stated above.

The central result of the variational theory of optimal control is the famous

Pontyagin Minimum Principle (pmp). Informally, the pmp states that the optimal

control input u∗ and the corresponding state trajectory x∗ minimize pointwise in time

a scalar function of the state and the input, called the Hamiltonian, defined by

H(ξ, u, p, t) := `(ξ, u, t) + pTf(ξ, u),

where p, called the co-state, is a variable of the same dimension as the state. The

pmp is a necessary, but not sufficient, condition of optimality. The pmp identifies a

family of control inputs to which belongs an optimal control input; to find specifically

an optimal control input – i.e., to solve the so-called synthesis problem – it is usually

required to solve the following two-point boundary value problem associated with the

minimization of the Hamiltonian:

ξ̇∗(t) =
∂H
∂p

(t), ṗ∗(t) = −∂H
∂ξ

(t),
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with ξ(0) = ξ0. The terminal boundary values of the co-state are given by the so-called

transversality conditions . Whereas the synthesis problem can be solved analytically

in special cases (cf. [144]), for the large majority of optimal control problems, the

preceding boundary value problem is solved numerically.

The preceding two-point boundary value problem is related to the synthesis of

an open-loop optimal control input for a specific initial condition. The design of

an optimal feedback policy is based on the Bellman Principle of Optimality , stated

informally as follows:

A trajectory t 7→ ξ∗(t), t ∈ [0, tf ], with ξ∗(0) = ξ0 to ξ∗(tf) = ξf is an optimal

trajectory from ξ0 to ξf if and only if the trajectory s 7→ ξ∗(s), s ∈ [t, tf ] is an optimal

trajectory from ξ∗(t) to ξf, for all t ∈ [0, tf ].

The Bellman Principle of Optimality leads to the following partial differential

equation, called the Hamilton-Jacobi-Bellman equation (hjb), for obtaining the so-

called value function J∗:

−∂J
∗

∂t
(ξ, t) = min

u
{H(ξ, u, ∂J

∗

∂ξ
(ξ, t), t)},

with the boundary condition J∗(ξf , tf) = 0. An optimal control u∗ may then be

synthesized, for any initial state ξ, by computing a minimizer of H(ξ, u, ∂J∗

∂ξ
(ξ, t), t).

A.2 Classical Planning

Classical planning refers to the search for a sequence of actions leading to a pre-

specified goal. The problem is assumed to be fully observable (the current state is

known precisely), time invariant (the effects of actions do not change over time), and

deterministic. Classical planning problems are specified using a so-called domain de-

scription language, the most widely known example of which is the strips language.

These languages typically specify task states as a conjunction of atomic logical propo-

sitions (called literals). An action is specified by a pre-condition that determines the
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set of task states to which this action may be applied, and an effect that specifies the

successor state when this action is applied to a particular task state.

Classical planning problems are associated naturally with a directed graph in

which task states are associated with the vertices and actions are associated with the

edges of the graph. Planning approaches may be broadly classified as either a state

space search or a plan space search. The former class of approaches refers to searching

for a feasible and/or optimal (in terms of the number of actions) path in the aforesaid

directed graph. The reader interested is referred to the works of Nilsson [112] and

Russell and Norvig [130] for extensive surveys of solutions to the classical planning

problem.

A.2.1 Search Algorithms

A search algorithm involves exploring new states (i.e., exploring new vertices of the

aforesaid graph by traversing its edges) until the goal state is explored. different

search algorithms are characterized according to the strategy used for exploring new

states. Uninformed search refers to a search strategy that assumes no knowledge of

the problem other than the problem definition itself. Well-known uninformed search

algorithms include the breadth-first search (vertices explored the earliest are chosen

for further exploration), the depth-first search (the latest vertices explored are chosen

for further exploration), and uniform cost search (the vertices with least known cost

are chosen for further exploration). The well-known Dijsktra search algorithm is a

uniform cost, uninformed search.

Informed search refers to a search strategy that has a priori knowledge about the

problem that enables a ranking of newly explored vertices in terms of their “closeness”

to the goal. Informed searches are associated with a heuristic function that guides

the search along the “most promising” vertices. The A∗ algorithm is a well-known

example of an informed search.
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Search algorithms are characterized by four fundamental properties: soundness,

completeness, efficiency, and optimality. The soundness of an algorithm refers to the

validity of its result, i.e., whether every possible result of the algorithm is a feasible

sequence of actions leading to the goal. The completeness property refers to an

algorithm’s ability to find a solution to the planning problem if there exists one, and

to terminate in a finite number of iterations otherwise. The efficiency of an algorithm

is further characterized by its time complexity and its space complexity , which refer,

respectively, to the computational time and memory requirements of the algorithm

in relation to the number of states and the number of actions. Finally, the optimality

of an algorithm refers to its capability of finding sequences of actions consisting of

the minimum number of actions.

A.2.2 Incremental Search

The classical planning problem assumes full observability and time-invariance. How-

ever, some states and/or actions may not be known a priori and/or may change dur-

ing the course of planning. In the context of geometric path planning for example,

the actual environment map may be different from the map known a priori. In this

case, all changes in the environment are captured by changes in the vertex set and/or

the edge set and/or the edge transition costs in the cell decomposition graph that

represents the environment. Consequently, a change in the environment necessitates

a new graph search to find a path commensurate with that change. However, this

process may be computationally expensive and wasteful, especially when the change

in the environment is local, i.e., restricted to small region(s) of the environment. It

is desirable to re-use information about the previous optimal path for computing the

new optimal (considering the change in the environment), i.e., avoid recomputing the

optimal path “from scratch.”
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To this end, the so-called incremental graph search algorithms find the new opti-

mal path without discarding information about the previously known optimal path.

The research in incremental graph search algorithms was pioneered by Stentz [142,143]

with the invention of the D* algorithm; later references discussing incremental algo-

rithms include Refs. [70, 83–85, 98, 120].

A.3 Hierarchical and Hybrid Systems

Autonomous vehicles in general, and motion planning and control systems in par-

ticular, are examples of systems involving both discrete and continuous subsystems,

typically in a hierarchical control structure. The behavior of purely discrete systems

has been addressed in the fields of discrete event systems (cf. [25]) and artificial intel-

ligence (cf. [130]; also, the behavior of purely continuous systems has been thoroughly

addressed in the field of dynamical systems and control theory (cf. [5,75]). However,

the study of hybrid systems is a recent, emerging discipline.

Hybrid control systems are typically designed in a hierarchical structure, and it

is important to characterize the behavior of hierarchical systems with respect to the

behaviors of the individual subsystems involved.

A.3.1 Theory of Hierarchical Systems

We discuss the concepts of coordinability and consistency for hierarchical systems,

introduced in the work of Mesarović et al [107].

A system is defined as a function S : U → Y between a set of inputs U and

a set of outputs Y . In particular, a decision-making system chooses a decision x

from a decision set X such that x is the result of a decision problem. The output

of a decision-making system is a function φ : X → Y of the decision. Two general

decision problems may be identified:

1. The system S is said to solve an optimization problem if the decision x corre-

sponding to an input u ∈ U minimizes a given objective function that depends,
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Figure A.1: Two-level hierarchical control of a process.

in general, on both x and u.

2. The system S is said to solve a satisfaction problem if the decision x corre-

sponding to an input u ∈ U satisfies a given constraint function that depends,

in general, both on x and u.

A two-level hierarchy of decision-making systems, consisting of a single higher-level

unit and N lower-level units and controlling a certain process, is shown in Fig. A.1.

In accordance with the terminology used in [107], we refer to the higher level decision-

making unit as the supremal unit and to the lower level decision-making units as the

infimal units.

We denote by DS the supremal decision problem, and by DI,i the decision problem

of the ith infimal unit. Correspondingly, we denote by γ = (γ1, . . . , γN) the supremal

decision, and by xi the ith infimal decision. The output of the ith infimal unit is

yi = φi(xi).

We acknowledge explicitly the dependency of the infimal decision problem on the
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supremal decision by denoting by DI,i(γi) the ith infimal decision problem. For the

sake of brevity, we denote the set of infimal decision problems by DI(γ) and the set of

infimal decisions by x, i.e., DI(γ) = {DI,1(γ1), . . . ,DI,N(γN)}, and x = {x1, . . . , xN}.

Similarly, we denote the set of outputs of the infimal units by y = φ(x). Finally, we

denote by D the overall decision problem of the two-level system. We are now ready

to define the notions of coordinability and consistency.

The infimal decision problems DI,i are said to be coordinable relative to the supre-

mal decision problem [107, pp. 94] if the following proposition is true:

(∃γ)(∃x)
[
P(x,DI(γ)) and P(γ,DS)

]
.

Informally, coordinability relative to the supremal decision problem means that it is

possible for the supremal unit to solve its decision problem in a manner such that it

is in turn possible for the infimal units to solve their decision problems (which, in

general, depend on the solution of the supremal decision problem).

Next, we introduce a complementary notion of coordinability. The infimal decision

problems are said to be coordinable relative to the overall decision problem [107, pp. 95]

if the following proposition is true:

(∃γ)(∃x)
[
P(x,DI(γ)) and P(φ(x),D)

]
.

Informally, coordinability relative to the overall decision problem means that if each of

the infimal units solves its decision problem (which depends on the supremal decision),

then the overall decision problem is solved.

Finally, the infimal and supremal decision problems are said to be consistent if

the following proposition is true:

(∀γ) (∀x)
[
P(x,DI(γ))⇒ P(φ(x),D)

]
(A.1)

The proposition (A.1) is called the consistency postulate [107, pp. 97]. Infor-

mally, consistency means that the infimal decision units are coordinated relative to
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the overall decision problem whenever they are are coordinated relative to the supre-

mal decision problem. In other words, the two-level system depicted in Fig. A.1 is

consistent if the overall system objective is achieved when the supremal unit and each

of the infimal units achieve their own objectives.

The preceding definitions characterize precisely the interactions between the dif-

ferent subsystems in a hierarchical control structure. In particular, the consistency

postulate provides a precise mathematical definition of the notion of “harmonious”

operation of a hierarchical system.

A.3.2 Hybrid Systems Analysis and Control

Hybrid systems are systems involving both discrete and continuous state variables.

Owing to their inherently multi-disciplinary nature, hybrid systems have been studied

by different academic communities for different applications; consequently, there is no

single, universal model of hybrid systems. For example, Alur et al [3] introduce the

hybrid automaton, where the transitions of a finite state automaton are governed by

the evolution of continuous variables; Branicky et al [21] introduce a model consisting

of dynamical system with controlled and uncontrolled jumps in the state, such that

the behavior of the system is governed by different dynamical equations in different

regions of the state space; and Goebel et al [49] discuss a differential inclusion model

of hybrid systems. Introductory texts and surveys in hybrid systems theory include

Refs. [35, 49, 50, 97, 146, 150].

From a control theoretic perspective, the problems of stability analysis (cf. [20,49,

97, 161]) and robust and optimal control (cf. [21, 49]) are of interest in the context of

hybrid systems. The results on stability typically focus on constructing Lyapunov-like

functions for hybrid systems, and on the extension of known results for (continuous)

nonlinear systems to hybrid systems. In the context of hybrid optimal control, Suss-

mann [145] and Piccoli [117] provide necessary conditions of optimality, similar to
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the Pontryagin Minimum Principle; whereas Hedlund and Rantzer [52, 53] consider

the solutions of Bellman recurrence-type equations for hybrid systems via dynamic

programming.

From a computer scientific perspective, the problem of verification of hybrid sys-

tems, which refers to the problem of deciding whether the hybrid system can reach

a pre-specified set of discrete states from a pre-specified initial state, is of interest.

In purely discrete systems, verification is a matter of efficient implementation alone,

because in principle, the set of reachable states from a given initial state can be de-

termined by enumeration (the number of state trajectories is finite). Verification in

hybrid systems, however, poses the additional problem of decidability , i.e., the ques-

tion of whether verification can be achieved at all. The main idea involved in the

verification of hybrid systems is of discrete abstraction [4, 146], which refers to the

approximation by a discrete state model of the continuous dynamics. The “closeness”

to the continuous system of this discrete approximation is characterized by equiva-

lence properties such as simulation, bisimulation, language inclusion, and language

equivalence. The construction of such “equivalent” models of continuous systems has

been addressed, for instance, in [4, 51, 115, 146, 149].

A.4 The Discrete Wavelet Transform

Multi-resolution analysis of a scalar function of one variable is the construction of a

hierarchy of functional approximations by projecting the function onto a sequence of

nested linear spaces. The discrete wavelet transform provides a framework for such

multi-resolution analysis (MRA) of a function. In this framework, the sequence of

nested linear spaces is generated by translated and scaled versions of two functions

φ : R → R and ψ : R → R of unit energy, called the scaling function and wavelet

respectively. The scaling function and the wavelet must be chosen such that they
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satisfy the orthogonality equations for each n ∈ Z:

〈φ(t), φ(t− n)〉 = δ(n), 〈ψ(t), ψ(t− n)〉 = δ(n), 〈ψ(t), φ(t− n)〉 = 0, (A.2)

and such that there exist sequences h(n) and g(n) of scalars satisfying the dilation

equations

φ(t) =

∞∑

n=−∞

h(n)φ(2t− n), ψ(t) =

∞∑

n=−∞

g(n)φ(2t− n). (A.3)

For each m, k ∈ Z, we define the functions φm,k : R → R and ψm,k : R → R by

φm,k :=
√
2mφ(2mt− k), ψm,k :=

√
2mψ(2mt− k).

For eachm ∈ Z, let Vm be a linear subspace of L2(R) defined as Vm := span {{φm,k : k ∈ Z}} .

It can be shown [121, Ch. 3] that Vm−1 ⊂ Vm, for each m ∈ Z; that
⋃

m Vm is dense

in L2(R); and that {ψm,k} is a basis set for Wm := Vm\Vm−1.

The discrete wavelet transform of a function L2(R) 3 f : R → R is defined by

am0,k := 〈φm0,k(t), f(t)〉, dm,k := 〈ψm,k(t), f(t)〉, (A.4)

where m0 ∈ Z is pre-specified. The corresponding reconstruction equation is

f(t) =
∞∑

k=−∞

am0,kφm0,k(t) +
∞∑

m=m0

∞∑

k=−∞

dm,kψm,k(t). (A.5)

The scalars am0,k and dm,k are known as approximation and detail coefficients respec-

tively. The first term in the r.h.s. of (A.5) is the approximation of f at resolution

m0, while the inner summation of the second term is the difference between approxi-

mations at two successive levels of resolution.

The 2-D wavelet transform is an extension of the 1-D wavelet transform, where a

scaling function and three wavelets are defined by

Φm,k,`(x, y) := φm,k(x)φm,`(y), Ψ1
m,k,`(x, y) := φm,k(x)ψm,`(y),

Ψ2
m,k,`(x, y) := ψm,k(x)φm,`(y), Ψ3

m,k,`(x, y) := ψm,k(x)ψm,`(y).
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For each m ∈ Z, let Vm,W1
m,W2

m, and W3
m be subspaces defined as follows:

Vm := span {{Φm,k,`(x, y) : k, ` ∈ Z}} , W i
m := span

{{
Ψi

m,k,`(x, y) : k, ` ∈ Z
}}

.

Note that the difference Vm\Vm−1 is equal to the union of the mutually orthogonal

spaces W1
m,W2

m,W3
m. The 2-D discrete wavelet transform of a function L2(R2) 3 F :

R2 → R is

am0,k,` := 〈Φm0,k,`(x, y), F (x, y)〉,

dim,k,` := 〈Ψi
m,k,`(x, y), F (x, y)〉, for i = 1, 2, 3, m > m0, k, ` ∈ Z,

where m0 ∈ N is pre-specified. The corresponding 2-D reconstruction equation is

F (x, y) =
∞∑

k,`=−∞

am0,k,`Φm,k,`(x, y) +
3∑

i=1

∞∑

m=m0

∞∑

k,`=−∞

dim,k,`Ψ
i
m,k,`(x, y). (A.6)

An example of a pair of scaling function and wavelet is the Haar family, defined

by

φ(t) :=







1 0 6 t < 1

0 otherwise
, ψ(t) :=







1 0 6 t < 1/2

−1 1/2 6 t < 1

0 otherwise.

(A.7)

For the 1-D Haar family, the subspace Vm, m ∈ Z, corresponds to the set of piecewise-

constant functions over the regularly spaced, disjoint intervals Im,k := [2−mk, 2−m(k + 1)]

of length 2−m, for k ∈ Z. The approximation coefficient am,k is equal to the average

value of the function over the interval Im,k. Consequently, for the 2-D Haar family,

the subspace Vm, m ∈ Z corresponds to the set of piecewise-constant functions over

the square regions

Sm,k,` := Im,k × Im,` =
[
2−mk, 2−m(k + 1)

]
×
[
2−m`, 2−m(`+ 1)

]
(A.8)

of size 2−m, for k, ` ∈ Z. Accordingly, the approximation coefficient am,k,` is equal to

the average value of the function over the square region Sm,k,`.
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Figure A.2: The 1-D Haar scaling function and wavelet functions.

The discrete wavelet transform is a powerful and computationally efficient tool

widely used in multi-resolution signal processing [37, 106, 121]. Several recent works

have investigated the applications of wavelet transforms to vision-based navigation

and vision-based slam: see, for instance, Ref. [104] (appearance-based vision-only

slam); Refs. [62] and [28] (wavelet analysis for local feature extraction); and Ref. [138]

(stereo image processing). With the plethora of available sensors, and in light of

the fact that multiple sensors are typically used for autonomous navigation [148],

the wavelet transform may soon become the common standard of the representation

and analysis of signals [31]. In this context, several recent works address wavelet-

based data representation: see, for instance, Ref. [163] (occupancy grids); Ref. [155]

(standardized representation of road roughness characteristics); Ref. [156] (terrain

depiction for pilot situational awareness); and Ref. [116] (image registration using

wavelets for vision-based navigation).
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Appendix B

Technical Proofs

B.1 Technical Results for Chapters 2 and 3

Proof of Proposition 2.4. We first show that the algorithm terminates after a finite

number of iterations. Whenever a pair (j,m) is added to P, the value of d(j,m) is

reduced. Since there is a finite number of nodes and TH is finite, there is also a finite

number of paths containing no cycles from iS to i. Since the number of reductions of

d(j,m) is at most equal to the number of possible paths from iS to i, it follows that

the number of possible reductions of d(j,m) is also finite. Hence, each pair (j,m) is

added to P a finite number of times. Since a (j,m) pair is always deleted from P

at each iteration, it follows that P = ∅ after a finite number of iterations and the

algorithm terminates.

Next, suppose there exists at least one admissible path in G from iS to i containing

a particular history I :=History(i,mP ). Since there are finitely many paths from iS

to i with no cycles, and since cycles have non-negative cost, there exists an optimal

path. Suppose π∗ := (j0, j1, . . . , jP ) is an optimal path in G with j0 = iS, jP = i,

and (jP−H , . . . , jP ) = History(i,mP ). Also, let mk be such that (jk−H , . . . , jk) =

History(jk, mk), for k ∈ {H, . . . , P}. Since π∗ is optimal, the cost from j0 = iG to

node jk ∈ π∗ must be J ∗
jk,mk

, for every k ∈ {1, . . . , P}.

Next, for sake of contradiction, suppose d(i,mP ) > J ∗
i,mP

after the algorithm

terminates. This implies that d(jP−1, mP−1) > J ∗
jP−1,mP−1

, for otherwise, when

(jP−1, mP−1) were removed from P, the condition in Line 8 of procedure Main would

have been satisfied due to the optimality of π∗. Furthermore, Line 9 of procedure
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Main would have resulted in

d(i,mP ) = d(jP−1, mP−1)

+g̃H+1(([h(jP−1, mP−1)]2, I))

= J ∗
jP−1,mP−1

+ g̃H+1(([h(jP−1, mP−1)]2, I))

= J ∗
jP ,mP

,

since [h(jP−1, mP−1)]2 = jP−H−1 by Line 10. By similar arguments, d(jP−1, mP−1) >

J ∗
jP−1,mP−1

implies that d(jP−2, mP−2) > J ∗
jP−2,mP−2

and so on, leading to the con-

clusion that d(jH+1, mH+1) > J ∗
jH+1,mH+1

. However, Line 6 of procedure Initial-

ize precludes this situation, thus leading to a contradiction. Hence, we must have

d(i,mP ) = J ∗
i,mP

after the termination of the algorithm.

Proof of Proposition 2.5. Let Pk denote the fringe after k iterations of the algorithm.

Let also dj,mk denote the value of d(j,m), (j,m) ∈ Pk, at this instant. Let

bk := min{dj,mk : (j,m) ∈ Pk},

(jk, mk) := argmin{dj,mk : (j,m) ∈ Pk}.

We claim that b0 6 b1 . . . 6 bk, for each k > 1. To this end, note that b0 =

min{dj,m0 : (j,m) ∈ P0} > 0 by Line 6 of procedure Initialize. At initialization,

either |P0| = 1 or |P0| > 1. First, suppose that |P0| = 1. Then, after the first

iteration is performed for all neighbors of j0, (j1, m1) must be such that (j0, j1) ∈ E,

and hence

b1 = dj1,m1

1 = dj0,m0

0 + g̃H+1(([h(j0, m0)]2, I)) > b0,

where I = History(j1, m1). If |P0| > 1, then after the first iteration is performed

for all neighbors of j0, (j1, m1) ∈ P1\P0 or (j1, m1) ∈ P0\{(j0, m0)}. In either case,

b1 > b0.
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Next, assume that b0 6 b1 6 . . . 6 bk for some k > 1. Let P̂k+1 be the set of

elements added to P during the kth iteration, i.e., Pk+1 = (Pk\{(jk, mk)}) ∪ P̂k+1.

Note that dj,mk+1 > djk,mk

k = bk for every (j,m) ∈ P̂k+1. It follows that

bk+1 = min
{
dj,mk+1 : (j,m) ∈ Pk+1

}

= min{dj,mk+1 : (j,m) ∈ (Pk\{(jk, mk)}) ∪ P̂k+1}

= min{min
{
dj,mk+1 : (j,m) ∈ Pk\{(jk, mk)}},

min{dj,mk+1 : (j,m) ∈ P̂k+1}}. (B.1)

Now, for every (j,m) ∈ Pk\{(jk, mk)}, we have

dj,mk+1 = min{dj,mk , djk,mk

k + g̃H+1(([h(jk, mk)]
,
2I))},

where I = History(j,m). Since bk = djk,mk

k = min
{
dj,mk : (j,m) ∈ Pk

}
and since

g̃H+1 is non-negative, we have dj,mk+1 > djk,mk

k for every (j,m) ∈ Pk\{(jk, mk)}. It

follows from (B.1) that bk+1 > bk, and thus by induction we have that b0 6 b1 6

. . . 6 bk for k > 1.

Finally, we show that once a pair (i,m) is removed from P, it is never added back

again. To see this, suppose (i,m) is removed after the κth iteration of the algorithm,

i.e., dκ−1
i,m = bκ−1. For sake of contradiction, suppose (i,m) re-enters P after the λth

iteration, with λ > κ. It follows from Line 9 of procedure Main that

di,mλ = djλ,mλ

λ−1 + g̃H+1(([h(jλ, mλ)]2, Ii,m)) > djλ,mλ

λ−1 = bλ−1.

By (8), if (i,m) enters P then dm(i) is strictly reduced. It follows that di,mλ−1 >

di,mλ > bλ−1. However, since dki,m is non-increasing, we have bλ−1 < di,mλ−1 6 di,mκ−1 =

bκ−1. If λ > κ, then bλ−1 > bκ−1, thus leading to a contradiction.

Proof of Lemma 3.1. For a given H ∈ N, the cost JH(Π
H) of the path ΠH is com-

puted by executing TilePlan for each tile in ΠH , i.e., for each pair (JΠH

m , JΠH

m+1), m =

0, 1, . . . , P−H−1. By definition of the lifted graph GH , the edge (JΠH

m , JΠH

m+1) in GH is
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a node in VH+1, and the tile (JΠH+1

m , JΠH+1

m+1 ) in GH+1 is the triplet (JΠH

m , JΠH

m+1, J
ΠH

m+2).

Thus, the first node of the tile (JΠH+1

m , JΠH+1

m+1 ) in GH+1 is the same as the first node

of the tile (JΠH

m , JΠH

m+1) in GH .

Let TilePlan(H) and TilePlan(H + 1) denote, respectively, the execution of

TilePlan on tiles in GH and on tiles in GH+1. Let ξ be the initial state pro-

vided as an input to both TilePlan(H) and TilePlan(H + 1). Suppose Tile-

Plan(H) computes um,H as the control required to traverse the tile (JΠH

m , Jm+1,H),

and TilePlan(H + 1) computes um,H+1 as the control required to traverse the tile

(JΠH+1

m , JΠH+1

m+1 ). Correspondingly, let ξm,H and ξm,H+1 be the terminal states, respec-

tively, resulting after the controls um,H and um,H+1 are applied at ξ.

Because TilePlan computes the controls required for traversal of the first cell,

and because the first cell of both the tiles under consideration is the same, um,H+1

will differ from um,H only if there exists no control from the state ξm,H that would

enable traversal through the remainder of the tile (Jm,H+1, Jm+1,H+1), i.e., through the

sequence of cells J
ΠH+1,(3)
m , . . . , J

ΠH+1,(H+3)
m . As a consequence, TilePlan(H) would

return failure when it processes the tile (JΠH

m+1, J
ΠH

m+2), since the first H+1 cells of this

tile are precisely J
ΠH+1,(3)
m , . . . , J

ΠH+1,(H+3)
m . In other words, for every tile (JΠH

m , JΠH

m+1),

m = 0, 1, . . . , P −H , if the cost returned by TilePlan(H) is different from the cost

returned by TilePlan(H +1) for the tile (JΠH+1

m , JΠH+1

m+1 ), then TilePlan(H) must

return an infinite cost (failure) for the tile (JΠH

m+1, J
ΠH

m+2). The required result (3.7)

then follows.

B.2 Technical Results for Chapter 6

Proposition B.1. Let j̄ ∈ V̄ , and A = MR-Approx(j̄). Let Cmr and G = (V,E)

be, respectively, the multi-resolution cell decomposition and the topological graph as-

sociated with A. If there exists an obstacle-free path in Ḡ from j̄ to īG, then there

exists an obstacle-free path in G from j := vert(cell(j̄;Cmr);G) to iG, where iG ∈ V is
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the unique node that satisfies īG ∈ W (iG, V ).

Proof. Let π̄(j̄, īG) = (j̄0, . . . , j̄P̄ ) be an obstacle-free path in Ḡ from j̄0 = j̄ to j̄P̄ = īG.

For each m = 0, 1, . . . , P̄ , there exists a unique set Wm ∈ {W (j, V )}j∈V such that

j̄m ∈ Wm. Let im ∈ V be such that Wm = W (im, V ). Because π̄ is a path in Ḡ,

(j̄m−1, j̄m) ∈ Ē for each m = 1, 2, . . . , P̄ , and it follows that either Wm−1 = Wm, or

(im−1, im) ∈ E. Thus, the path π(j, iG) := {j0, . . . , jP}, where P 6 P̄ , is a path in G.

To show that the path π is also obstacle-free in G, we note that since π̄ is

obstacle-free in Ḡ, F (j̄m) 6 1 − ε, for each m = 0, 1, . . . , P̄ . It follows by (6.8) that

F̂ (cell(jm;C
mr)) < (1 − ε) for each m = 0, 1, . . . , P , and by (6.10) that J (π) < M ,

i.e., π is an obstacle-free path.

Corollary B.2. If there exists an obstacle-free path in Ḡ from the initial node īS to

the goal node īG, then the cost of the initial path π∗
0 computed by the algorithm is

finite.

Proof. By Proposition B.1, if there exists an obstacle-free path in Ḡ from j̄ to īG, then

there exists an obstacle-free path π∗
0(iS, iG,0) in G(0) from the node iS := vert(cell(̄iS;C);G(0))

to the node iG,0, where iG,0 ∈ V (0) is the unique node that satisfies īG ∈ W (iG,0, V (0)).

Because π∗
0 is obstacle-free, J (π∗

0) < M , i.e., J (π∗
0) is finite.

Proposition B.3. Suppose that the algorithm does not meet a setback at iteration

n ∈ N of its execution, and also suppose that Visited(j̄n) = 0. If there exists a path

in the graph G(n) from the node jn = vert(cell(j̄n;C
mr(n));G(n)) to the node iG,n,

then KG(j̄n−1) − KG(j̄n) > λ2, where iG,n ∈ V (n) is the unique node that satisfies

īG ∈ W (iG,n, V (n)).

Proof. Let π∗
n(jn, iG,n) = (j0, . . . , jP (n)) denote the optimal path in the graph G(n)

computed by the algorithm at Line 11. First, suppose that the cell decomposition

Cmr(n) is identical to the cell decomposition Cmr(n−1) (in particular, iG,n−1 = iG,n). If

142



there exists a path in G(n) from jn to iG,n, then there exists an optimal path in G(n)

from jn to iG,n because G(n) is finite. Then, by Bellman’s principle of optimality,

the path π∗
n−1(jn−1, iG,n−1) = (i0, . . . , iP (n−1)), computed at iteration n − 1 of the

algorithm, contains the path π∗
n, with P (n) = P (n− 1)− 1, and jm−1 = im for each

m = 1, 2, . . . , P (n), and hence J (π∗
n) 6 J (π∗

n−1).

Next, suppose that the cell decomposition Cmr(n) is not identical to the cell de-

composition C
mr(n−1). Let πn(jn, iG,n) and πn−1(jn−1, iG,n−1) be paths in the graphs

G(n) and G(n − 1) respectively. If W(πn) ⊆ W(πn−1), then due to the second and

third terms in the right hand side of (6.10), J (πn) 6 J (πn−1). In particular, if

W(π∗
n) ⊆ W(π∗

n−1), then J (π∗
n) 6 J (π∗

n−1).

Now suppose W(π∗
n) * W(π∗

n−1). Let πn(jn, iG,n) be any path in G(n) from un

to iG,n satisfying W(πn) ⊆ W(π∗
n−1). There exists at least one such path πn in G(n)

because the algorithm does not meet a setback at iteration n. By the arguments in

the preceding paragraph, J (πn) 6 J (π∗
n−1). Furthermore, because π∗

n is an optimal

path in G(n) from jn to iG,n, J (π∗
n) 6 J (πn), and it follows that J (π∗

n) 6 J (π∗
n−1).

Finally, note that the cell corresponding to the first node j0 ∈ V (n) in the path π∗
n

is the same as the cell corresponding to the second node i1 ∈ V (n − 1) in π∗
n−1, and

furthermore, this cell corresponds to the node j̄n ∈ V̄ . Then KG(j̄n−1) − KG(j̄n) =

J (π∗
n−1)− J (π∗

n) > ḡ(j̄n−1, j̄n) > λ2, by (6.9).

Proposition B.4. Let j̄ be an arbitrary node in V̄ . Then either the algorithm never

visits j̄ or the algorithm visits j̄ finitely many times.

Proof. Suppose, for the sake of contradiction, that the algorithm visits the node

j̄ ∈ V̄ infinitely many times at iterations n1, n2, . . . , nk . . ., i.e., j̄n1
= j̄n2

= . . . = j̄.

By Line 8, KG(j̄nk
) − KG(j̄nk−1

) > 0, and hence there exists N ∈ N, such that

KG(j̄nN
) > M . It follows by Line 3 that the algorithm terminates in at most nN

iterations, leading to a contradiction.

143



Proposition B.5. Let π∗
n(jn, iG,n) = (j0, . . . , jP (n)) be the path found by the algorithm

either at Line 8 or Line 11 at iteration n ∈ N, and suppose there exists an obstacle-free

path in Ḡ from j̄n to īG that is contained within the set W(π∗
n). Then the algorithm

does not visit the node j̄n at any future iteration.

Proof. We note that the cell corresponding to the second node in the path π∗
n is a

cell at the finest resolution, and hence, W (j1, V (n)) = j̄n+1. Then it follows due to

(6.11) and due to the hypothesis that there exists an obstacle-free path π̄(j̄n, īG) =

(̄i0, . . . , īP̄ ) in Ḡ from j̄n to īG such that ī1 = j̄n+1. Thus, there exists an obstacle-free

path in Ḡ from j̄n+1 to īG: in particular, (̄i1, . . . , īP̄ ) is such a path. Then it follows

by Proposition B.1 that the algorithm does not execute Line 18 at iteration n+ 1.

By the preceding arguments, the following statement is true: if there exists an

obstacle-free path in Ḡ from j̄n+k to īG contained within π∗
n+k, then the algorithm

does not execute Line 18 at iteration n+ k + 1.

Now suppose, for the sake of contradiction, that there exists ` > 1 such that the

algorithm visits node j̄n again at iteration n + `, i.e., j̄n = j̄n+` and j̄n+1 = j̄n+`−1.

Then there exists m < ` such that for each k = m,m + 1, . . . , `, the algorithm

executes Line 18 at iteration n + k, i.e. j̄n+k+1 = b(j̄n+k). Due to the statement in

the preceding paragraph, it follows that either there exists no obstacle-free path in

Ḡ from j̄n+k to īG, or the second node of every obstacle-free path in Ḡ from j̄n+k to

īG is b(j̄n+k). However, neither of these hold true for k = ` − 1, because we showed

earlier that (̄i1, . . . , īP̄ ) is an obstacle-free path in Ḡ from j̄n+1 = j̄n+`−1 to īG, and

this path does not contain j̄n. Thus we arrive at a contradiction, and it follows that

there exists no ` > 1 such that j̄n = j̄n+`, i.e., the algorithm does not visit j̄n at any

future iteration.
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Appendix C

Existence of Curvature-bounded Paths in

Rectangular Channels: General Case

As discussed in Chapter 5, our solutions of Problems 4.4 and 4.5 are based on con-

structions of paths Λx and Υx satisfying properties (P1)-(P5). We describe these

constructions in this chapter. For our constructions, we only consider paths that

are concatenations of circular arcs of radius r and straight line segments, which is

justified by the following result.

Lemma C.1 (Boissonnat et al [18]). If there exists an admissible1 path of curvature

at most r−1, then there exists an admissible path consisting of a concatenation of

straight line segments and arcs of circles of radius r.

In what follows, we will denote by C+ a clockwise circular arc, by C− a counter-

clockwise circular arc, and by S a straight line segment. When necessary, we will

denote by C+
u , C

−
u , or Su an arc of length u. Also, we will denote by C+C+, C+C−,

C−S, or C+
u C

+
v , C

+
u C

−
v , C

−
u Sv, etc. concatenations of different arcs. It is implicit

that at the points of concatenation of successive sections of a path, the tangents of

both sections are equal, thus ensuring that the overall path remains continuously

differentiable. In particular, when we refer to a line of a specified slope being tangent

to a specified clockwise arc or a specified counter-clockwise arc, the point of tangency

is uniquely determined.

1In [18], the term “admissible” defines a curvature-bounded continuously differentiable path that
satisfies specified initial and terminal conditions and is contained within a specified polygon.
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replacemen

W

O

QA B

CD

α∗(w)

Γi,0

(a) r 6
d21 + (d2 − w)2

2(d2 − w)

W

O

QA B

CD

Γi,0

(b) r >
d21 + (d2 − w)2

2(d2 − w)

Figure C.1: Maximum possible tangent angle at W of a Type 1 admissible path.

C.1 Traversal across Parallel Edges

We first establish a series of preliminary results characterizing the geometry of curvature-

bounded paths involved in the traversal across parallel edges.

Lemma C.2. If r 6
d21 + (d2 − w)2

2(d2 − w)
, then the maximum possible tangent angle at W

for any Type 1 admissible path is given by the function w 7→ α∗(w), defined by

α∗(w) :=







π
2
, d2 − w > r,

cos−1

(

1− d2 − w
r

)

, d2 − w 6 r.
(C.1)

Proof. Let α ∈ [0, π
2
], and let Γi,0 be the C+ arc of radius r, passing through W

such that Γ′
i,0 (W ) = α . Let O be the center of the circular arc Γi,0, and let Q be

the intersection with Γi,0 of the line that passes through O and is parallel to the y

axis (see Fig. C.1(a)). It follows from elementary geometry that Γi,0 either does not

intersect the line AB or it intersects the line AB in at most one point if and only if

r(1− cosα) 6 d2 − w. (C.2)

First, suppose d2 − w/r > 1. Then (C.2) is satisfied for all α ∈ [0, π
2
], and the

maximum possible value of Γ′
i,0 (W ) is π

2
. Next, suppose d2 − w/r 6 1. Then α∗(w)
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satisfies (C.2) as an equality, and the point Q lies on the segment AB (see Fig.

C.1(a)). The abscissa of Q = (q, d2) is

q := r sinα∗(w) =
√

2r(d2 − w)− (d2 − w)2 6 d1,

since r 6
d21 + (d2 − w)2

2(d2 − w)
. It follows that Q lies between points A and B, and hence

α∗(w) equals the maximum possible value of Γ′
i,0 (W ), for otherwise if Γ′

i,0 (W ) >

α∗(w), then Γi,0 would intersect the segment AB in two points and Γi,0 would not be

Type 1 admissible.

It remains to show that no Type 1 admissible path other than a C+ arc passing

through W can have an initial tangent angle greater than α∗(w). If d2−w > r, then

α∗(w) = π
2
, and there is nothing to prove. Suppose d2 − w 6 r, in which case the

C+ arc Γi,0 passing through W with Γ′
i,0 (W ) = α∗(w) intersects the segment AB

at exactly one point Q, and Γ′
i,0 (Q) = 0. Note that the absolute rate of change of

orientation along a continuously differentiable path is by definition the curvature of

the path. In the family of paths with curvature at most r−1 everywhere, a circle of

radius r is the path where the absolute rate of change of orientation is maximum,

since the curvature along the circle is equal to r−1 everywhere. It follows that any

continuously differentiable path Π fromW to Q with Π′ (W ) > α∗(w) and Π′ (Q) 6 0

necessarily has curvature greater than r−1 at some point on that curve. Now, for

the sake of contradiction, suppose there exists a continuously differentiable path Π

between W and Q such that Π′ (W ) > α and Π′ (Q) > 0, and such that the curvature

at all points on Π is at most r−1. By continuity of the tangent, Π intersects Γi,0

at a point P between W and Q. Then Π′ (W ) > Γ′
i,0 (W ) (by assumption) and

Π′ (P ) < Γ′
i,0 (P ), which implies that the curvature of the section of Π between W

and P exceeds r−1 at some point on that section of Π.

Corollary C.3. Let X = (d1, x) be any point on segment Y Z, and suppose

r 6
d21 + (d2 − x)2

2(d2 − x)
. If d2 − x < r and β(x) < − cos−1 (1− (d2 − x)/r), then there
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exists no Type 1 admissible path between W and X.

Corollary C.4. Let X = (d1, x) be any point on segment Y Z, and suppose

r 6
d21 + x2

2x
. If x < r and β(x) > cos−1 (1− x/r), then there exists no Type 1

admissible path between W and X.

Corollaries C.3 and C.4 are direct consequences of Lemma C.2 after reflections

about the horizontal and vertical axes, respectively. In light of these Corollaries C.3

and C.4, a preliminary step common to all Cases is to determine, for a particular

x ∈ [y, z], whether the hypotheses of these corollaries hold true, i.e., whether β(x) <

− cos−1 (1− (d2 − x)/r) whenever r 6 (d21 + (d2 − x)2)/2(d2 − y) and (d2 − x)/r < 1

hold; or whether β(x) 6 cos−1 (1− x/r) whenever r 6 (d21 + x2)/2x and x < r hold.

If either hypothesis holds true, then we conclude that Υx does not exist for that

particular x ∈ [y, z]. For the sake of clarity, we will assume in what follows that

neither of the above conditions holds true.

Fact C.5. Let X be a point on the segment Y Z, and let β ∈
[
β(x), β(x)

]
be fixed.

If there exists a Type 1 admissible C+SC− (resp. C−SC+) path between (W,α) and

(X, β), then there exists no Type 1 admissible C+SC+ (resp. C−SC−) path between

(W,α) and (X, β).

Proof. Let Γi,0 be the C+ arc passing through W such that Γ′
i,0 (W ) = α. Let δC+S

be the angle of slope of the line passing through X that is tangent to Γi,0. Suppose

β < δC+S, and let Γf,1 be the C
− arc passing through X with Γ′

f,1 (X) = β. Then the

C+SC− path formed by concatenating sections of Γi,0 and Γf,1 (along with a section

of the common tangent to Γi,0 and Γf,1) is not Type 1 admissible because the point of

intersection with Γf,1 of the common tangent to Γi,0 and Γf,1 lies outside the rectangle

ABCD.

On the other hand, if β > δC+S, then this C+SC− path is Type 1 admissible, while

the C+SC+ path formed by concatenating Γi,0 and Γf,0 is not Type 1 admissible due
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to the same argument as above. Since α and β are fixed, any C+SC− path (resp.

C+SC+ path) between (W,α) and (X, β) must be consist of sections of Γi,0 and Γf,1

(resp. Γf,0), and the result follows.

Fact C.6. Let X be a point on the segment Y Z, and let β ∈
[
β(x), β(x)

]
be fixed.

If there exists a Type 1 admissible C+SC+ (resp. C−SC−) path between (W,α) and

(X, β), then there exists no Type 1 admissible C−SC− (resp. C+SC+) path between

(W,α) and (X, β).

Proof. Similar to the proof of Fact C.5, hence omitted.

Let D be the set of all paths consisting of at most three sections excluding the

C+C−C+ and C−C+C− paths, i.e.,

D :=
{
C+

`1
S`2C

+
`3
, C+

`1
S`2C

−
`3
, C−

`1
S`2C

+
`3
, C−

`1
S`2C

−
`3
: `1, `2, `3 ∈ R>0

}
.

Lemma C.7. Let X be a point on the segment Y Z, and let β ∈
[
β(x), β(x)

]
be

fixed. Let α, α ∈
[
−π

2
, π
2

]
be angles such that α 6 α; such that there exists a Type 1

admissible path in D from (W,α) to (X, β); and such that there exists a Type 1

admissible path in D from (W,α) to (X, β). Then, for every α ∈ [α, α], there exists

a Type 1 admissible path in D from (W,α) to (X, β).

Proof. Let α ∈
[
−π

2
, π
2

]
, and let Γi,0 (resp. Γf,1) be the C+ (resp. C−) arc passing

through W (resp. X) with Γ′
i,0 (W ) = α (resp. Γ′

f,1 (X) = β). If Γi,0 and Γf,1 do not

intersect, then there exists a C+SC− path Πα between (W,α) and (X, β). We define

the function δ :
[
−π

2
, π
2

]
→ [−π, π] as the angle of the slope of the S section of this

path. It can be shown using elementary geometry that δ(α) satisfies the equation

(x− w + r cosα + r cos β) cos(δ(α))− (d1 − r sinα− r sin β) sin(δ(α)) = 2r, (C.3)

and Πα = C+
r|α−δ(α)|S`C

−
r|β−δ(α)|, where

` := (x− w + r cosα + r cos β − 2r cos(δ(α))/sin(δ(α)).
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The path Πα is Type 1 admissible if the points of tangency with Γi,0 and Γf,1 of the S

section of Πα lie in the rectangle ABCD, which in turn is true if α > δ(α), β > δ(α),

and α− δ(α) 6 π, β − δ(α) 6 π.

We may now rewrite (C.3) as

A(α) cos δ −B(α) sin δ = 2r,

where A(α) := (x − w + r cosα + r cos β), and B(α) := (d1 − r sinα − r sin β). It

follows that

∂δ

∂α
(α) =

(
∂A
∂α

(α) cos δ(α)− ∂B
∂α

(α) sin δ(α)
)

A(α) sin δ(α) +B(α) cos δ(α)
(C.4)

=
r sin(δ(α)− α)

A(α) sin δ(α) +B(α) cos δ(α)
. (C.5)

It can be shown using elementary geometry that whenever there exists a Type 1

admissible C+SC− path between (W,α) and (X, β), A(α) > 0 and B(α) > 0. Then

it follows from (C.3) that A(α)
B(α)

> tan δ.

Now suppose, for the sake of contradiction, that A(α) sin δ+B(α) cos δ 6 0. Then

it follows that

A(α) sin δ(α) 6 −B(α) cos δ(α),

=⇒ −B(α)

A(α)
> tan δ(α),

=⇒ −B(α)

A(α)

A(α)

B(α)
> tan2 δ(α) > 0,

=⇒ −1 > 0,

which is a contradiction. Hence, A(α) sin δ(α) + B(α) cos δ(α) > 0. It follows from

(C.4) that ∂δ
∂α
(α) 6 0 whenever δ(α) 6 α, and δ(α)− α > −π.

According to the hypothesis, there exists a Type 1 admissible path in D between

(W,α) and (X, β). Assume that this path is of type C+SC−. Then, the circles Γi,0

and Γf,1 do not intersect. It can be easily shown that Γi,0 and Γf,1 do not intersect

for every α ∈
[
−π

2
, α
]
. Also, by the earlier arguments, α > δ(α), β > δ(α), and

∂δ
∂α

∣
∣
α=α

< 0. Then it follows by the continuity of δ that there exists αSC− < α such
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that δ(αSC−) = αSC−. Geometrically, αSC− is the tangent angle at W of the SC−

path from W to X with tangent angle β at X . Furthermore, δ(αSC−) < β. Then it

follows that for every α ∈ [αSC−, α], there exists a C+SC− path Πα between (W,α)

and (X, β) such that the angle of slope of the S section of Πα is δ(α) ∈ [δ(α), αSC−].

Since δ(α) 6 α for every α ∈ [αSC−, α] and δ(α) < δ(αSC−) < β, it follows that Πα is

Type 1 admissible.

Using similar arguments, we can prove an identical statement in the case that

the Type 1 admissible path in D between (W,α) and (X, β) (guaranteed by the

hypothesis) is a C+SC+ path. Repeating the same analyses after a reflection about

the x-axis, we can summarize the results as follows:

(R1) If there exists a Type 1 admissible C+SC− path between (W,α) and (X, β),

then for every α ∈ [αSC−, α], there exists a Type 1 admissible C+SC− path

between (W,α) and (X, β).

(R2) If there exists a Type 1 admissible C+SC+ path between (W,α) and (X, β),

then for every α ∈ [αSC+ , α], there exists a Type 1 admissible C+SC+ path

between (W,α) and (X, β).

(R3) If there exists a Type 1 admissible C−SC− path between (W,α) and (X, β),

then for every α ∈ [α, αSC−], there exists a Type 1 admissible C−SC− path

between (W,α) and (X, β).

(R4) If there exists a Type 1 admissible C−SC+ path between (W,α) and (X, β),

then for every α ∈ [α, αSC+], there exists a Type 1 admissible C−SC+ path

between (W,α) and (X, β).

By the hypothesis, there exist two paths in Π, Π̄ ∈ D such that Π′ (W ) = α and

Π̄′ (W ) = α. By Facts C.5 and C.6, it follows that either of the following cases holds

true:
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1. Both Π and Π̄ are of the same type (i.e., C+SC−, C+SC+, C−SC−, or C−SC+)

2. Π is of type C+SC− and Π̄ is of type C−SC−

3. Π is of type C+SC+ and Π̄ is of type C−SC+

In the first case, exactly one of the four results (R1),. . .,(R4) suffices to prove the

Lemma. In the second case, the combination of (R1) and (R3) proves the Lemma.

Finally, in the third case, the combination of (R2) and (R4) proves the Lemma.

Lemma C.8. Let X be a point on the segment Y Z. If there exists a Type 1 admissible

C+ path Γi,0 between W and X, then the tangent angle at W of any Type 1 admissible

path between W and X is no greater than Γ′
i,0 (W ).

Proof. The absolute rate of change of orientation along a continuously differentiable

path is by definition the curvature of the path. In the family of paths with curvature

at most r−1 everywhere, a circle of radius r is the path where the absolute rate of

change of orientation is maximum, since the curvature along the circle is equal to r−1

everywhere. It follows that any continuously differentiable path Π from W to Q with

Π′ (W ) > Γ′
i,0 (W ) and Π′ (X) 6 0 necessarily has curvature greater than r−1 at some

point on that curve.

Now suppose, for the sake of contradiction, that there exists a Type 1 admissible

path Π between W and X which satisfies Π′ (W ) > Γ′
i,0 (W ) and Π′ (X) > Γ′

i,0 (X).

By continuity of the tangent, Π intersects Γi,0 at a point P between W and X . Then

Π′ (W ) > Γ′
i,0 (W ) (by assumption) and Π′ (P ) < Γ′

i,0 (P ), which implies that the

curvature of the section of Π between W and P exceeds r−1 at some point on that

section of Π. This contradicts the assumption that the curvature at all points on Π

is at most r−1.

Corollary C.9. If there exists a Type 1 admissible C− path Γi,1 between W and X,

then the tangent angle at W of any Type 1 admissible path between W and X is no

less than Γ′
i,1 (W ).
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Corollary C.10. If there exists a Type 1 admissible C+ path Γi,0 between W and X,

then the tangent angle at X of any Type 1 admissible path between W and X is no

less than Γ′
i,0 (X).

Corollary C.11. If there exists a Type 1 admissible C− path Γi,1 between W and X,

then the tangent angle at X of any Type 1 admissible path between W and X is no

greater than Γ′
i,1 (X).

Corollaries C.9 and C.10 are direct consequences of Lemma C.8 after reflections

about the horizontal and vertical axes respectively. Corollary C.11 is a consequence

of Corollary C.10 after a reflection about the horizontal axes.

We are now prepared to present the constructions of Υx and Λx for the traversal

of parallel edges. For the ease of analysis, we identify the following mutually exclusive

cases.

Case 1: 0 < r < (d1/4),

Case 2: (d1/4) 6 r < (d1/2),

Case 3: (d1/2) 6 r.

C.1.1 Case 1

Let X = (d1, x) be a point on the segment Y Z, and let β ∈ [α(x), α(x)]. Let Γi,0

be the C+ arc passing through W such that Γ′
i,0 (W ) = α∗(w). Let Γf,0 and Γf,1 be,

respectively, the C+ and C− arcs passing throughX such that Γ′
f,0 (X) = Γ′

f,1 (X) = β.

The arc Γi,0 does not intersect either of the arcs Γf,0 and Γf,1, since r < d1/4. Hence,

there exists a C+SC− path as well as a C+SC+ path from (W,α∗(w)) to (X, β), but

we need to show that one of these paths is Type 1 admissible.

For every γ ∈ (β, π
2
], let Ψ1(γ) be the line with angle of slope γ that is tangent to

Γf,0. Similarly, for every δ ∈
[
−π

2
, β
)
, let Ψ2(δ) be the line with angle of slope δ that
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W α

X β

A B

CD

{Ψ1(γ)}

{Ψ2(δ)}

Γf,0

Γf,1

Γi,0

Figure C.2: Construction of Υx for Case 1.

is tangent to Γf,1. Finally, let Ψ3 be the line passing through the point X with angle

of slope β.

When traversing a C+ arc (resp. C− arc), the orientation along the path decreases

monotonically (resp. increases monotonically). Hence, for each γ ∈ (β, π
2
] (resp. δ ∈

[
−π

2
, β
)
), the point of tangency of Ψ1(γ) to Γf,0 (resp. Ψ2(δ) to Γf,1) lies in the interior

of the rectangle ABCD. Also, note that the orientation along the arc Γi,0 decreases

monotonically starting from α∗(w). It follows that there exists η ∈
[
−π

2
, α∗(w)

]
such

that the line Ψ with slope tan η which is tangent to Γi,0 belongs to the set

{

Ψ1(γ)
}

γ∈(β,π
2
]

⋃{

Ψ2(δ)
}

δ∈[−π
2
,β)

⋃{

Ψ3

}

.

Thus, the line Ψ is either tangent to Γf,0 or to Γf,1 at a point in the interior of the

rectangle ABCD, or it is tangent to both Γf,0 and Γf,1 at the point X . Hence, the

path Πx defined by

Πx :=







C+
|α∗(w)−η|SC

+
|η−β|, Ψ ∈

{

Ψ1(γ)
}

γ∈(β,π
2
]
,

C+
|α∗(w)−η|SC

−
|η−β|, Ψ ∈

{

Ψ2(δ)
}

δ∈[−π
2
,β)
,

C+
|α∗(w)−η|S Ψ = Ψ3,

(C.6)

is a Type 1 admissible path from W to X . The family of paths Πx is our candidate
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Computation of Υ′
x (W ) and α for Case 1 (Parallel Edges)

1: Υ′
x (W )← α∗(w), for all x ∈ [y, z]

2: I ← [y, z]

3: α← maxx∈I {Υ′
x (W )} = α∗(w)

Figure C.3: Analysis of traversal across parallel edges: 0 < r < (d1/4)

for the family Υx. As a candidate for the family Λx, we construct the family of

paths Π̄x by following an identical procedure as above after a reflection about the

x-axis, i.e., Π̄x is either a C−SC+, or C−SC−, or a C−S path from W to X with

Π̄′
x (W ) = −α∗(d2 − w).

To show that Πx = Υx and Π̄x = Λx, we must show that the families Πx and Π̄x

satisfy the properties (P1) through (P5) listed in Section 5.2.

Proof of (P1). Since our choice of X in the construction described above was

arbitrary, Π′
x (W ) = α∗(w) and Π̄′

x (W ) = −α∗(d2−w), for every x ∈ [y, z]. It follows

that (P1), namely, Π′
x (w) 6 Π̄′

x (w), holds true.

Proof of (P2). By construction, the paths Πx and Π̄x belong to D. Thus, (P2)

follows as a direct consequence of Lemma C.7.

Proofs of (P4) and (P5). We note that

max
y6x6z

{Π′
x (W )} = max

y6x6z
α∗(w) = α∗(w),

min
y6x6z

{
Π̄′

x (W )
}

= min
y6x6z

−α∗(d2 − w) = −α∗(d2 − w).

Since r 6
d21 + (d2 − w)2

2(d2 − w)
for Case 1, it follows by Lemma C.2 that for every x ∈ [y, z],

there exists no Type 1 admissible path Φx such that Φ′
x (W ) > Π′

x (W ). Similarly,

applying Lemma C.2 after a reflection about the x-axis, it follows that for every

x ∈ [y, z], there exists no Type 1 admissible path Φx such that Φ′
x (W ) < Π̄′

x (W ).
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Proof of (P3). As noted above, the angles Π′
x (W ) = α∗(w) and Π̄′

x (W ) =

−α∗(d2 − w) for every x ∈ [y, z]. In particular, Π′
x (W ) and Π̄′

x (W ) are continu-

ous with respect to x.

We have thus established that Π = Υx and Π̄ = Λx, and consequently, the com-

putation of α for Case 1 may be performed as described in Fig. C.3.

C.1.2 Case 2

The computation of α is described in Fig. C.4; in what follows, we discuss the

constructions of paths underlying the procedure in Fig. C.4.

First, suppose 3r + r sinα∗(w) < d1. Let Γi,0 be the C+ arc passing through W

with Γ′
i,0 (W ) = α∗(w) and let Γf,0 and Γf,1 be, respectively, the C+ and C− arcs

passing through X with Γ′
f,0 (X) = Γ′

f,1 (X) = β. It can be shown using elementary

geometry that Γi,0 does not intersect with either Γf,0 or with Γf,1 (see Fig C.5(a)). It

then follows using the arguments in Section C.1.1 that there exists a C+SC+ path a

C+SC− path from (W,α∗(w)) to (X, β) for every point X on the segment Y Z and

for every β ∈
[
β(x), β(x)

]
. This observation is the basis for Line 1-2.

Now suppose that 3r + r sinα∗(w) < d1, and let Γi,0 be as before. Let Γf,1 be the

C− arc that is tangent to both Γi,0 and the line BC, such that the center of Γf,1 lies

above the center of Γi,0 (see Fig. C.5(b)). It can be shown using elementary geometry

that the ordinate of the pointM2 = (d1, m2) of tangency of Γf,1 with line BC is given

by (5). Also, let M1 = (d1, m1) be the lower point of intersection of line BC with the

circle that is concentric with Γi,0 and has radius 3r (see Fig C.5(b)). To construct

candidate paths for the family Υx, we consider three sub-cases, as follows.

A. Let X = (d1, x) be a point on the segment Y Z such that x ∈ [y,m1) if m1 >

y (otherwise we ignore this case). For β ∈ [α(x), α(x)], let Γf,0 and Γf,1 be,

respectively, the C+ and C− arcs passing through X with Γ′
f,0 (X) = Γ′

f,1 (X) = β.

It follows from the definition of the point M1 that Γf,0 and Γf,1 do not intersect
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Computation of Υ′
x (W ) and α for Case 2 (Parallel Edges)

1: if 3r + r sinα∗(w) < d1 then

2: Υ′
x (W )← α∗(w), for all x ∈ [y, z]

3: else

4: m1 ← w −
√

4r2 − (r sin (α∗(w))− d1)2 − r cos (α∗(w))

5: m2 ← w +
√

4r2 − (r sin (α∗(w))− (d1 − r))2 − r cos (α∗(w))

6: if m1 > y or m2 6 z then

7: Υ′
x (W )← α∗(w), for all x ∈ [y,m1] ∪ [m2, z]

8: Compute β∗(x), for all x ∈ (m1, m2) ∩ [y, z], as the solution in
[
−π

2
, π
2

]
to

(

cosα∗(w) +
x− w
r

)

cos (β∗(x)) +

(

sinα∗(w)− d1
r

)

sin (β∗(x)) (C.7)

+
x− w
r

cosα∗(w)− d1
r
sinα∗(w) +

(x− w)2 + d21
2r2

= 1

9: if β∗(x) < β(x) then

10: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

(

cos β(x) +
x− w
r

)

cos (Υ′
x (W )) +

(

sin β(x)− d1
r

)

sin (Υ′
x (W )) (C.8)

+
x− w
r

cos β(x)− d1
r
sin β(x) +

(x− w)2 + d21
2r2

= 1

11: else

12: Υ′
x (W )← α∗(w)

13: I ← [y, z]

14: α← maxx∈I {Υ′
x (W )}

Figure C.4: Analysis of traversal across parallel edges: (d1/4) < r < (d1/2).
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A B

CD

> 2r

W
α∗(w)

Γi,0

(a) Case 2, 3r + r sinα∗(w) < d1.

A B

CD

W

M2

M1

α∗(w)

Γi,0

Γf,1

3r

(b) Locations of M1 and M2.

Figure C.5: Analysis of Case 2.

with Γi,0. Then, using arguments described in Section C.1.1, we may construct a

Type 1 admissible C+SC+ or C+SC− path Πx between (W,α∗(w)) and (X, β).

B. Let X = (d1, x) be a point on the segment Y Z such that x ∈ [m1, m2] ∩ [y, z].

Let Πx be the C+C− path from W to X with Π′
x (W ) = α∗(w), and define

β∗(x) := Π′
x (X); it can be shown that β∗(x) satisfies (C.7).

If β∗(x) < β(x), then Πx is not Type 1 admissible (see Fig. C.6(a)), and moreover,

there exists no Type 1 admissible path from W to X with tangent angle α∗(w)

at W . Therefore, we redefine Πx as the C+C− path from W to X which satisfies

Π′
x (X) = β(x) (see Fig. C.6(c)). This path Πx is Type 1 admissible, and Π′

x (W )

satisfies (C.8).

If β(x) 6 β∗(x) 6 β(x), then Πx is Type 1 admissible (see Fig. C.6(b)). Finally,

if β(x) < β∗(x), then Πx is not Type 1 admissible. Let Γi,0 be the C
+ arc passing

through W with Γ′
i,0 (W ) = α∗(w) and let Γf,0 be the C+ arc passing through X

with Γ′
f,0 (X) = β(x). We redefine Πx as the C+SC+ path consisting of sections

of Γi,0 and Γf,0, and it can be shown that Πx is Type 1 admissible.
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A B

CD

W

X

α β∗(x)

(a) β∗(x) < β(x), originally defined Πx (the
path in black) is not admissible, redefined Πx

shown in gray.

A B

CD

W

X

α∗(w) β∗(x)

(b) β(x) 6 β∗(x) 6 β(x), Πx is admissible.

A B

CD

W Xα∗(w) β∗(x)

(c) β(x) < β∗(x), originally defined Πx (the
path in black) is not admissible, Πx redefined
as a C+SC+ path (shown in gray).

Figure C.6: Constructions of Υx for Case 2, sub-case B. The arrows on segment BC

indicate terminal orientation cones.
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C. Let X = (d1, x) be a point on the segment Y Z such that x ∈ (m2, z] if m2 6 z

(otherwise we ignore this case). Let Γi,0 be the C+ arc passing through W with

Γ′
i,0 (W ) = α∗(w). Let δ be the angle of slope of the upper tangent line to Γi,0 that

passes through X , let β ∈ (δ, π
2
] ∩ [α(x), α(x)], and let Γf,1 be the C− arc passing

through X with Γ′
f,1 (X) = β. It follows by elementary geometry that Γi,0 and

Γf,1 do not intersect. Then, using arguments described in Section C.1.1, we may

construct a Type 1 admissible C+SC− path Πx between (W,α∗(w)) and (X, β)

consisting of sections of Γi,0 and Γf,1.

In summary, we can construct a family of Type 1 admissible paths Πx such that

Πx is either a C+SC+, C+SC−, or a C+C− path, i.e., Πx ∈ D. Using identical

arguments after a reflection about the x-axis, we can construct a family of paths Π̄x

such that Π̄x ∈ D. To show that Πx = Υx and Π̄x = Λx, we show that the families

Πx and Π̄x satisfy the properties (P1)–(P5).

Proof of (P1). Note that in the above constructions, Π′
x (W ) = α∗(w) for every

x ∈ [y, z], except when β∗(x) < β(x), in sub-case B. Similarly, Π̄′
x (W ) = −α∗(d2−w)

for every x ∈ [y, z], except when β∗(x) > β(x), where β∗(x) is the tangent angle

at X of the C−C+ path between W and X which has tangent angle −α∗(d2 − w)

at W . It can be shown using elementary geometry that β∗(x) < β∗(x) for every

x ∈ [y, z], and it follows that the conditions β∗(x) < β(x) and β∗(x) > β(x) never

occur simultaneously for any x ∈ [y, z], since β(x) 6 β(x), for every x ∈ [y, z]. Thus,

for every x ∈ [y, z], either Π′
x (W ) = α∗(w) or Π̄′

x (W ) = −α∗(d2−w) or both, and it

follows by Lemma C.2 that (P1) holds true.

Proof of (P2). By construction, the paths Πx and Π̄x belong to D. Thus, property

(P2) follows as a direct consequence of Lemma C.7.
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Proof of (P3). If m1 > y, and/or m2 6 z, then Υ′
x (W ) = α∗(w), for x ∈ [y,m1)∪

(m2, z] and hence Υ′
x (W ) is continuous on the set [y,m1)∪ (m2, z]. For x ∈ [m1, m2],

Υ′
x (W ) is either α∗(w) or it is the solution to (C.8), depending on the value of

β∗(x). It follows that Υ′
x (W ) is continuous wherever β∗(x) < β(x), and by (C.8),

it is continuous wherever β∗(x) > β(x). By (C.7), β∗ is continuous. Since β is also

continuous, to show that Υ′
x (W ) is continuous over the entire interval [m1, m2], it

suffices to show that when β∗(x) = β(x), α∗(w) is a solution to (C.8). To see this,

substitute Υ′
x (W ) = α∗(w) and β∗(x) = β(x) in (C.8) and then subtract (C.7) from

the resulting equation, to arrive at the identity 0 = 0. Finally, to show that Υ′
x (W )

is continuous on [y, z], it suffices to show that Υ′
m1

(W ) = Υ′
m2

(W ) = α∗(w). To see

this, note that the C− arc passing through M1 with tangent angle β∗(m1) is tangent

to the C+ arc Γi,0 passing through W with tangent angle α∗(w) at W , and no other

C− arc passing throughM1 with tangent angle atM1 in
[
−π

2
, π
2

]
intersects Γi,0. Thus,

there exists a Type 1 admissible C+C− or C+SC− path from W to M1 consisting

Γf,0 as the first arc. Thus Υ′
m1

(W ) = α∗(w). Similarly, the C− arc passing through

M2 with tangent angle π
2
at M2 is tangent to Γi,0, and no other C− arc through M2

with tangent angle in
[
−π

2
, π
2

]
intersects Γi,0, and it follows that Υ′

m2
(W ) = α∗(w).

Proofs of (P4) and (P5). As noted above, Π′
x (W ) = α∗(w) for every x ∈ [y, z],

except when β∗(x) < β(x), in sub-case B. Thus, we only need to show that (P4) is

satisfied when β∗(x) < β(x), and Πx is redefined as the C+C− path from W to X

such that Π′
x (X) = β(x).

Let P be a point in the interior of the rectangle ABCD and let S and T be,

respectively, the points of intersection of the line passing through P that is parallel

to the y-axis with lines AB and CD, and consider the problem of traversal across

parallel edges in rectangle ASTC. It follows from Lemma C.8 that if there exists a

C+ path Γi,0 betweenW and P , then the tangent angle atW of any Type 1 admissible
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path2 (in rectangle ASTC) is no greater than Γ′
i,0 (W ).

Moreover, it follows by Corollaries C.9 and C.11 that if there exists a C− path

Γf,1 between P and X , then there exists no Type 1 admissible path (in rectangle

SBCT ) with tangent angle less than Γ′
f,1 (P ) at P or with tangent angle greater than

Γ′
f,1 (X) at X . However, to satisfy the terminal orientation cone condition, we require

that the β(x) 6 Γ′
f,1 (X) 6 β(x). The concatenation of a Type 1 admissible path

in rectangle ASTC with a Type 1 admissible path in rectangle SBCT is a Type 1

admissible path in the rectangle ABCD. It follows that for any β ∈
[
β(x), β(x)

]
,

if there exists a point P in the interior of the rectangle ABCD such that a Type 1

admissible C+C− path Πx,β can be constructed as above between (W,α) and (X, β),

then there exists no other Type 1 admissible path between these configurations with

tangent angle atW greater than Π′
x,β (W ). The analysis of (C.8) shows that Π′

x,β (W )

decreases monotonically with increasing β for β ∈
[
−π

2
, π
2

]
, and it follows that Πx as

defined earlier satisfies (P4). We may use identical arguments after a reflection about

the x-axis to show that Π̄x satisfies (P5).

C.1.3 Case 3

The computation of α is described in Fig. C.4. Note that the procedure for

computing Υ′
x (W ) provided in Chapter 5 corresponds to the steps in Fig. C.7. In what

follows, we discuss the constructions of paths underlying the procedure in Fig. C.4.

First, suppose

r 6 (d21 + (d2 − w)2)/2(d2 − w) and r +
√

2r(d2 − w)− (d2 − w)2 < d1.

It can be shown using elementary geometry that, for every α ∈
[
−π

2
, α∗(w)

]
, the C+

arc Γi,0 passing through W with Γ′
i,0 (W ) = α does not intersect the segment BC,

and the entire analysis of Case 2 applies (see Fig. C.8(a)).

2For the rectangle ASTC, we consider the terminal orientation cone to be free, i.e., the tangent
angle of admissible paths at P can be any angle in

[
−π

2
, π
2

]
.
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Computation of Υ′
x (W ) and α for Case 3 (Parallel Edges)

1: if r 6
(d21 + (d2 − w)2)

2(d2 − w)
and r +

√

2r(d2 − w)− (d2 − w)2 < d1 then

2: Execute the procedure in Fig. C.4

3: else

4: Define m1 and m2 as in Lines 4–5 of Fig. C.4

5: n1 ← w −
√

2rd1 − d21
6: n2 ← w +

√

r2 − (r sin (α∗(w))− d1)2 − r cos (α∗(w))

7: if m1 > y or m2 6 z then

8: Υ′
x (W )← α∗(w), for all x ∈ [y,m1] ∪ [m2, z]

9: if n1 > y or n2 6 z then

10: For all x ∈ {(m1, n2) ∪ (n2, m2)} ∩ [y, z] execute Lines 8–14 of Fig. C.4

11: Compute γ∗(x) for all x ∈ [n1, n2] ∩ [y, z] as the solution in
[
−π

2
, π
2

]
to

(x− w) cos (γ∗(x))− d1 sin (γ∗(x)) =
d21 + (x− w)2

2r
(C.9)

12: if γ∗(x) < β(x) then

13: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to (C.8)

14: if β(x) 6 γ∗(x) < β(x) then

15: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

−(x− w) cos (Υ′
x (W )) + d1 sin (Υ

′
x (W )) =

d21 + (x− w)2
2r

(C.10)

16: else

17: There exists no Type 1 admissible path between W and X , in particular, Υx

does not exist

18: I ← largest interval in the set [y, z] \
{
x ∈ ([n1, n2] ∩ [y, z]) : β(x) < γ∗(x)

}

19: α← maxx∈I {Υ′
x (W )}

Figure C.7: Analysis of traversal across parallel edges: (d1/2) < r.
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t

A B

CD

W

Γi,0

(a) r +
√

2r(d2 − w)− (d2 − w)2 <

d1.

A B

CD

W

N2

N1

Γi,0

(b) r +
√

2r(d2 − w) − (d2 − w)2 > d1

and r 6
d21 + (d2 − w)2

2(d2 − w)
.

A B

CD

W

(c) r >
d21 + (d2 − w)2

2(d2 − w)
.

Figure C.8: Analysis for Case 3.

Now suppose that either

r 6 (d21 + (d2 − w)2)/2(d2 − w) and r +
√

2r(d2 − w)− (d2 − w)2 > d1

holds true, or r > (d21 + (d2 − w)2)/2(d2 − w) holds true. Consider the circle which

passes through W and is tangent to the the line BC such that the point of tangency

N1 = (d1, n1) has ordinate less than w (see Fig. C.8(b)). It can be shown that

n1 is given by (5). If r 6 (d21 + (d2 − w)2)/(2(d2 − w)), then let N2 = (d1, n2) be

the point of intersection with line BC of the C+ arc Γi,0 that passes through W

with Γ′
i,0 (W ) = α∗(w). It can be shown that n2 is given by (6). Otherwise, if

r > (d21 + (d2 − w)2)/(2(d2 − w)), then N2 := Z (see Fig. C.8(c)). In addition, let

M1 and M2 be points as defined in Section C.1.2 if r 6 (d21 + (d2 − w)2)/(2(d2 − w)).

Otherwise, if r > (d21 + (d2 − w)2)/(2(d2 − w)), M1 is as before and M2 := Z. To

construct candidate paths for the family Υx, we consider five sub-cases, as follows.

A. Let X = (d1, x) be a point on the segment Y Z such that x ∈ [y,m1) if m1 > y

(otherwise we ignore this case). This sub-case is identical to sub-case A of Case 2.

B. Let X = (d1, x) be a point on the segment Y Z such that x ∈ [m1, n1) ∩ [y, z] if
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n1 > y (otherwise we ignore this case). This sub-case is identical to sub-case B of

Case 2.

C. Let X = (d1, x) be a point on the segment Y Z such that x ∈ [n1, n2] ∩ [y, z]. By

definition of the points N1 and N2, there exists a C
+ path Πx between W and X .

We define the function x 7→ γ∗(x) as γ∗(x) := Π′
x (X), and it can be shown using

elementary geometry that γ∗(x) satisfies (C.9).

If γ∗(x) < β(x), then Πx is not Type 1 admissible (see Fig C.9(a)). We redefine

Πx as the C+C− path from W to X which satisfies Π′
x (X) = β(x). This path Πx

is Type 1 admissible, and Π′
x (W ) satisfies (C.8).

If β(x) 6 γ∗(x) < β(x), then Πx is Type 1 admissible (see Fig C.9(b)), and

Π′
x (W ) satisfies (C.10).

Finally, if β(x) < γ∗(x), then Πx is not Type 1 admissible, and moreover, it follows

by Corollary C.10 that there exists no Type 1 admissible path from W to X (see

Fig. C.9(c)).

D. Let X = (d1, x) be a point on the segment Y Z such that x ∈ (n2, m2] ∩ [y, z] if

n2 6 z (otherwise we ignore this case). This sub-case is identical to sub-case B of

Case 2.

E. Let X = (d1, x) be a point on the segment Y Z such that x ∈ (m2, z] if m2 6 z

(otherwise we ignore this case). This sub-case is identical to sub-case C of Case 2.

In summary, we can construct a family of Type 1 admissible paths Πx such that

Πx ∈ D, and using identical arguments after a reflection about the x-axis, we can

construct a family of paths Π̄x such that Π̄x ∈ D. To show that Πx = Υx and

Π̄x = Λx, we must show that the families Πx and Π̄x satisfy the properties (P1)

through (P5).

Proof of (P1). Similar to the proof of (P1) for Case 2, hence omitted.
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replacemen
A B

CD

W

X

Πx

(a) γ∗(x) < β(x).

A B

CD

W

X

(b) β(x) 6 γ∗(x) < β(x).

A B

CD

W

X

(c) β(x) < γ∗(x).

Figure C.9: Illustration of possible cases when a semi-admissible C+ path exists between
W and Y .

Proof of (P2). By construction, the paths Πx and Π̄x belong to D. Thus, property

(P2) follows as a direct consequence of Lemma C.7.

Proofs of (P4) and (P5). Since the constructions of Πx (resp. Π̄x) for Case 3 are

different only if x ∈ [n1, n2] and if the C+ arc (resp. C− arc) from W to X is Type 1

admissible, it suffices to prove (P4) and (P5) for this case only. The property (P4) is

an immediate consequence of Lemma C.8, and (P5) is an immediate consequence of

Corollary C.9.

Proof of (P3). Since the constructions of Πx (resp. Π̄x) for Case 3 are different

only if x ∈ [n1, n2] and if the C+ arc (resp. C− arc) fromW to X is Type 1 admissible,

it suffices to prove that the Υ′
x (W ) is continuous on the interval [n1, n2]. By Step 2c)

for Case 3, Υ′
x (W ) is continuous wherever γ∗(x) < β(x), and it is continuous wherever
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γ∗(x) > β(x). By (C.9), γ∗ is continuous. Since β is also continuous, it suffices to

show that when γ∗(x) = β(x), the solution of (C.10) is also a solution to (C.8, i.e.,

the switch between steps ii) and iii) of Step 2c) does not cause a discontinuity. To

see this, substitute β(x) = γ∗(x) in (C.8) and evaluate

Υ′
x (W ) = 2 tan−1

(
a±
√
a2 + b2 − c2
b+ c

)

,

where a := sin γ∗(x)−d1/r, b := cos γ∗(x)+(x− w)/r, and c := 1−(x− w) cos γ∗(x)/r−

d1 sin γ
∗(x)/r + ((x− w)2 + d21)/2r

2. Similarly, the solutions of (C.10) can be evalu-

ated as

Υ′
x (W ) = 2 tan−1

(

d1 ±
√

d21 + (x− w)2 − ((d21 + (x− w)2)/2r)2
d1 + (d21 + (x− w)2)/2r

)

,

and after suitable algebraic manipulations, the two expressions of Υ′
x (W ) can be

shown to be equal.

C.2 Traversal across Adjacent Edges

The constructions of the paths Υx and Λx for traversal across parallel edges are

broadly similar to those presented in the previous section for the traversal across

parallel edges. Hence, we omit the details of these constructions; instead we present

directly the computational procedures for determining Υ′
x (W ) and Λ′

x (W ). First,

we state some basic facts concerning the geometry of curvature-bounded paths for

traversal across adjacent edges.

A fundamental lemma similar to Lemma C.2 is as follows. We define two functions

α∗
1 : [0, d2]→

[
0, π

2

]
and α∗

2 : [0, d2]→
[
−π

2
, π
2

]
as follows:

α∗
1(w) :=







π
2
, d2 − w > r,

cos−1

(

1− d2 − w
r

)

, d2 − w 6 r.
(C.11)

α∗
2(w) :=







π
2
, r 6 d1/2,

sin−1

(
d1
r
− 1

)

, r > d1/2, w 6
√

2d1r − d21,

min
{

2 tan−1
(

d1 ± d̂
)}

, r > d1/2, w >
√

2d1r − d21,

(C.12)
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where d̂ :=
√

(d21 + w2)(4r2 − 1)/(d21 + 2rw + w2).

Lemma C.12. The maximum possible tangent angle at W for any Type 2 admissible

path is given by the function w 7→ α∗(w), defined as

α∗(w) := min {α∗
1(w), α

∗
2(w)} (C.13)

Proof. Similar to the proof of Lemma C.2, hence omitted.

Lemma C.13. If r 6
d21 + w2

2w
, then the minimum possible tangent angle at W for

any Type 2 admissible path is given by the function w 7→ α∗(w), defined as

α∗(w) :=







π
2
, w > r,

cos−1
(

1− w

r

)

, w 6 r.
(C.14)

Proof. Similar to the proof of Lemma C.2, hence omitted.

Corollary C.14. Let X = (d1, x) be any point on segment Y Z, and suppose r 6

d21 + (d1 − x)2
2(d1 − x)

. If d1 − x < r and β(x) < − cos−1 (1− (d1 − x)/r), then there exists

no Type 2 admissible path between W and X.

Corollary C.14 is a direct consequence of Lemma C.13 after a reflection about the

vertical axis. This Corollary is similar to Corollaries C.4 and C.3, and it provides

a preliminary condition on β and β for the existence of Type 2 admissible paths

between W and X .

As before, we consider for the ease of analysis, different cases of relations between

the curvature bound and the dimensions of the rectangle. For computing Λ′
x (W ), we

consider the following cases.

Case 1A: 0 < r < (w/4),

Case 2A: (w/4) 6 r < (w/2),

Case 3A: (w/2) 6 r.
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Computation of Υ′
x (W ) and α for Case 1A (Adjacent Edges)

1: Υ′
x (W )← α∗(w), for all x ∈ [y, z]

2: I ← [y, z]

3: α← maxx∈I {Υ′
x (W )} = α∗(w)

Figure C.10: Analysis of traversal across adjacent edges: 0 < r < (w/4).

Similarly, for computing Υ′
x (W ), we consider the following cases.

Case 1B: 0 < r < (w/3),

Case 2B: (w/3) 6 r < w,

Case 3B: w 6 r.

The procedures for computing Λ′
x (W ) and Υ′

x (W ) for each of these cases are

provided in Figs. C.10–C.15. Note that the procedures for computing Λ′
x (W ) and

Υ′
x (W ) provided in Chapter 5 correspond to Cases 3A and 3B.

169



Computation of Υ′
x (W ) and α for Case 2A (Adjacent Edges)

1: if 3r + r cosα∗(w) < d2 then

2: Υ′
x (W )← α∗(w), for all x ∈ [y, z]

3: m← r sin (α∗(w))+
√

2r2
(
1− cos (α∗(w)) + 0.5 sin2 (α∗(w))

)
+ 2wr (1 + cos (α∗(w)))− w2

4: if m 6 z then

5: Υ′
x (W )← α∗(w) for all x ∈ [m, z]

6: Compute β∗(x) for all x ∈ [y,m) ∩ [y, z] as the solution in
[
−π

2
, π
2

]
to

(

− sinα∗(w) +
x

r

)

cos (β∗(x)) +
(

cosα∗(w)− w

r

)

sin (β∗(x)) (C.15)

−w
r
cosα∗(w)− x

r
sinα∗(w) +

w2 + x2

2r2
= 1

7: if β∗(x) < β(x) then

8: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to the equation

(

sin β(x)− w

r

)

cos (Υ′
x (W )) +

(

− cos β(x)− x

r

)

sin (Υ′
x (W )) (C.16)

+
x

r
cos β(x)− w

r
sin β(x) +

w2 + x2

2r2
= 1

9: else

10: Υ′
x (W )← α∗(w)

11: I ← [y, z]

12: α← maxx∈I {Υ′
x (W )}

Figure C.11: Analysis of traversal across adjacent edges: (w/4) 6 r < (w/2).
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Computation of Υ′
x (W ) and α for Case 3A (Adjacent Edges)

1: if r + r cos (α∗(w)) < w then

2: Execute the procedure in Fig. C.11

3: else

4: Define m as in Line 3 of Fig. C.11

5: n← r sin (α∗(w)) +
√

r2 sin2 (α∗(w)) + 2wr cos (α∗(w))− w2

6: if m 6 z then

7: Υ′
x (W )← α∗(w), for all x ∈ [m, z]

8: For all x ∈ (n,m) ∩ [y, z] execute Lines 6–12 of Fig. C.11

9: Compute γ∗(x) for all x ∈ [y, n] as the solution in
[
−π

2
, π
2

]
to

x cos (γ∗(x))− w sin (γ∗(x)) =
w2 + x2

2r
(C.17)

10: if γ∗(x) < β(x) then

11: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to (C.16)

12: if β(x) 6 γ∗(x) < β(x) then

13: Υ′
x (W ) is the solution in

[
−π

2
, π
2

]
to

w cos (γ∗(x)) + x sin (γ∗(x)) =
w2 + x2

2r
(C.18)

14: else

15: There exists no Type 2 admissible path between W and X , in particular, Υx

does not exist

16: I ← largest interval in the set [y, z] \
{
x ∈ ((n,m) ∩ [y, z]) : β(x) < γ∗(x)

}

17: α← maxx∈I {Υ′
x (W )}

Figure C.12: Analysis of traversal across adjacent edges: (w/2) 6 r.

Computation of Λ′
x (W ) and α for Case 1B (Adjacent Edges)

1: Λ′
x (W )← α∗(w), for all x ∈ [y, z]

2: I ← [y, z]

3: α← minx∈I {Λ′
x (W )} = α∗(w)

Figure C.13: Analysis of traversal across adjacent edges: 0 < r < (w/3).
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Computation of Λ′
x (W ) and α for Case 2B (Adjacent Edges)

1: m1 ← r −
√
3r2 + 2wr − w2

2: m2 ← 2r
√
2− r sin (α∗(w))

3: if m1 > y or m2 6 z then

4: Λ′
x (W )← α∗(w), for all x ∈ [y,m1] ∪ [m2, z]

5: Compute β∗(x) for all x ∈ (m1, m2) ∩ [y, z] as the solution in
[
−π

2
, π
2

]
to

−
(

sinα∗(w) +
x

r

)

cos (β∗(x)) +
(

cosα∗(w) +
w

r

)

sin (β∗(x)) (C.19)

+
w

r
cosα∗(w) +

x

r
sinα∗(w) +

w2 + x2

2r2
= 1

6: if β(x) < β∗(x) then

7: Λ′
x (W ) is the solution in

[
−π

2
, π
2

]
to

(

sin β(x)− w

r

)

cos (Λ′
x (W )) +

(

− cos β(x)− x

r

)

sin (Λ′
x (W )) (C.20)

+
x

r
cos β(x)− w

r
sin β(x) +

w2 + x2

2r2
= 1

8: else

9: Λ′
x (W )← α∗(w)

10: I ← [y, z]

11: α← minx∈I {Λ′
x (W )}

Figure C.14: Analysis of traversal across adjacent edges: (w/3) 6 r < w.
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Computation of Λ′
x (W ) and α for Case 3B (Adjacent Edges)

1: Define m1 and m2 as in Lines 1–2 of Fig. C.14

2: n1 ← r −
√
r2 − w2

3: n2 ←
√
2rw − w2

4: if m1 > y or m2 6 z then

5: Λ′
x (W )← α∗(w), for all x ∈ [m, z]

6: if n1 > y or n2 6 z then

7: For all {(n1, m2) ∪ (n1, m2)} ∩ [y, z], execute Lines 5–11 of Fig. C.14

8: Compute γ∗(x) for all x ∈ [n1, n2] ∩ [y, z] as the solution in
[
−π

2
, π
2

]
to

−x cos (γ∗(x)) + w sin (γ∗(x)) =
w2 + x2

2r
. (C.21)

9: if β(x) < γ∗(x) then

10: Λ′
x (W ) is the solution in

[
−π

2
, π
2

]
to (C.20)

11: if β(x) 6 γ∗(x) < β(x) then

12: Λ′
x (W ) is the solution in

[
−π

2
, π
2

]
to

−w cos (γ∗(x))− x sin (γ∗(x)) =
w2 + x2

2r
(C.22)

13: else

14: There exists no Type 2 admissible path between W and X , in particular, Λx

does not exist

15: I ← largest interval in the set [y, z] \
{
x ∈ ([n1, n2] ∩ [y, z]) : γ∗(x) < β(x)

}

16: α← maxx∈I {Υ′
x (W )}

Figure C.15: Analysis of traversal across adjacent edges: w 6 r.
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