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Abstract-- Passenger vehicle accidents cause thousands of 

deaths, millions of injuries, and hundreds of billions of dollars 

in damage in the United States every year.  At this time, driver 

error is a significant factor in a majority of vehicle accidents.  

To mitigate driver error, a semi-autonomous hazard avoidance 

system is proposed based on shared control between a human 

driver and autonomous vehicle navigation system.  Given 

measurements of vehicle states and hazard locations, the system 

rapidly plans a safe trajectory and associated control inputs 

using a vehicle model with nonlinear model predictive control.  

The threat to the vehicle is computed based on the nearness to 

handling limits of a predicted trajectory.  Control authority is 

switched between the driver and automated system based on the 

predicted threat.  The computational requirements of the 

controller are reduced by computing an approximate threat 

based on canonical avoidance trajectories.  Simulation and 

experimental results with steering and braking control 

demonstrate successful hazard avoidance, while allowing driver 

control in low-threat situations. 

 

Index Terms--active safety, autonomous systems, hazard 

avoidance, human-in-the-loop, model predictive control, semi-

autonomous control, threat assessment, vehicle autonomy. 

 

I. INTRODUCTION 

IGNIFICANT research and development effort over the past 

40 years has been devoted to improving the safety of 

passenger vehicles.  This work has led to the development of 

passive safety systems, such as seat belts, air bags, optimized 

crush zones, and active safety systems, such as anti-lock 

brakes and electronic stability control.  Those systems have 

effected measurable reductions in U.S. motor vehicle accident 

rates [1, 2].  Despite these efforts, more than 40,000 people 

were killed and 2.5 million injured in motor vehicle accidents 

in the United States in 2004, at an estimated economic cost of 
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$200 billion [3]. 

Reactive stability control systems intervene via steering and 

braking actuators when skidding or wheel lift-off is detected.  

These systems react to the current vehicle state and are 

designed to function in concert with driver inputs.  While 

reactive systems are effective in reducing accident rates [2], 

they do not consider the effect of driver error, such as rear-

end collisions with an obstacle or drifting off the road.  The 

impact of driver error is nontrivial, as it has been found to be 

the primary cause of 60% of motor vehicle accidents and a 

contributing factor in 95% of accidents [4]. 

One approach to mitigating the problem of driver error in 

accident causation is to develop crash avoidance control 

systems with some autonomy.  Perception and navigation for 

autonomous vehicles has been studied extensively by robotics 

researchers, with the recent DARPA Urban Challenge 

representing the state of the art [5, 6, 7].  Despite recent 

advances in autonomous vehicle technology, however, 

barriers of public perception currently limit its widespread 

commercialization.  Many drivers are uncomfortable 

relinquishing control of their vehicle to a "computer."  For 

these drivers, semi-autonomous systems, which allow some 

degree of driver autonomy, may be desirable. 

Lookahead sensors have been deployed in non-safety-

critical automotive systems such as Adaptive Cruise Control.  

A recent system used on Ford and Volvo vehicles uses 

lookahead sensing to trigger emergency braking in certain 

scenarios to prevent collisions or reduce collision severity [8].  

There are, however, no systems currently on the market that 

detect and prevent collisions using steering actuators at high 

speed. 

Several systems for obstacle avoidance and automotive 

lane-keeping with a human-in-the-loop have been proposed 

using potential fields.  A lane-keeping system for a passenger 

vehicle based on potential fields with steering handwheel 

force feedback is proposed in [9].  Bounds on the lateral 

vehicle position are provided based on the potential field and 

a linear model of vehicle sideslip dynamics [10].  This 

approach to lane keeping with potential fields does not suffer 

from local minima because it does not consider longitudinal 

vehicle dynamics. 

Another proposed shared control system uses a potential 
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field over an environment containing obstacles and the 

motion planning construct known as "elastic bands" to 

generate a desired path for a semi-autonomous controller to 

track [11].  The system described in [11] cannot guarantee 

obstacle avoidance, however.  While the systems described in 

[9, 10, 11] address obstacle avoidance through lateral 

positioning, further work is needed to address the avoidance 

of obstacles through both lateral and longitudinal control. 

Computational demands are typically quite significant for 

high-speed hazard avoidance systems.  A motion planning 

technique for high-speed hazard avoidance based on cellular 

decomposition and the concept of trajectory space was 

proposed in [12].  The method was developed to minimize 

computational overhead at the expense of optimality of the 

resulting motion plan. 

Another promising approach for real-time planning in the 

presence of hazards is based on numerical optimization with 

constraint satisfaction.  Mixed integer linear programming 

(MILP) was used by Richards, Kuwata, and How [13] in a 

receding horizon controller to navigate a vehicle with linear 

dynamics around obstacles.  The avoidance of rectangular 

obstacles was ensured by constraints on integer variables.  An 

approximate cost-to-go was also used to account for 

uncertainty beyond a limited detection horizon.  The resulting 

controller executes in real-time and was demonstrated 

experimentally.  Nonlinear programming was used by Eele 

and Richards [14] to plan shortest hazard-free paths for a 

"Dubins-like" car with nonlinear dynamics.  The avoidance of 

circular obstacles was ensured with nonlinear constraints.   

The computational burden was reduced through a branch-

and-bound optimization.  Nonlinear model predictive control 

(MPC) was used by Falcone, et al. [15] to generate a path-

tracking controller for an automobile operating near the tire 

friction limits.  The controller was demonstrated 

experimentally at speeds up to 21 m/s on icy roads. 

Linear model predictive control has been used in previous 

work by the authors [16, 17] to prevent departure of a vehicle 

with linearized vehicle dynamics from a predefined, hazard-

free corridor.  The corridor constraints were encoded as time-

varying constraints on the lateral vehicle position.  This 

controller was incorporated into a threat-based semi-

autonomous system and demonstrated experimentally.  The 

limitations of this work stem primarily from the model 

linearization, which required a constant speed assumption. 

This paper presents an active safety system for hazard 

avoidance that allows drivers full control authority in benign 

situations, but intervenes when danger is significant.  Such a 

system is termed a semi-autonomous hazard avoidance 

system.  A block diagram of the proposed system is shown in 

Fig. 1.  Look-ahead sensing devices and a perception system 

generate a map of drivable terrain surfaces and hazards 

around the vehicle.  A model predictive controller for motion 

planning and control uses this map, as well as driver input 

and vehicle state measurements, to continuously determine 

control inputs that ensure that the vehicle avoids hazards and 

loss of control over a forward-looking time horizon.  A threat 

assessment algorithm determines the danger of a given 

situation based on the dynamic feasibility of future trajectories 

and switches control authority between the driver and vehicle 

system, such that during low threat scenarios, the driver is 

given full control authority, while during high threat 

scenarios, the control authority is shared between the driver 

and the hazard avoidance controller. 

 
Hazard avoidance trajectories and corresponding control 

inputs are computed by a nonlinear model predictive 

controller.  The controller is designed to minimize the threat 

of the resulting hazard avoidance trajectories.  The use of 

nonlinear MPC enables the use of a nonlinear model of both 

longitudinal and lateral vehicle dynamics, allowing improved 

performance relative to previous work based solely on lateral 

vehicle dynamics [16, 17]. 

The computational demands of nonlinear MPC impose a 

significant challenge for real-time implementation.  An 

approach to mitigating excessive computational requirements 

is to incorporate an approximation of the cost function as a 

cost-to-go, as in [13].  A contribution of this paper is a 

computationally efficient method for estimating threat, which 

is used as a cost-to-go to reduce the computational demand of 

the MPC optimization. 

A brief outline of the paper is as follows.  In Section II, the 

subsystems of the semi-autonomous hazard avoidance system 

are described, including the vehicle model, model predictive 

controller, method for computing threat, and threat-based 

intervention strategy.  In Section III, the performance of the 

system is shown via simulation and experimental results, 

followed by a discussion of the results in Section IV. 

II. SEMI-AUTONOMOUS HAZARD AVOIDANCE SYSTEM 

DESCRIPTION 

This section describes the model predictive controller that 

is used for both threat assessment and collision avoidance 

control in the proposed semi-autonomous hazard avoidance 

system. 
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Fig. 1.  Semi-autonomous hazard avoidance system design. 
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A. Nonlinear vehicle model 

A nonlinear bicycle model used in the model predictive 

controller is presented here and illustrated in Fig. 2.  The 

vehicle states include the c.g. position [X,Y], body-fixed 

velocity components vx and vy, yaw angle ψ and yaw rate .   

The vehicle has mass m and yaw inertia Izz.  The c.g. position 

relative to the front and rear wheels is specified by parameters 

xf and xr.  The controllable inputs consist of the front steering 

angle δ and the longitudinal tire forces Fxf and Fxr, which are 

controlled via braking actuators.  Lateral tire friction forces 

act at the front and rear wheels and are denoted Fyf and Fyr, 

respectively.

 
The vehicle dynamics are given by momentum 

conservation equations as: 
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The lateral tire forces Fyf and Fyr are functions of the tire 

slip angles αf and αr, as Fyf (αf) and Fyr (αr).  The slip angles 

αf and αr are illustrated in Fig. 3 and are computed as: 
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It is assumed that the longitudinal braking forces Fxf and 

Fxr are proportionally controlled by a single input ubrake, as is 

common for braking systems.  The proportion of braking 

applied at the front wheel is given by bf  [0,1] as follows: 

brakefxf
ubF   (4) 

 
brakefxr

ubF  1  (5) 

Input rate constraints are also assumed, so that the steering 

and braking inputs are controlled via integral control as 

follows: 

1
u  (6) 

2
uu

brake
  (7) 

The vehicle model is expressed in nonlinear state space 

form  uxx ,f  with input vector u ≡ [u1 u2]
T and state 

vector x ≡ [X Y ψ vx vy   δ ubrake]
T. 

     

    

    



















































2

1

cossin
1

cossin
1

sin1cos1
1

cossin

sincos

u

u

FxFxubx
I

FFub
m

v

Fub
m

v

vv

vv

ryrrfyffbrakeff

zz

ryrfyfbrakefx

fyfbrakefy

yx

yx
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The steering and braking inputs are subject to magnitude 

and rate constraints given below. 

max
   (9) 

0
max,


brakebrake

uu  (10) 

max
uu   (11) 

The friction forces at the front and rear tires are also 

subject to friction circle constraints given below, where μ is 

the surface friction coefficient, Fzf is the normal contact force 

at the front wheels, and Fzr is the normal contact force at the 

rear wheels. 

zfyfxf
FFF  22  (12) 

zryrxr
FFF  22  (13) 

For this work, the effect of longitudinal load transfer 

is not considered.  The normal contact forces are computed 

based on the static load transfer distribution as follows: 
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B. Hazard geometry 

The N hazards in the environment are represented by 

polygons P1, P2, .., PN.  Each hazard polygon Pi consists of ni 

nodes pij, j 1-ni.  For this work, all hazards are assumed to 

be fixed, though moving hazards could be considered if the 

displacement and orientation of each hazard as a function of 

Fy

α
V

α

Fy

 
Fig. 3.  Lateral tire friction force model.  The slip angle α is the angle 

between the velocity vector at the wheel center and the longitudinal axis 

of the tire.  The lateral tire force Fy opposes lateral slip. 
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Fig. 2.  Planar bicycle model.  
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time was known or could be estimated. 

An example scene is given in Fig. 4, with road edges 

represented by P1 and P2 and a hazard represented by P3.  The 

vehicle geometry is approximated as a circle of radius r that is 

centered at point c.  It is assumed that point c lies on the 

centerline of the vehicle a distance xc from the vehicle c.g., as 

shown on the right side of Fig. 4.  The parameters xc and r 

should be chosen so that the front corners of the vehicle are 

within the circle but without exaggerating the vehicle width.  

For forward travel, a single circle may suffice for 

approximating the vehicle shape. 

 
If the minimum distance from point c to the nearest hazard 

polygon is given by h(x), hazard avoidance can be assured by 

maintaining a clearance of at least r between point c and the 

nearest hazard polygon. 

The model parameters used in this paper are given below 

in Table I. 

 
 

C. Threat definition and approximation 

Threat arises from constraints on actuation and mobility 

that may make a hazard unavoidable.  For example, a vehicle 

traveling at speed V at distance D from a fixed hazard 

requires an acceleration of V2 / (2D) to stop before colliding 

with the hazard.  If this required acceleration exceeds the 

maximum allowable acceleration imposed by braking actuator 

limits and the tire surface friction limits, the vehicle will be 

unable to stop in time to avoid a collision.  In a similar 

manner, a vehicle performing a constant radius turn of radius 

R to avoid an obstacle requires an acceleration of V2 / R.  An 

existing method for threat assessment is computed as the 

percentage of the maximum allowable acceleration required 

to avoid by stopping or a constant radius turn as described in 

[18]. 

The nonlinear vehicle model presented in the previous 

section is subject to input magnitude and rate constraints 

from (9)-(11), as well as friction circle constraints at the front 

and rear from (12)-(13).  Thus, each constraint represents a 

source of threat.  The constraints are normalized into the 

form shown below. 

  1, 
iik

J ux  (16) 

Threat can be computed for a candidate hazard avoidance 

trajectory by evaluating the values Jk(xi,ui) for the states and 

inputs of that trajectory.  A scalar value of the threat is 

computed as the norm of the predicted threat values.  The 

peak value (ie. infinity norm) of each Jk is taken to represent 

the threat arising from each constraint [19]. 

An approximation of threat is presented below that is used 

for a computationally-efficient cost-to-go.  Although the 

steering angle constraint restricts low-speed turning, the tire 

friction constraints are more often the limiting factor in 

hazard avoidance at higher speeds.  The front friction force is 

usually more controllable than the rear, since there is 

typically no rear-wheel steering control.  Additionally, 

previous studies have found the front friction constraint to be 

more critical to understeering or plow out than the rear 

friction constraint [15].  For these reasons, the threat 

approximation is here based on the front friction circle 

constraint only. 

A useful tool for analyzing the properties of the front 

friction constraint is the decoupling of lateral and yaw 

dynamics using the method described by Ackerman in [20].  

This decoupling is demonstrated below with a simplified form 

of the momentum relations from (1), where ay is the lateral 

vehicle c.g. acceleration, and fyf and fyr are the front and rear 

lateral tire forces represented in a body-fixed frame rather 

than a tire-fixed frame.  This simplified form is inverted to 

yield an expression for the tire forces fyf and fyr in terms of 

vehicle acceleration components. 
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Recall from kinematics that the quantity dxa
y
  is the 

lateral acceleration of a point on a rigid body at a distance dx 

in front of the c.g.  Thus according to (18), the front and rear 

lateral tire forces are proportional to the lateral acceleration at 

specific points on the vehicle.  These points are termed 

"decoupling points" as the lateral acceleration of these points 

TABLE I 

VEHICLE MODEL PARAMETERS 

Description Symbol Value 

Mass m 2220 kg 

Yaw inertia Izz 3344 kg m
2 

Front axle from c.g. xf 1.432 m 

Rear axle from c.g.
 

xr 1.472 m 

Clearance point xc 0.10 m 

Clearance radius r 0.90 m 

Steering angle limit δmax 10 deg 

Steering rate limit u1,max 40 deg/s 

Braking force limit ubrake,max 19600 N 

Braking rate limit u2,max 1.31e6 N/s 

Brake bias bf 0.507 

   

 

 

Y

X

P2P1

P3

c
r

c

cg

xc

 
Fig. 4.  Example hazard avoidance scenario.  Road edge hazards are 

given as polygons P1, P2 and an additional hazard in the road P3.  The 

vehicle is approximated by a circle of radius r at point c. 
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is proportional to one of the lateral tire forces fyf or fyr and 

decoupled from the other force.  The point lying a distance 

r

zz

mx

I
 in front of the vehicle c.g. is decoupled from the rear 

force fyr and its lateral acceleration is proportional to the front 

force fyf.  The longitudinal acceleration axp and lateral 

acceleration ayp at this point are given below. 
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If longitudinal forces in a body-fixed frame fxf and fxr are 

allocated between the front and rear wheels based on the load 

distribution so that the relation given below is satisfied, then 

the front friction constraint in (12) maps to the constraint 

given in (21). 
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The front friction constraint in (21) is approximated by a 

constraint on the magnitude of the acceleration vector in (19).  

This approximation is reasonable when the term 2
r

zz

mx

I
 is 

small.  This approximation implies that the acceleration of 

simple geometric avoidance maneuvers such as constant 

radius turns can approximate the threat arising from the front 

friction constraint. 

The decoupled point has position [Xpm,Ypm] and velocity 

[
pmpm

YX  , ] in a global frame. These states are used to 

compute simple geometric avoidance maneuvers and are 

given as follows: 
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For simplicity, it is assumed that one edge of a hazard 

polygon has been identified as the critical edge to be avoided.  

This corresponds to several types of scenarios involving 

avoidance of a single obstacle.  Three canonical constant 

acceleration maneuvers that avoid a single hazard edge are 

now described: straight-line stopping, constant radius non-

passing turn, and constant radius passing turn.  The 

maneuvers are illustrated in Fig. 5 and are used in II.D. to 

approximate cost-to-go in the MPC computation.  The 

minimum threat maneuver is computed as the candidate 

maneuver with the minimum required acceleration. 

 
1) Hazard avoidance during straight-line stopping 

A straight-line stopping maneuver consists of acceleration 

applied in direct opposition to the vehicle velocity vector, 

causing the vehicle to stop before reaching the hazard P, as 

illustrated in Fig. 5 and Fig. 6.  The critical edge of P is 

specified by nodes n1 and n2, tangent unit vector e1, and 

normal unit vector e2.  For this maneuver, the vehicle is 

approximated as the bounding square surrounding the circle 

of radius r centered at point [Xpm,Ypm].  The square is to be 

parallel to the velocity unit vector e4 with front corner points 

v1 and v2. 

 
Possible points of collision b1-b4 are computed by 

projecting nodes v1, v2 along the velocity vector onto the 

hazard edge line and nodes n1, n2 along the velocity vector 

onto the vehicle edge line.  The lines passing through nodes 

n1, n2 and v1, v2 are given below, where the components of 

unit vectors e2 and e4 are (e2x,e2y) and (e4x,e4y) and the 

coordinates of nodes n1 and v1 are (n1x, n1y) and (v1x, v1y). 

    0
1212


yyxx

nyenxe  (24) 

    0
1414


yyxx

vyevxe  (25) 

The projection lines for computing points b1-b4 are 

computed as follows, where (xi,yi) are coordinates of the point 

to be projected: 

    0
44


ixiy

yyexxe  (26) 

The coordinates of a point bi given by (bix,biy) are 

computed by solving linear equations.  For example, the 

A B C
 

Fig. 5.  Simple avoidance maneuvers.  A passing maneuver is illustrated 

in part A, a stopping maneuver in part B, and a non-passing maneuver in 

part C. 

r
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D4D3
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e1
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Fig. 6.  Straight-line stopping maneuver.  The critical edge of hazard P 

is specified by nodes n1, n2, and the vehicle is approximated by a square 

oriented with the vehicle velocity vector. 
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coordinates of point b1 are computed by solving the 

following: 
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Distances D1-D4 represent the projected distances of points 

b1-b4 and are computed as follows: 

 
1141

vbe D  (28) 

 
2142

bne D  (29) 

 
2343

vbe D  (30) 

 
4244

bne D  (31) 

A projected point bi lies outside of its projected line 

segment, e.g. points b1 and b4 in Fig. 5, if the following 

conditions are met: 

      3,100,0min
2111

 i
ii

bnenbe  (32) 

      4,200,0min
2313

 i
ii

bvevbe  (33) 

For each projected point bi that lies outside of its projected 

line segment, the corresponding distance Di is set to infinity.  

The acceleration required by this stopping maneuver is 

computed as a1 below, where D is taken to be the smallest of 

distances D1-D4.  Note that if the vehicle will avoid the 

obstacle when traveling straight, the stopping distance will be 

infinity and its stopping acceleration will be zero. 

D

YX
a

pmpm

2

22

1

 
  (34) 

2) Hazard avoidance during non-passing turn 

A non-passing turn is defined as a constant radius turn in 

which the vehicle turns to travel parallel to the critical edge 

of a hazard P, as illustrated in Fig. 5 and Fig. 7 and described 

in this section.  In contrast, a passing turn is defined as a 

constant radius turn in which the vehicle turns to pass the 

critical edge of hazard P to the left or the right, as described 

in the subsequent section and illustrated in Fig. 5 and Fig. 8.  

For example, non-passing turns can be used in a lane-keeping 

task or prevention of road departure. 

The critical edge of P is specified by nodes n1 and n2, 

tangent unit vector e1, and normal unit vector e2.  The vehicle 

is approximated as a circle of radius r centered at point 

[Xpm,Ypm] with velocity unit vector e4.  The center is projected 

along unit vector e3 to the circumference of the circle to form 

points v1 and v2. 

 
A circle corresponding to a non-passing left turn with 

radius Rnp,left is defined by the following properties: 

1. circle passes through point v2 

2. circle is parallel to e4 at point v2 

3. circle is tangent to line connecting n1 and n2 

4. center of circle is to left of vehicle 

The radius Rnp,left is computed as shown below based on 

intermediate values θnp,left and Xnp,left. 

41,
cos ee 

leftnp
  (35) 

 
221,

evn 
leftnp

X  (36) 

leftnp

leftnp

leftnp

X
R

,

,

,
cos1 

  (37) 

A similar circle is found corresponding to a non-passing 

right turn based on point v1 with radius Rnp,right and 

intermediate values θnp,right and Xnp,right. 

41,
cos ee 

rightnp
  (38) 
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X  (39) 
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X
R

,

,
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cos1 

  (40) 

The larger of the two radii is termed Rnp, and the 

corresponding turning acceleration a2 is computed as shown 

below. 

rR

YX
a

np

pmpm






22

2


 (41) 

 

3) Hazard avoidance during passing turn 

A constant radius passing turn consists of acceleration 

perpendicular to the point mass velocity vector, causing the 

vehicle to turn and pass one of the nodes of hazard P as 

illustrated in Fig. 5 and Fig. 8.  The critical edge of P is 

specified by nodes n1 and n2, tangent unit vector e1, and 

normal unit vector e2.  For this maneuver, the vehicle is 

approximated as a circle of radius r centered at point 

[Xpm,Ypm] with velocity unit vector e4.  The center is projected 

along unit vector e3 to the circumference of the circle to form 

points v1 and v2. 

Y

X

P

[Xpm,Ypm]

n2

n1

v1

v2r

Rnp,left

θnp,left

Xnp,left

e1

e2

e3

e4

 
Fig. 7.  Constant radius non-passing turn to the left.  The critical edge of 

hazard P is specified by nodes n1, n2, and the vehicle is approximated as 

a circle of radius r. 
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A circle corresponding to a left passing turn with radius 

Rp,left is defined by the following properties: 

1. circle passes through point v2 

2. circle is parallel to e4 at point v2 

3. circle passes through node n1 

The turn radius Rp,left is computed with the aid of the 

triangles illustrated in the right side of Fig. 7.  Points B and C 

correspond to points v2 and n1, respectively.  Edge lengths 

AB  and AC  are both equal to the radius Rp,left.  Since angles 

ECB and ECD are equal, it can be seen that triangle 

∆CDB is isosceles.  It can further be seen that triangles ∆ABC 

and ∆CDB are similar.  This similarity implies the following 

ratio: 

DB

CB

BC

AC
  (42) 

Since edge length AC  is equal to the unknown radius 

Rp,left, this ratio can be used to find an expression for the 

radius.  Intermediate values Xp,left and Yp,left are defined as 

follows: 

 
421,

evn  CEX
leftp

 (43) 

 
312,

env  BEY
leftp

 (44) 

Using the following relations, an equation for the radius is 

found: 

leftp
YBEDB

,
22   (45) 

2

,

2

,

22

leftpleftp
YXCEBECB   (46) 

leftp

leftpleftp

leftp
Y

YX

DB

CB
R

,

2

,

2

,

2

,
2


  (47) 

The angle θp,left can be found using the following relations: 

leftp

leftp

X

Y
BCE

,

,1tan   (48) 

BCECAB
leftp

 2
,

  (49) 

A similar circle with radius Rp,right is found corresponding 

to a right turn based on points v1 and n2 using intermediate 

values Xp,right and Yp,right. 

 
412,

evn 
rightp

X  (50) 

 
312,

evn 
rightp

Y  (51) 

rightp

rightprightp

rightp
Y

YX
R

,

2

,

2

,

,
2


  (52) 

rightp

rightp

rightp
X

Y

,

,1

,
tan2   (53) 

The larger of the two radii is termed Rp, and the 

corresponding turning acceleration a3 is computed as shown 

below. 

rR

YX
a

p

pmpm






22

3


 (54) 

It should be noted that when starting far from the corner 

node of a hazard, the circular passing arc may cross the 

hazard edge in order to intersect the corner node, as shown in 

Fig. 9.  When this occurs, a passing turn in that direction is 

not feasible.  A condition for the feasibility of a passing turn 

is that the passing turn angle θp,left, θp,right is less than the 

corresponding non-passing turn angle θnp,left, θnp,right.  When 

passing turns are infeasible, a non-passing turn or stopping 

maneuver may be chosen instead. 

 
4) Summary 

The threat associated with the front tire friction constraint 

is shown to be closely approximated by the acceleration of a 

"decoupling point" located in front of the c.g.  This 

approximation is used to estimate the threat of several hazard 

avoidance maneuvers based on stopping and turning.  The 

acceleration required for each of the three candidate 

maneuvers is computed.  The maneuver with the smallest 

required acceleration is chosen as the maneuver representing 

the minimum threat maneuver. 

The hazard avoidance maneuvers described in this section 

are constructed for stationary hazards.  The maneuvers can be 

adapted to consider moving hazards by estimating the hazard 

trajectory based on the current hazard state and computing 

the future time and state of the hazard at which avoidance 

will occur as in [21]. 

D. Minimum threat hazard avoidance with MPC 

In the previous section, threat was defined as the nearness 

to actuation limits of a hazard avoidance trajectory.    A 

model predictive controller is defined here to compute hazard 

avoidance trajectories that minimize threat over a finite time 

n2

Rp,left

v2

n1

v1

θp,left

n2

Rnp,left

v2

n1

v1

θnp,left

 
Fig. 9.  Infeasible constant radius passing turn to the left.  The vehicle is 

too far from the corner nodes to pass successfully.  A non-passing turn 

may be attempted instead. 

[Xpm,Ypm]v1

v2r

Y

X

P

n2

n1

Rp,left

C

B

A

D
E

e1

e2

e3

e4

θp,left

 
Fig. 8.  Constant radius passing turn to the left.  The critical edge of 

hazard P is specified by nodes n1, n2, and the vehicle is approximated as 

a circle of radius r.  A set of similar triangles are illustrated in the right 

side of the figure. 
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horizon.  MPC is chosen for its use of a predictive model as 

well as its enforcement of inequality constraints.  Inequality 

constraints are useful for considering actuator magnitude 

limits and ensuring clearance from hazards. 

The model prediction consists of p steps with a discrete 

time step of ts.  The inputs ui, applied to the system over the 

prediction horizon, comprise the free variables used as 

optimization parameters.  The optimization parameters are 

ordered in a single column vector U. 

 TT

p

T

p

TT

1210
...


 uuuuU  (55) 

Given the inputs in U and an initial state x0, Euler 

integration is used to predict future states xi, i 1-p using the 

nonlinear model f(x,u), as follows: 

 
iisii

ft uxxx ,
1




 (56) 

The clearance from hazards h(xi) and predicted threat for 

each threat source Jk(xi,ui) are computed over the prediction 

horizon and ordered in vectors h and Jk. 

        T
pp

hhhh xxxxh
121

...


  (57) 

      T
ppkkkk

JJJ
111100

,...,,


 uxuxuxJ  (58) 

A practical challenge for threat prediction is the 

computational burden associated with long prediction 

horizons.  The length of the prediction horizon is important, 

as the threat caused by hazards beyond the prediction horizon 

is not computed.  If the prediction horizon is shorter than the 

sensor horizon, some sensory information is not used in the 

threat or control calculations.  An approximation of vehicle 

behavior from the end of the prediction horizon to the 

maximum sensor range can be used to exploit this 

information.  When used in an optimal control framework, 

this approximation is commonly known as the "cost-to-go." 

For a controller with prediction horizon p, the cost-to-go is 

computed based on the final predicted state xp.  To represent 

the effect of actuator dynamics on the cost-to-go, a time lag 

that consists of q prediction steps of duration ts is introduced.  

The model is predicted forward to state xp+q with zero input.  

This corresponds to a zero-order hold on the current steering 

and braking states.  Note that the clearance vector h from (57) 

and threat vector Jk from (58) should be augmented for states 

xp+1 to xp+q. 

The threat approximation based on simple maneuvers from 

the previous section is used as a "cost-to-go" for this model 

predictive controller.  The cost-to-go Jk
*(xp+q) is based on the 

acceleration of simple maneuvers from the vehicle state at the 

end of the prediction horizon, as shown below. 

 











max

3

max

2

max

1* ,,min
a

a

a

a

a

a
J

qpk
x  (59) 

The approximate threat from the end state xp is denoted 

Jk
*(xp).  The approximate threat is incorporated into vector 

Jk
*. 

      T
qpkqpqpkkk

JJJ


 xuxuxJ
*

1100

* ,...,  (60) 

The model predictive control problem is posed as a 

nonlinear program by incorporating predicted threat and 

approximate threat into an objective function used to 

determine the vector of optimal inputs U
*, while enforcing 

inequality constraints. 


 ** maxminarg

k
k

JU
U

 (61) 

rh  (62) 

 pi
i

..1
max

  (63) 

 piuu
brakeibrake

..1
max,,

  (64) 

 1..0
max

 pi
i

uu  (65) 

E. Threat-based control intervention 

The final aspect of the proposed semi-autonomous hazard 

avoidance system is threat-based control intervention.  After 

the nonlinear MPC controller has computed the optimal 

threat J* and input sequence U
*, an intervention level is 

determined based on the predicted threat.  When threat is 

low, the controller intervention is kept low to maximize 

driver autonomy.  As threat increases above a certain 

threshold, the system will begin to apply the optimal inputs 

from U*. 

The intervention system reads the driver's current input 

udriver, the MPC input umpc, and the predicted threat J*.  An 

intervention gain K  [0,1] is computed based on the 

predicted threat J*, and is used to determine the applied 

inputs to the system according to the following equation: 

 
mpcdriver

KK uuu  1  (66) 

The intervention gain K may be computed according to a 

variety of intervention laws, such as a linear function with or 

without deadband [17].  A switching intervention law with 

hysteresis is illustrated in Fig. 10 and given by the following 

equation: 
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*

1

*

1

*

1

*

1

,10

,11

,01

,00

 (67) 

 
The use of hysteresis in the intervention function prevents 

small oscillations in the threat function from rapidly 

switching the intervention gain K.  In practice, this causes the 

system to wait until threat has reduced below a specific level 

to return control authority to the driver. 

Threat J

G
a
in

 K

1

Φoff Φon

 
Fig. 10.  Switching intervention law with hysteresis. 
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III. SIMULATION AND EXPERIMENTAL RESULTS 

This section presents results of the semi-autonomous 

hazard avoidance system in simulation and experiments.  A 

numerical implementation of the MPC controller is described, 

including a discussion of the effect of prediction horizon 

length.  Hazard avoidance results are then presented from 

simulation and experiments. 

A. Implementation of MPC controller 

The minimum threat MPC controller was implemented 

using the nonlinear optimization package NPSOL.  NPSOL 

uses a sequential quadratic programming algorithm to 

minimize a smooth nonlinear objective function subject to 

linear and nonlinear constraints [22].  The solver has the 

capability to use gradients of the cost and constraint functions 

to speed convergence.  Symbolic derivatives are used in the 

model prediction, cost function, and constraints of the MPC 

controller to improve performance. 

The prediction horizon length is widely acknowledged to 

be a critical parameter in the design of model predictive 

controllers.  A long prediction horizon may improve 

controller stability and performance, though it also increases 

the computational demand of the controller.  A challenge of 

algorithms based on numerical optimization is avoiding local 

minima in non-convex problems.  The optimization will 

converge to a solution that depends on the initial guess of the 

optimal control vector U*.  It has been observed in this work 

that it is more challenging to determine initial guesses that 

converge to the global minimum for MPC controllers with 

longer prediction horizons (and hence more control variables) 

than for controllers with shorter prediction horizons. 

An example of this phenomenon is illustrated in Fig. 11.  

An MPC controller with p=30, q=1, and ts = 0.05 s is solved 

with three different initial guesses to the optimal control 

vector U
*.  These initial guesses result in a stopping 

maneuver with cost 0.399 and two symmetric passing 

maneuvers with cost 0.305. 

 
It has already been noted that the use of cost-to-go with a 

short prediction horizon can approximate the performance of 

an MPC controller with much longer prediction horizon, 

though with the benefit of a reduced computational demand.  

An additional advantage is the reduced size of the 

optimization vector U
*, which reduces the challenge 

associated with local minima and sensitivity to initial guess of 

the optimization vector U
*.  For these reasons, the MPC 

controller parameters used in these results are based on a 

prediction horizon of p=1.  The parameter values q=4 and 

ts=0.05 s were chosen based on the properties of the model 

and required computational time of the MPC controller. 

While the vehicle model described in Section II.A. may use 

a nonlinear tire model, the model used in these results is 

linear.  The model is described by the equations below with 

parameters Cf=68 kN/rad and Cr=87 kN/rad referred to as the 

tire cornering stiffnesses.  This tire model is suitable for small 

levels of tire slip and requires one parameter, while other tire 

models require many tire parameters, increasing the burden 

of model matching. 

ffyf
CF   (68) 

rryr
CF   (69) 

It should be noted that the slip angle is undefined at zero 

speed.  As such, all simulations are aborted when the vehicle 

speed drops below a threshold of 0.5 m/s. 

B. Experimental setup 

Experimental testing was performed using a 2001 Jaguar 

S-Type passenger vehicle operated by several human drivers. 

Driver and actuator steering inputs were coupled via an 

Active Front Steer (AFS) system. An inertial and GPS 

navigation system was used to measure vehicle position, 

sideslip, yaw angle, and yaw rate.  Cones were placed in the 

driving environment to represent hazards, and their location 

was encoded in the controller as GPS coordinates.  A 1 GHz 

dSPACE™ processor ran controller code and interfaced with 

steering and braking actuators.  With the short prediction 

horizon and computationally-efficient cost-to-go computation, 

the controller calculations remained within a 50 ms sampling 

time. 

The test setup for both the simulations and experiments 

involved defining a hazard edge in the environment and 

approaching the edge from a variety of initial conditions.  

The cost-to-go was computed based on the type of avoidance 

trajectory that required the minimum level of threat.  The 

preference for different trajectories depends on the hazard 

location and orientation relative to the vehicle. 

A passing maneuver was tested by approaching a hazard 

face perpendicular to the direction of travel and near the 

edge, as in Part A of Fig. 5.  A stopping maneuver was tested 

by approaching a hazard face perpendicular to the direction of 

travel and far from the edges, as in Part B of Fig. 5.  A non-

passing turn was tested by approaching a hazard face with a 

large skew angle and far from the edges, as in Part C of Fig. 

5. 

 
Fig. 11.  Multiple solutions to MPC control law with p=30, q=1, and 

ts=0.05s representing separate local minima. 
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C. Stopping maneuver 

A stopping maneuver was demonstrated by approaching a 

wide hazard perpendicular to the vehicle direction of travel.  

Two separate tests were conducted to verify the functionality 

of the hazard avoidance system.  In the first test, a human 

driver initiates braking to avoid the hazard before the threat 

exceeded the threshold Φon.  This test demonstrates the 

driver's freedom to operate the vehicle in low-threat 

situations.  In the second test, the human driver approaches 

the hazard without engaging the brakes so that the vehicle 

automatically engages the brakes once the threat exceeds the 

threshold Φon. 

Results from the stopping test without controller 

intervention are given in Fig. 12-13.  The driver stopped the 

vehicle before the predicted threat threshold was exceeded.  

 

 
Results of a stopping maneuver with controller intervention 

are presented below based on simulated and experimental 

data.  Neither the simulated driver nor the human driver in 

the experiment engaged the brakes and both maintained a 

constant steering angle.  The initial vehicle speed was 

approximately 8 m/s and the threat threshold was Φon = 0.3.  

The path, threat, speed, and acceleration from simulation and 

experiment are presented in Fig. 14-17.  Note that the threat 

threshold was exceeded at approximately 0.68 s.  This is 

indicated as a solid vertical line labeled "Engage" in Fig. 15-

17. 

 

 

 

 
Fig. 15.  Predicted threat during stopping maneuver at 8 m/s with Φon = 

0.3. 

 
Fig. 13.  Predicted threat during stopping maneuver initiated by driver 

without controller intervention.  The threat did not exceed the threshold, 

so the controller did not intervene. 

 
Fig. 12.  Vehicle path during stopping maneuver initiated by driver 

without controller intervention.  The critical hazard edge is wide and 

perpendicular to the vehicle direction of travel.  The vehicle path is 

illustrated by the circles. 

 
Fig. 16.  Vehicle speed during stopping maneuver at 8 m/s with Φon = 

0.3. 

 
Fig. 14.  Paths during stopping maneuver at 8 m/s with Φon = 0.3.  The 

critical hazard edge is wide and perpendicular to the vehicle direction of 

travel.  The vehicle path is illustrated by the circles.  The simulated path 

is on the right with solid lines, while the experimental path is on the left 

with dashed lines. 
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The simulated vehicle slowed before the hazard edge until 

the minimum simulation speed of 0.5 m/s was reached.  The 

initial threat was approximately 0.2 and reached the threshold 

value of Φon = 0.3 at approximately 0.68 s.  After reaching 

the predicted threat threshold, the simulated vehicle applied 

braking quickly and held the predicted threat roughly 

constant for the duration of the maneuver. 

The initial threat and acceleration command for the 

experimental vehicle matched the simulation data, though a 

significant lag was observed between the braking command 

and the measurement of deceleration.  This led to an increase 

in both threat and the braking command magnitude.  The 

vehicle reached the face of the virtual obstacle with a speed of 

about 1 m/s before stopping 0.2 m past the cones.  The 

controller performance during this test is discussed further in 

section IV. 

D. Passing turn 

A passing turn was demonstrated by approaching a hazard 

corner perpendicular to the hazard face.  Similar to the 

stopping maneuver, tests without controller intervention and 

with controller intervention are presented. 

Results from the passing maneuver without controller 

intervention are presented in Fig. 18-19.  The initial speed 

was 12 m/s with threshold Φon = 0.6.  The driver initiated a 

passing maneuver and successfully avoided the obstacle. 

 

 
Results from the passing maneuver with controller 

intervention are presented below.  Neither the simulated 

driver nor the human driver engaged the brakes and both 

maintained a constant steering angle.  The vehicle speed 

began at approximately 13 m/s and the threat threshold was 

Φon = 0.3.  The path, threat, speed, and acceleration are 

presented in Fig. 20-23.  The time when the threat threshold 

was crossed is indicated by a solid vertical line labeled 

"Engage" in Fig. 21-23. 

 
Fig. 19.  Predicted threat during passing maneuver initiated by driver 

without intended controller intervention. 

 
Fig. 18.  Vehicle path during passing maneuver initiated by driver 

without controller intervention.  The vehicle is near a corner of the 

hazard and travels perpendicular to the hazard face.  The vehicle path is 

illustrated by the circles. 

 
Fig. 17.  Vehicle braking acceleration during stopping maneuver at 8 

m/s with Φon = 0.3.  The simulated acceleration is denoted by "Sim" and 

the commanded and measured accelerations from the experiment are 

denoted "Exp cmd" and "Exp meas" respectively. 
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The initial threat was 0.15 and increased to the threshold 

of Φon = 0.3 at approximately 0.59 s.  After reaching the 

threshold, both the simulated and experimental vehicles 

applied a combination of braking and steering inputs to avoid 

the hazard.  There is a close match between the simulated and 

experimental vehicle paths shown in Fig. 20.  The simulated 

threat reached a peak of 0.33 and remained roughly constant 

during the maneuver.  The experimental threat reached a 

peak of 0.50.  The differences between the simulated and 

experimental threat may be caused by model parameter 

mismatch. 

E. Non-passing turn 

A non-passing maneuver was demonstrated with a single 

experimental result with controller intervention.  This 

maneuver was tested by defining a very long hazard edge 

nearly parallel to the vehicle's direction of travel.  This 

scenario corresponds to a lane-keeping task or prevention of 

road departure.  The path and threat of the maneuver are 

given in Fig. 24-25.  The initial speed of the vehicle was 21 

m/s with a threshold of Φon = 0.3. 

 

 
Fig. 21.  Predicted threat during passing turn at 13 m/s with Φon = 0.3. 

 
Fig. 24.  Experimental demonstration of non-passing turn with 1-step 

prediction and cost-to-go.  The critical hazard edge is long and nearly 

parallel to the vehicle direction of travel.  The vehicle path is illustrated 

by the circles. 

 
Fig. 23.  Vehicle acceleration during passing turn at 13 m/s with Φon = 

0.3.  The longitudinal and lateral directions are denoted by x and y 

respectively. 

 
Fig. 22.  Vehicle speed during passing turn at 13 m/s with Φon = 0.3. 

 
Fig. 20.  Paths during passing maneuver at 13 m/s with Φon = 0.3.  The 

vehicle is near a corner of the hazard and travels perpendicular to the 

hazard face.  The vehicle path is illustrated by the circles. 
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IV. DISCUSSION 

The semi-autonomous hazard avoidance system was 

demonstrated experimentally for stopping, passing turn, and 

non-passing turn maneuvers with and without driver 

intervention.  The use of the short prediction horizon with 

cost-to-go enabled the nonlinear MPC computation to be 

completed within 50 ms and the controller to run in real-time.  

During these tests, there were no instances of computation 

overrunning the allotted computation time. 

The semi-autonomous nature of the system was 

demonstrated successfully in low-threat situations when the 

driver took action to avoid the hazard and the system did not 

intervene.  The intervention behavior of the semi-autonomous 

system can accommodate varying levels of driver skill by 

adjusting the threat threshold parameter Φon. 

The semi-autonomous nature of the system was also 

demonstrated successfully in high-threat situations for 

passing and non-passing turns when the system engaged the 

steering and braking actuators to successfully avoid the 

hazard.  The vehicle did not stop completely before the 

hazard face during the stopping test, however.  Comparing 

the simulation results to the experimental results, a 

significant lag was observed between the commanded and 

actual braking deceleration.  This is likely caused by 

unmodeled lag in the braking actuator dynamics.  It is well 

known that model mismatch can cause problems for 

nonlinear model predictive control.  Future work with model 

predictive control for hazard avoidance via braking should 

consider the effect of braking actuator dynamics on system 

performance. 

V. CONCLUSION 

A hazard avoidance controller based on a minimum threat 

model predictive controller was presented and demonstrated 

in simulations and experiments.  An approximation of threat 

based on computationally efficient analytical calculations of 

canonical avoidance maneuvers was used as a cost-to-go to 

reduce the computational demand.  The system was found to 

successfully avoid hazards with passing and non-passing 

turns, though unmodeled lag in braking actuator dynamics 

caused performance problems in stopping maneuvers.  Future 

work will attempt to address issues of model mismatch. 

Further work is needed before this research is road-ready. 
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