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Abstract

This paper addresses the problem of learning object

models from egocentric video of household activities, us-

ing extremely weak supervision. For each activity sequence,

we know only the names of the objects which are present

within it, and have no other knowledge regarding the ap-

pearance or location of objects. The key to our approach

is a robust, unsupervised bottom up segmentation method,

which exploits the structure of the egocentric domain to par-

tition each frame into hand, object, and background cat-

egories. By using Multiple Instance Learning to match

object instances across sequences, we discover and lo-

calize object occurrences. Object representations are re-

fined through transduction and object-level classifiers are

trained. We demonstrate encouraging results in detecting

novel object instances using models produced by weakly-

supervised learning.

1. Introduction

This paper is motivated by the desire to automati-

cally learn rich models of human activities and behavior

from weakly-labeled video sequences. The ability to pro-

vide fine-grained annotations of an individual’s behavior

throughout their daily routine would be extremely interest-

ing in a range of healthcare applications, such as assess-

ing activities of daily living in elderly populations. How-

ever current approaches to activity recognition depend upon

highly-structured activity models and large amounts of la-

beled training data to obtain good performance [11]. Re-

cently some authors have demonstrated the ability to au-

tomatically acquire labels for simple actions and sign lan-

guage using scripts and close-caption text [5, 14]. While

these are promising approaches, the transcripts they require

are not generally available for home video.

Our approach is based on the observation that many

household activities involve the manipulations of objects,

and that a simple but effective activity model can be con-

structed from patterns of object use [24]. However previ-

ous work in this area required the ability to identify when

a particular object is being manipulated by the user (e.g.

by means of an RFID sensor) in order to collect training

data. This paper explores the hypothesis that object in-

stances can be detected and localized simply by exploiting

the co-occurrence of objects within and across the labeled

activity sequences. We assume that we are given a set of

training videos which are coarsely labeled with an activity

and the list of objects that are employed, but without any ob-

ject localization information. The difficulty of this learning

problem stems from the fact that there are many possible

candidate regions which could contain objects of interest,

and a standard learning method could succeed only if an

extremely large amount of diverse training examples were

available.

We propose to address the problem of limited training

data by adopting the paradigm of egocentric or first-person

video (i.e. video captured from a wearable camera that im-

ages the scene directly in front of the user at all times). In

contrast to the established third-person video paradigm, the

egocentric paradigm makes it possible to easily collect ex-

amples of natural human behaviors from a restricted van-

tage point. The stability of activities with respect to the

egocentric view is a potentially powerful cue for weakly-

supervised learning. Egocentric vision provides many ad-

vantages: (1) there is no need to instrument the environ-

ment by installing multiple fixed cameras, (2) the object be-

ing manipulated is less likely to be occluded by the user’s

body, and (3) discriminative object features are often avail-

able since manipulated objects tend to occur at the center of

the image and at an approximately constant size. In this pa-

per will show how the domain knowledge provided by ego-

centric vision can be leveraged to build a bottom-up frame-

work for efficient weakly-supervised learning of models for

object recognition.

Our method consists of two main stages. In the first

stage, our goal is to segment the active objects and hands
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from unimportant background objects. As humans, we

can easily differentiate between background objects and the

ones we are attending to during the course of an activity.

Likewise, our learning method must be able to focus only

on the objects being manipulated by our hands in order to

be able to accurately distinguish different daily activities.

Weakly supervised learning of objects will not be feasible

unless we are able to ignore the dozens of unrelated and

potentially misleading objects which occur in background.

In the second stage of the method, we learn object appear-

ances based on the patterns of object use provided as a weak

source of information with the training data. We first use a

MIL framework to initialize a few regions corresponding to

each object type, and then we propagate the information to

other regions using a semi-supervised learning approach.

2. Previous Work

Egocentric Vision: Recently there has been an increas-

ing interest in using wearable cameras, motivated by the ad-

vances in hardware technology. Early studies of wearable

cameras can be found in [15, 18]. Spriggs et. al [20] ad-

dress the segmentation and activity classification using the

first-person sensing. Ren and Gu [16] showed that figure-

ground segmentation significantly improves object recogni-

tion results in egocentric video. In contrast, we show how

the egocentric paradigm can be leveraged to learn object

classification and segmentation with very weak supervision.

Weakly Supervised Recognition: Reducing the amount

of required supervision is a popular topic in computer vi-

sion, given the expense of labeled image data. Recent

works have tried to provide different sources of automatic

weakly supervised annotations by using web data [4] or

cheap human annotation systems such as Amazon’s Me-

chanical Turk. Others have studied probabilistic clustering

methods such as pLSA and LDA for unsupervised discov-

ery of object topics from unlabeled image collections [19].

Unsupervised methods are not necessarily appropriate

for learning object categories, since they have no guarantee

of finding topics corresponding to object classes. An alter-

native approach is to expand a small set of labeled data to

the unlabeled instances using semi-supervised learning. For

example, Fergus et. al [7] leverage the semantic hierarchy

from WordNet to share labels between objects.

More recently, Multiple Instance Learning (MIL) has

shown great promise as a method for weakly supervised

learning in computer vision communities [1, 9, 5, 23, 6].

In MIL, labels are provided for bags containing instances

(e.g. images containing objects). These information are

then leveraged to classify instances and bags. Buehler et. al

[5] localize signs in footage recorded from TV with a given

script. Vijayanarasimhan and Grauman [23] learn discrimi-

native classifiers for object categories given images returned

from keyword-based search engines.

In this paper, we show that egocentric video provides a

new paradigm for weakly-supervised object learning. We

present results on reliably carving object classes out of

video of daily activities by leveraging the constraints pro-

vided by the egocentric domain.

Objects and Activities: Li and Fei-Fei [12] use the ob-

ject categories that appear in an image to identify an event.

They provide ground truth object labels during learning in

order to categorize object segments. Ryoo and Aggarwal

[17] combine object recognition, motion estimation and se-

mantic information for the recognition of human-object in-

teractions. Their experiments involve four categories of ob-

jects (including humans). Gupta et. al [8] use a Bayesian

approach to analyze human-object interactions, with a like-

lihood model that is based on hand trajectories.

Wu et. al [24] perform activity recognition based on tem-

poral patterns of object usage, but require RFID-tagged ob-

jects in order to bootstrap appearance-based classifiers. In

contrast to these methods we recognize and segment fore-

ground objects from first-person view given a very weak

amount of supervisory information.

Video Segmentation: Background subtraction is a well

addressed problem for fixed-location cameras. Various

techniques have been developed, such as adaptive mixture-

of-Gaussian model [21]. However, problem is much harder

for a moving camera and is usually approached by motion

segmentation given sparse feature correspondences (e.g.

[25]). The most relevant work to our background subtrac-

tion section is Ren and Gu [16]. Given ground-truth seg-

mentations, they learn a classifier on motion patterns and

foreground object prior location, specific to their egocentric

camera. In comparison, our Segmentation method is com-

pletely unsupervised and achieves a higher accuracy.

3. Segmentation

In this Section we describe a bottom-up segmentation ap-

proach which leverages the knowledge from egocentric do-

main to decompose the video into background, hands and

active objects. We first segment the foreground regions con-

taining hands and active objects from background as de-

scribed in Sec 3.1. Then in Sec 3.2 we learn a model of

hands and separate them from objects, and further refine

them into left and right hand areas. In Section 4 we show

this step is crucial for weakly supervised learning of objects.

3.1. Foreground vs Background Segmentation

Our foreground segmentation method is based on a few

assumptions and definitions: (1) we assume the background

is static in the world coordinate frame, (2) we define fore-

ground as every entity which is moving with respect to the

static background, (3) we assume background objects are

usually farther away from the camera than foreground ob-

jects and (4) we assume we can build a panorama of the
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(a) (b) (c) (d) (e)

Figure 1: The Background Model. (a) A sample frame from Intel dataset [16], (b) mean color of color-texture background

model, (c) mean intensity of background boundary model, (d) the edges corresponding to the object boundary in the sample

image do not match the background model, (e) foreground segment is depicted in red.

background scene by stitching the background images to-

gether using an affine transformation. The fourth assump-

tion is basically assuming that the background is roughly

on a plane or far enough from the camera. An object will

be moving with respect to the background when it is being

manipulated by hands. When the subject finishes a sub-task

and stops manipulating the object, the object will become a

part of background again.

Our segmentation method is as follows. We first make an

initial estimate of background regions in each image by fit-

ting a fundamental matrix to dense optical flow vectors. We

make temporally local panoramas of background given our

initial background region estimates. Then we register each

image into its local background panorama. The regions in

the image which do not match the background scene are

likely to be parts of foreground. We connect the regions in

sequence of images spatially and temporally and use graph-

cut to split them into foreground and background segments.

We split the video into short intervals and make local

background models for each. The reason is that the back-

ground might change over time, for example the subject

might finish manipulating an object and leave it on the ta-

ble, letting it become a part of background. We initially ap-

proximately separate foreground and background channels

for each image by fitting a fundamental matrix to its optical

flow vectors. We compute the flow vectors to its few adja-

cent frames. For each interval we choose a reference frame

whose initial background aligns the best to other frames.

We build two kinds of temporally local models for back-

ground (panoramas): (1) a model based on color and tex-

ture histogram of regions and (2) a model of region bound-

aries. To build these models, we fit an affine transformation

to the initial background SIFT feature correspondences of

each frame in the interval, and the reference frame. We

stitch these images using affine transformation. After fix-

ing the images to the reference frame coordinate, we build

the color-texture and boundary background models. This is

by computing a histogram of values extracted from interval

images corresponding to each location in the background

panorama. Here we describe these two background models

in more details:

Color-Texture Background Model: We segment each

image into small super-pixels [2], as shown in Fig 1(e).

We represent each super-pixel with a color and texture his-

togram. We compute texture descriptors [22] for each pixel

and quantize them to 256 kmeans centers to produce the

texture words. We sample color descriptors for each pixel

and quantized them to 128 kmeans centers. We cluster the

super-pixels by learning a metric which forces similarity

and dissimilarity constraints between initial foreground and

background channels. Euclidean distance between super-

pixels might not be a good measure, since for example the

color of a region on hand might look very similar to a super-

pixel corresponding to background. As a result, we learn a

metric on super-pixel distance which satisfies the follow-

ing properties: (1) the distance between two spatially adja-

cent super-pixels in background is low, (2) the distance be-

tween temporally adjacent super-pixels with strong optical

flow link is low and (3) the distance between a super-pixel

in foreground and a one in background is high. We use the

EM framework introduced in Basu et. al [3] to cluster the

super-pixels into multiple words using the mentioned simi-

larity and dissimilarity constraints.

We build a histogram of words for each location in the

background model from the values that correspond to that

location in each interval image. We have depicted the mean

color of an example background model in Fig 1(b). Given

the computed background model, we estimate the probabil-

ity of image super-pixels belonging to background by inter-

secting their color-texture word with the histogram of their

corresponding region in background model.

Boundary Background Model: The hierarchical seg-

mentation method of [2] provides a contour significance

value for pixels of each image. We transform contour im-

ages of each interval to the reference coordinate. For each

pixel in the background model we build a histogram of con-

tour values. We have shown average contour intensity for an

example image in Fig 1(c). For each super-pixel we mea-

sure how well its contour matches to the background model

as shown in Fig 1(d). For the super-pixels corresponding

to the background, their edges will match the background

model with a high probability (some times object edges

might create occlusions on background regions), while the

super-pixels corresponding to foreground region usually do

not match with the background model.

Now that the foreground and background priors are com-
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(a) (b) (c) (d)

Figure 2: Segmentation results on an image of the Instant

Coffee making activity is shown: (a) original image, (b)

left hand segment, (c) object segment and (d) right hand

segment.

puted for each super-pixel, we connect the super-pixels to

each other both spatially and temporally. We connect ad-

jacent super-pixels in each image and set the connection

weight based on their boundary significance. We further

connect the super-pixels in adjacent frames based on opti-

cal flow and SIFT correspondences [13]. We use a Markov

Random Field model to capture the computed foreground

and background priors, as well as spatial and temporal con-

nections between super-pixels. We solve this MRF using

graph-cut.

3.2. Hands vs Objects Segmentation

We use the fact that the hand presence is dominant in

foreground to learn a model for hands. As objects are ma-

nipulated over time, they become a temporary part of fore-

ground, while hands are present most of the time. Given

the foreground/background segmentation computed in Sec-

tion 3.1, we build color histograms for foreground and back-

ground regions through out each activity.

A super-pixel which has a very high similarity to fore-

ground color histogram is more likely to belong to one of

the hands. To set the hand prior for a super-pixel we in-

tersect its color histogram with foreground color histogram

and divide it to its intersection score with background color

histogram. We set the prior of being object to the median of

super-pixel priors for hands. We use graph-cut to segment

the foreground into hands and objects.

Given the hand regions extracted in previous step, we

segment left and right hands. We use the prior information

that in egocentric camera left hand tends to appear in left

side of image and right hand usually appears in the right.

We set priors on super-pixels based on their location on hor-

izontal axis of image and use graph-cut to segment them

into two regions. An example of hand vs objects segmenta-

tion is shown in Fig 2.

4. Automatic Object Extraction

Given a thousands frame long activity image sequence,

our goal is to carve out and label the few participating ob-

ject categories without having any prior information on their

spatial or temporal location. This is a fundamental and

challenging problem. However, it becomes feasible given

the knowledge and constraints existing in egocentric video.

The key idea is that each object is used only in a subset of

activities and is not included in the rest. An object might

be present in the background region of all activity videos,

however we use our capability to segment the active object

regions to remove the background noise.

We split the active object mask into multiple fine regions.

Our goal is to learn an appearance model for each object

type, and based on that assign each fine region to an ob-

ject category. To solve this problem, we first initialize each

object class by finding a very few set of fine regions cor-

responding to it. For this purpose, we extend the diverse

density based MIL framework of [6] to infer for multiple

classes. In our problem instances represent object regions

and bags represent the set of all regions in video. The MIL

framework finds patterns in regions that occur in positive

bags (the sequences containing the object of interest) but not

in negative ones. Positive bags are the sequences in which

the object of interest exist. We need to infer for multiple

classes simultaneously in order to discriminate different ob-

jects. We further use equality constraints to assign the same

object category label to regions with significant temporal

connections (with corresponding SIFT feature). These con-

straints help our method to assign a region to an object class

based on the majority votes from its connections.

Given a few regions corresponding to each object class,

we propagate these labels to unlabeled foreground regions.

Then we learn a classifier for each object class in order to

recognize regions in test activities.

We believe egocentric domain makes the object extrac-

tion step feasible. In egocentric domain, we are able to

segment the active object region from background and ex-

tract regions consistent in shape, size and appearance corre-

sponding to the same object instance from various activities.

4.1. Object Initialization

Chen et. al [6] extend ideas from the diverse density

framework to solve the MIL problem. Here we further

extend their method to (1) handle multiple instance labels

simultaneously and (2) apply mutual equality constraints

among some instances in each bag. They find a similar-

ity measure between every instance xi and every bag Bj ,

using the following equation

Pr(xi|Bj) = s(xi, Bj)

= maxxk∈Bj
exp

(

−
‖ xi − xk ‖2

σ2

)

where σ is a pre-defined scaling factor. Given m in-

stances in total and l bags, the following m × l matrix is

built:
















s(x1, B1) . . . s(x1, Bl)
s(x2, B1) s(x2, Bl)

. . .

. . .

. . .

s(xm, B1) . . . s(xm, Bl)

















(1)
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In this matrix each row corresponds to similarities of an

instance to all the bags, and each column captures the sim-

ilarity of each bag to all the instances. For our task, the

instances correspond to image regions and bags correspond

to activities. Our objective function is to find a sparse set

of instances corresponding to each object category which

have a high similarity to positive bags and a low similarity

to negative bags.

We extend their formulation to infer multiple instance

classes simultaneously. Instead of minimizing for a single

vector w, we are looking for r sparse vectors w1, w2, ...,

wr where each wc is m dimensional and is positive at a few

representative instances of object class c and is zero every

where else.

We further add equality constraints wc(p) = wc(q) be-

tween a pair of elements (p, q) in all wc, c = {1, ..., r} if

there is a temporal link between regions corresponding to

instances p and q. We optimize the following linear pro-

gram which minimizes the L1-norm of wc vectors and re-

turns sparse vectors:

minw,b,ξ







r
∑

c=1

| wc | +C

l
∑

j=1

ξj







(2)

wc.s(:, j) ≥ wc′ .s(:, j)+δc,c′,Bj
−ξj s.t. ∀c, c

′ = {1, ..., r}

wc(p) = wc(q) s.t. ∀c = {1, ..., r}, (p, q) ∈ C

ξj ≥ 0 s.t. ∀j = {1, ..., l}

where ξj is slack variable for bag j, C is a constant,

s(:, j) contains the similarity vector of instances to bag j,

δc,c′,Bj
is 1 if bag Bj is positive for class c and negative for

class c′ and 0 otherwise, and C contains the set of equality

constraints between instances.

We describe each region with a 32 dimensional feature

vector by compressing its color and texture histograms us-

ing PCA. This representation is able to both describe ob-

jects with and without texture. The similarity between a

region xi and a bag Bj is computed based on the distance

between xi’s feature vector and its closest neighbor among

all regions in Bj as in Eq 1. We observe that taking region

shape and sizes into account enhances the performance. Re-

gions corresponding to different objects might have similar

texture and color appearance. For instance, there are white

regions corresponding to spoon, sugar and tea bag, but their

sizes and shapes are different. To take region shapes and

sizes into account, we fit an ellipse to each region and

reweight the computed distances based on the relative ratio

of ellipse axis for matched regions. We then optimize the

multi-class L1-SVM in Eq 2 to find a few positive instances

for each object class.

4.2. Object Classification

Our goal is to automatically assign object labels to all

foreground regions, while initially we have only a few la-

beled ones. To do so, we first propagate the labels using the

region connectivities in video. For each activity sequence

we build a pairwise adjacency matrix W by connecting its

regions to their spatial and temporal neighbors. We set the

class label of the regions which were initialized in previous

step. To expand the label set, we minimize the following

objective function

E(y) =
1

2

∑

i,j

wijδ(yi − yj)
2

where yi is the label of region i and wij is the similarity

weight connecting regions i and j in computed adjacency

matrix W . We estimate y for unlabeled regions by com-

puting the harmonic function f = argminf |fLE(f) as de-

scribed in [26]. Harmonic solution f is a m×r matrix where

m is the number of regions and r is the number of labeled

classes and can be computed in polynomial time by simple

matrix operations . We fix the label of an unlabeled region

i to c, if f(i, c) is greater than f(i, c′) for ∀c′ = {1, ..., r},

and further f(i, c) is greater than a threshold.

After expanding the initial labels, we learn a classifier

for each object class using Tranductive SVM (TSVM) [10].

To train a classifier for a particular object category, we set

the label of its assigned regions to 1, the label of regions in

foreground regions of negative bags to −1 and the label of

regions assigned to other object classes to −1 as well. We

set the label of unlabeled regions to 0. TSVM as described

in [10], iteratively expands the positive and negative classes

until convergence.

5. Experiments and Datasets

In this Section we present a new egocentric daily activity

dataset on which we validate our results.

5.1. Dataset

We collect a dataset of 7 daily activities from egocentric

point of view performed by 4 subjects. We mount a GoPro

camera on a baseball cap, which is positioned so as to cover

the area in front of the subject’s eyes. The camera is fixed

and moves rigidly with the head. The camera captures and

stores a high definition 1280×720, 30 frame per second 24-

bit RGB image sequence. We extract frames with a 15 fp

rate from the recorded videos. The total number of frames

in the dataset are 31,222.

Our dataset contains the following activities: Hotdog

Sandwich, Instant Coffee, Peanut Butter Sandwich, Jam

and Peanut Butter Sandwich, Sweet Tea, Coffee and Honey,

Cheese Sandwich. In Table 1 we have listed the activities

and their corresponding objects. We use activities of sub-

jects (2,3,4) as training data to learn object classifiers, and

test on the activities of the subject 1. The set of objects
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Activities Objects

Hotdog Sandwich Hotdog, Bread, Mustard, Ketchup

Instant Coffee Coffee, Water, Cup, Sugar, Spoon

Peanut-butter Sandwich Peanut-butter, Spoon, Bread, Honey

Jam Sandwich Jam, Chocolate Syrup, Peanut-butter, Bread

Sweet Tea Cup, Water, Tea bag, Spoon

Cheese Sandwich Bread, Cheese, Mayonnaise, Mustard

Coffee and Honey Coffee, Cup, Water, Spoon, Honey

Table 1: Our dataset consists of 7 activities and 16 objects.

appearing in each activity is known for training sequences,

while for the test sequence they are unknown.

To validate our object recognition accuracy, we manually

assign one object label to each frame of the test activities.

In case of more than one foreground object, we assign the

label to the object we think is the most salient. We later

use these ground-truth annotations to measure our method’s

performance.

5.2. Results

In this section, we present results that demonstrate the

effectiveness of our method in segmenting and labeling ego-

centric videos of daily activities.

Segmentation: We compare the accuracy of our fore-

ground background segmentation approach to Ren and Gu

[16]. Our method is completely unsupervised while Ren

and Gu use an initial ground-truth segmentation set of im-

ages to learn priors on hand and object locations, optical

flow magnitude and other features. To compare our re-

sults, we manually annotated the foreground segmentations

for 1000 frames in the first sequence of Intel dataset intro-

duced in [16] using the interactive segmentation toolkit of

Adobe After Effects. Our method achieves 48% segmenta-

tion error rate and outperforms their method which results

in 67% error. We calculate individual image errors by di-

viding the difference between the areas of ground-truth and

results to the area of ground-truth foreground region. We

average these numbers over the image sequence.

Object Recognition: Our method first initializes a few

instances of each object in Section 4.1. Our object initial-

ization results have a very high precision. We have shown

2 representative examples for each object category in Fig 3.

There are 4 pair of mutually co-occurring object instances.

As a result our method is not able to distinguish between

them. We merge each pair into one class and reduce the

number of object classes from 16 to 12.

In Section 4.2, we expand the initial object regions

and learn a classifier for each object from the training se-

quences. We test our method on the test sequences as fol-

lows. We use our segmentation method to automatically

segment the active object area in test images as described in

Section 3. This area might contain more than one active ob-

ject. We classify each region in the active object area using

our learned object appearance models. Examples are shown
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Figure 6: Object recognition accuracy. Random classifica-

tion chance is 8.33%. Blue bars show how well the highest

score detection in each frame matches the ground-truth ob-

ject label. Green and red bars, depict these results for any

of the 2 and 3 highest score detections. We provide these

results since there might be more than one active object in

a frame but the ground-truth provides only one label per

frame.

in Fig 4. In Fig 5 we have shown a few interesting failures.

We compare the labeling accuracy of our algorithm with the

ground-truth object labels in Fig 6.

Activity

Hotdog

Coffee

Peanut

JamNut

Tea

CofHoney

Cheese

KNN(Active Objects Histogram), k=1,2,3

Hotdog Hotdog Tea

Coffee CofHoney Coffee

Peanut Peanut JamNut

JamNut Peanut Peanut

Coffee Tea Coffee

Coffee CofHoney Coffee

Cheese Cheese Cheese

KNN(All Objects Histogram), k=1,2,3

JamNut Peanut Hotdog

CofHoney Tea Tea

Cheese CofHoney Tea

Cheese Cheese Hotdog

Tea Coffee Tea

CofHoney Tea Tea

Cheese Peanut Cheese

Table 2: We represent each video with either the histogram

of its active objects or the histogram of its all objects both

in foreground and background. Given the computed his-

tograms, in each case we find the first 3 nearest training

activities to each test activity.

In Fig 7, we show that our learning method is more ca-

pable in comparison to a general SVM-based MIL [1].

It is shown that activities can be categorized based on

their object use patterns [24]. Segmenting the active object

out of background is a crucial step, without which activity

comparison based on all the objects appearing in video re-

turns poor results. In Table 2 we show that activities can

be reliably compared based on the histogram of active ob-

jects found by our method over time. In comparison, we

show that building a histogram of all object detections both

in foreground and background doesn’t perform as good.

6. Conclusion

We have developed a weakly supervised technique able

to recognize objects by carving them out of large egocentric

activity sequences. This is an intractable task in a general

setting, however our algorithm utilizes the domain specific
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Cup or Water Coffee Spoon Sugar Bread Cheese or Mayonnaise Mustard Hotdog or Ketchup Honey Peanut−butter Chocolate or Jam Tea

Figure 3: We first automatically initialize a few object regions corresponding to each class as described in Section 4.1. Two

representative initialized regions are shown for each object category.

Bread

Peanut

Left Hand

Right Hand

(a)

Cheese or Mayo

Mustard

Mustard

Left Hand
Right Hand

(b)

Bread

Left Hand Right Hand
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Figure 4: Our method extracts left hand, right hand and active objects at each frame. We learn a classifier for each object

class and assign each non-hand region in foreground segment to the class with the highest response.
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MI−SVM

Figure 7: The object regions are sparse in the foreground

and each object might contain regions with completely dif-

ferent appearance. As a result an algorithm such as MI-

SVM [1] which doesn’t take these considerations into ac-

count results in lower recognition accuracy. Random ac-

curacy is 8.33%. We compare the results by matching the

highest 1, 2 and 3 highest detection scores to ground-truth

annotations.

knowledge from the first-person view to make it feasible.

Our method automatically segments the active object re-

gions, assigns a few regions to each object and propagates

its information using semi-supervised learning. We show

that our method can reliably compare activity classes based

on their object use patterns. We believe promising future

directions for research involves combining the object and

actions as context to each other in order to enhance ac-

tivity recognition results. We have released our dataset at

http://cpl.cc.gatech.edu/projects/GTEA/.
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