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Figure l: Work flow of our method.

Abstract

This paper presents a method for the detection and
recognition of social interactions in a day-long first-person
video of a social event, like a trip to an amusement park.
The location and orientation of faces are estimated and
used to compute the line of sight for each face. The context
provided by all the faces in a frame is used to convert the
lines ofsight into locations in space to which individuals at
tend. Further, individuals are assigned roles based on their
patterns of attention. The roles and locations of individu
als are analyzed over time to detect and recognize the types
of social interactions. In addition to patterns offace loca
tions and attention, the head movements of the first-person
can provide additional useful cues as to their attentional fo
cus. We demonstrate encouraging results on detection and
recognition ofsocial interactions in first-person videos cap
turedfrom multiple days ofexperience in amusement parks.

Input Frame Tracked and Recognized Faces

1. Introduction

In this paper, we address the problem of detecting and
characterizing social interactions in a day-long video cap
tured at a social event such as a trip to an amusement park
or a picnic from a wearable camera (egocentric video). Too
often the desire for a tangible video record of such an outing
results in one or more individuals playing the role of "group
videographer" and spending much of their time behind the
viewfinder of a camcorder. This videographer role may pre
vent these individuals from fully participating in the group
experience. More importantly, the interesting moments and
shared experiences that are the most significant often occur
spontaneously, and can be easily missed. After the joke and
the laughter have passed, it is too late to turn on the cam
corder. This dilemma is summed up nicely by a quote from
[l 0]: "When I had my first child, I bought a camera and took
many pictures. But eventually I realized I was living behind
the camera and no longer taking part in special events. I

gave that up - now I don't have nearly as many pictures of
my second child."

The recent popularity of high-quality wearable cam
corders such as the Go-Pro have created an opportunity to
revisit the problem of experience capture. However, con
tinuous capture of video footage at a park or some other
outing will also result in hours of footage that is uninterest
ing: walking between rides, standing in line, etc. Our thesis
is that the presence or absence of social interactions is an
important cue as to whether a particular event is likely to be
viewed as memorable. We believe social interactions, such
as having a conversation, are tightly coupled with whether
a moment is worth keeping.

We further categorize social interactions into three sub
types: dialogue, discussion, and monologue, which charac
terize whether the interaction involves multiple people (dis
cussion) or a single subject (dialogue) and whether it is in
teractive (discussion) or largely one-sided (monologue). We
present a method for automatically detecting and catego-
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rizing social interactions in egocentric video. Our method

makes it possible to capture a continuous record of an out-

ing and then distill from it the most salient moments.

First-person video is an obvious choice for capturing per-

sonal day-long experiences in an amusement park, or other

social events in which thousands of individuals participate.

In this context, first-person video provides many advantages

in comparison to fixed video recorders: (1) the first-person

camera always records where the wearer is attending and

provides natural videos of her family and friends, (2) oc-

clusions are less likely in an egocentric setting, because the

wearer naturally moves to provide a clear view and (3) it is

not practical to simultaneously track all of the individuals in

an amusement park and record all of their interactions using

static cameras.

Our method uses two sources of information for analyz-

ing the scene in order to detect social interactions: (1) faces

and (2) first-person motion. The work-flow of our approach

is shown in Fig 1. We transfer detected faces into the 3D

scene and estimate their locations and orientations. The lo-

cation of the faces around the camera wearer provides sig-

nificant evidence for the type of social interaction. Further,

the social interactions are characterized by the patterns of

attention shift and turn-taking over time. We therefore es-

timate these patterns such as who looks at who, whether a

group of individuals look at a common location, etc. We an-

alyze these patterns of attention over time to recognize the

type of social interaction. For example, when most of the

individuals in a group are looking at a single person over a

long period of time, our algorithm will label this as a mono-

logue. In addition to patterns of face locations and attention,

the head movements of the first-person provide additional

useful cues as to their attentional focus.

We believe this is the first work to utilize egocentric

video in order to detect and categorize social interactions

among groups of individuals. Our focus on real-world so-

cial events, such as trips to an amusement park, make the

task especially challenging due to the complex visual ap-

pearance of natural scenes and the presence of large num-

bers of individuals in addition to the social group of inter-

est. We hope to encourage other researchers to tackle this

challenging new problem domain, and we provide a large,

extensively-annotated video dataset to support this goal. We

have released our dataset at http://cpl.cc.gatech.

edu/projects/FPSI/.

This paper makes four contributions: (1) we introduce a

method for detection and analysis of social interactions such

as monologue, discussion and dialogue, (2) we address this

problem from the first-person point of view, which is cru-

cial for capturing individual experience, (3) we present a

dataset of 8 subjects wearing head-mounted cameras at a

theme park, containing more than 42 hours of real world

video and (4) we develop a method which estimates the pat-

terns of attention in video and analyzes these patterns over

time to detect the social interactions.

2. Previous Work

We divide the previous work into three sections: (1) first-

person wearable sensors, (2) social networks and (3) activ-

ity recognition.

2.1. FirstPerson Wearable Sensors

An early study of wearable cameras is reported in [19].

Recently there has been a growing interest in using wear-

able cameras, motivated by the advances in hardware tech-

nology. In our previous work [8, 9] we recognize daily

activities such as meal preparation. Kitani et al. [11] rec-

ognize atomic actions such as turn left, turn right, etc. from

first-person camera movement. Aghazadeh et al. [1] extract

novel scenarios from everyday activities. In comparison,

this is the first work that detects and recognizes social in-

teractions in day-long videos recorded from a first-person

vantage point.

Additional early work on experience capture using wear-

able cameras was conducted using SenseCam [10, 2]. For

example, Gemmel et al. [10] present a lifetime recording

system that takes images based on lighting change. Aris et

al. [2] bind GPS information with photos taken over time to

provide a search method using time and location.

2.2. Social Networks

There has been a recent interest in building the social

network of individuals present in movies or other types of

video using computer vision techniques. Choudhury [6] re-

covers the social network and patterns of influence between

individuals. Yu et al. [20] use face recognition and track

matching to associate people together in videos using an

eigen vector analysis method which they call modularity-

cut. Ding and Yilmaz [7] group movie characters into ad-

versarial groups. In contrast to these works, our primary

goal is to identify specific categories of social interaction

and not estimate the social network structure for a group of

individuals.

2.3. Activity Recognition

Human activity and action recognition is a popular topic

in computer vision. Previous works have focused on rec-

ognizing atomic actions such as running, walking, etc. or

more realistic actions performed by one or two individuals

like opening the door, smoking and kissing [13]. More rele-

vant are recent works that address the problem of recogniz-

ing group activities such as standing in line and crossing the

street in images and videos. Lan et al. [12] use a discrimina-

tive latent SVM model to recognize group activities in im-

ages based on individual actions and pairwise context. Choi
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Figure 2: MRF model for inferring where each person is at
tending. The observations PIi contain the location and ori
entation of the face Ii in the scene, and the hidden variables
L Ii are the 3D location at which the face Ii is looking.

et al. [5] recognize group activities in videos using features
which capture the relative location of pedestrians in space
and time. Patron-Perez et al. [17] extract features for human
interactions like hand shaking based on face orientation. Ni
et al. [16] recognize group activities in surveillance videos
from self, pair and group-localized causalities. Morariu and
David [15] recognize multi-agent events in scenarios where
structure is imposed by rules that agents must follow.

Our method differs in three ways from these works: (1)
our videos are recorded from a first-person camera in which
the bodies of other individuals are usually off-camera but
faces and first-person head movement are easy to detect,
(2) our focus is on categorizing extended social interactions
such as conversations, and (3) we assign roles to individu
als using patterns of attention and first-person movement.
There are previous work that estimate where people are
looking in the scene [3, 14]. However, our method goes be
yond these works by showing that these attention patterns
can be used for recognizing social interactions.

3. Faces and Attention

In this section, we describe our method for estimating
the location and orientation of faces in space and analyzing
the patterns of attention (to whom or where in 3D each face
is looking). In Section 4, we analyze the attention patterns
over time to detect the types of social interaction in video.
We use faces as our main source of information because (1)
faces and their attention patterns playa primary role in so
cial interactions and (2) the state of the art computer vision
methods for face detection and recognition are more robust
in comparison to algorithms for detection of pedestrians or
other objects.

Given only one person's face location and orientation in
the scene, we can estimate its line of sight but it is not pos
sible to estimate where in space it is looking at. However,
we show that the context provided by other faces can help
to estimate where each faces is attending in space.

We start by tracking the faces in video. Then we iden
tify individuals by clustering the face tracks into multiple
bins. In addition, we compute the orientation (yaw, pitch,

roll) of every detected face!. In each frame, we estimate the
location of every face in 3D space with respect to the first
person. Since our videos are recorded from a linear scale
fish-eye lens, we can estimate a face's view angle e from
the camera by e = 'j where r is the pixel distance of the
center of the face from the image center and I is the cam
era's focal length. We use the height h of a detected face to
approximate its distance d from the camera by d = *where
c is a constant. We estimate c and I by calibrating our cam
eras, asking multiple subjects to stand at pre-defined loca
tions and orientations with respect to a camera mounted on
a tripod. We estimate the face orientations in 3D using its
computed orientation in 2D image. Examples are shown in
Fig 4(a-c).

Only a subset of individuals present in the scene are vis
ible in each frame. This issue impacts the effectiveness of
our attention estimation method. We solve this problem by
building a map of faces around the first-person at local time
intervals. Our assumption for making these local maps is
that the positions of faces around the first-person does not
significantly change locally in time. For each interval, we
first pick the frame with the maximum number of faces as
the reference frame. We initialize the 3D location of the
faces in the reference frame. We set the origin of the world
coordinate frame to the camera coordinate in the reference
frame. We iteratively add the faces in adjacent frames to
the map. For each frame, we match the faces to the ones
already added to the map based on their assigned cluster
number acquired in the recognition process.

The location and orientation of a face in 3D provides
us with an approximate line of sight. We use the context
provided by all the faces to convert lines of sight into 3D
locations. We make three assumptions to achieve this goal:
(1) It is more likely that a person looks at something in the
direction of her face's orientation, (2) a person looks at a
person with a higher probability than at other objects, (3) if
other people in the scene are looking at a particular location,
then it is more probable for a face that is oriented towards
that location to be looking at it as well. Next we describe
our method for estimating where faces attend.

3.1. Reasoning about People's Attention

Our goal is to find out where each person is attending in
3D space. We build an MRF (Fig 2) in which the observa
tions PIi contain the location and orientation of the face Ii
in the scene, and the hidden variables L Ii are the 3D loca
tion at which the face Ii is looking. To make the inference
feasible, we discretize the space into a grid at a resolution
of 5cm x 5cm. Our goal is to estimate at which grid point
each face is looking. The label space for each L Ii is the set
of grid locations. We have depicted an example in Fig 3.

[We use Pittpatt software (http://www.pittpatt.com) for face detection
and recognition.
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(a) (b) (c)

Figure 3: MRF Inference Procedure. Our method groups the faces looking at a common location together. In (a) the color of

the circle around the face determines the group it belongs to. The camera wearer and the man on the right are looking at the

lady wearing a polkadot shirt. In (b), our algorithm cannot detect lady’s face, but realizes that the first-person and the man

are looking at the same location in space. In (c), our algorithm estimates that the lady with the red shirt is looking at the man.

Our MRF model in the case of four faces is shown in Fig

2. The unary potentials capture the likelihood of looking

at a grid cell based on the observations, while the pairwise

terms model the context between faces in the scene. The

pairwise terms model the likelihood of looking at a grid cell

given where other faces are looking.

Unary Potentials: Consist of three terms as follows:

φU (Lfi , Pf1 , Pf2 , ..., PfN ) = φ1(Lfi , Pfi)×
φ2(Lfi , Pfi)×
φ3(Lfi , Pf1 , ..., PfN )

where fi represents face i in the scene, Lfi is the location

at which fi is looking at in space, and Pfi =

[

Vfi

Tfi

]

con-

tains the orientation unit vector Vfi and location vector Tfi

of the face fi. The first potential φ1 is modeled as a Gaus-

sian function that computes the possibility of fi looking at

a location ℓ based on fi’s location and orientation in space:

φ1(Lfi = ℓ, Pfi) =
1

σ1

√
2π

exp

{

−‖Vfi − (ℓ− Tfi)‖2
2σ2

1

}

where σ1 is the standard deviation. The second potential φ2

is modeled as a sigmoid function to put a threshold on how

close Lfi = ℓ can be to the face fi, added mainly to avoid a

face looking at itself:

φ2(Lfi = ℓ, Pfi) =
1

1 + exp {−(c2.‖ℓ− Pfi‖)}

where c2 is a constant. Finally the third term φ3 is meant to

bias faces to look at where other faces are in comparison to

looking at objects:

φ3(Lfi = ℓ, Pf1 , ..., PfN ) =

{

c3 ℓ = Pfj∀j 6= i

1 otherwise

where c3 is a constant increasing the chance of fi looking

at a location ℓ if another face fj is at that location.

We set the parameters σ1, c2 and c3 using the training

data. We manually annotate faces looking at each other in a

set of frames and learn the parameters from these examples.

Pairwise Potentials: The binary potentials capture the

interaction between people. They bias the faces towards

looking at the same location in the scene. Basically, if oth-

ers are looking at something in the scene, the probability

that another person is looking at the same thing is higher.

We define the following function for the binary potentials:

φB(Lfi = ℓ1, Lfj = ℓ2) =

{

cB

1− cB

if(ℓ1 = ℓ2)

if(ℓ1 6= ℓ2)

where cB is a constant greater than 1
2 and smaller than 1.

We set cB by cross validation on the annotated examples.

Optimizing the MRF: We need to optimize the MRF to

infer the locations Lfi = ℓ where each face fi is attend-

ing. There are a large number of possible locations (cells

in the grid) and there can be up to 10 faces in a frame in

some cases. Because the location at which a face is look-

ing at is dependent on that of other faces, exact inference is

intractable. We propose an approximate algorithm to solve

this problem which is inspired by the α-expansion method.

Our algorithm iteratively groups or separates faces based on

whether they are looking at a common location or not.

Our algorithm starts by assigning each face’s attention to

a location by only optimizing its unary terms. Thus, faces

are first assigned to different groups. In the next stage,

it considers both unary and pairwise terms and iteratively

merges or splits the groups. At each step, it considers a pair

of groups and measures if the total MRF energy increases

as a result of merging them. If it does, the two groups are

merged. Similarly, in each group, it measures whether re-

moving a face increases the total energy. The procedure

iterates until convergence. An illustration of this procedure

is depicted in Fig 3. Qualitative results are shown in Fig 4.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Faces attending to a common location are shown with the same color. The bird’s eye view of the location and

orientation of faces in 3D space is shown. The first person is shown by a circle at the bottom center of the images. Note that

our method can estimate the common attention even if the faces are not looking at a person (c).

4. Method

In this section we describe our approach for detecting

and recognizing types of social interactions in day-long

first-person videos. We introduce three categories of fea-

tures and provide an analysis of their capability to describe

social interactions: (1) location of faces around the first-

person, (2) patterns of attention and roles taken by individ-

uals and (3) patterns of first-person head movement. We use

these features in a framework that explores the temporal de-

pendency over time to detect the types of social interactions.

4.1. Location of Faces around FirstPerson

Important evidence for the detection of social interac-

tions is provided by the location of faces in the 3D space

around the first-person. This is very similar in nature to

the approach of [5], where they use the relative location of

pedestrians to categorize group activities. For example, one

can imagine that in a monologue, faces tend to appear in a

circle around the person who is talking to the rest. In a dia-

logue a face tends to appear in front of the camera, looking

at the first-person. To build location-based features, we di-

vide the area in front of the first-person into 5 angular bins

(from −75 to 75 degrees) and 4 distance bins (from 0 to

5m). Our method counts the number of faces in each bin,

and returns a 20 dimensional histogram as a feature.

4.2. Attention and Roles

Social interactions are characterized by patterns of atten-

tion between individuals over time. When a person speaks,

she attracts the attention of others. Once another individual

takes the floor, the attention shifts to the new person.

Our idea is that during a social interaction, each individ-

ual present in the scene adopts a specific role. For exam-

ple, in a monologue, there is a particular role that can be

assigned to the person who is speaking, and another role

played by the individuals listening to the speaker. Analyz-

ing the change in roles over time can describe the patterns

of turn taking and attention shift that are crucial elements of

social interactions.

We assign roles to individuals based on four features that

capture the patterns of attention for each individual x:

• Number of faces looking at x

• Whether first-person looks at x

• If there is mutual attention between x and first-person

(both are looking at each other)

• Number of faces looking at where x is attending
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We assign a 4 dimensional feature vector to each individ-

ual and then cluster all the examples in training sequences

to a few bins using k-means. Each bin represents a role.

We represent each frame by building the histogram of roles

involved in a short interval around that frame.

4.3. FirstPerson Head Movement

A further cue for the categorization of social interactions

is provided by the first-person head movement. The move-

ment patterns complement the coarse attention estimation

with transition information. In addition, in cases where two

individuals are speaking while walking, and faces are ab-

sent from the video, the first-person head movement pro-

vides significant information.

We propose an additional feature to capture first-person

head motion patterns. We extract features from dense op-

tical flow [4] at each frame. We split each frame horizon-

tally and vertically into a few sub-windows. We split the

flow vector field in each sub-window into horizontal and

vertical components, Vx and Vy , each of which is then half-

wave rectified into four non-negative channels Vx+ , Vx− ,

Vy+ and Vy− . We represent each sub-windows with a vec-

tor containing the mean value of its motion channels. In

our experiments, we split each frame into nine (3× 3) sub-

windows.

4.4. Temporal Model

The features described in previous sections encode a lo-

cal snapshot in time. However, the temporal change in these

features is crucial for detection and understanding of social

interactions. The intuition behind our solution is that each

frame is assigned to a state based on its features, and then an

interaction type is assigned to the whole sequence based on

the state labels and their dependencies. We model our prob-

lem with Hidden Conditional Random Field (HCRF) [18]

for this purpose. In our model (Fig 5), frames are assigned

hidden state labels and these states are connected by a chain

over time. In HCRF, state labels are latent variables and are

learned by the algorithm.

The HCRF model is learned over the following potential

function Ψ:

Ψ(y,h,x;w) =
n
∑

i=1

whi
.ϕxi

+
n
∑

i=1

wy,hi

+
∑

(k,l)∈E

wy,hk,hl

where the graph E is a chain with nodes corresponding

to hidden state variables h, ϕxi
contains the feature vec-

tor from the small sub-window around frame i, and w con-

tains the parameters of the model, which are learned during

training using BFGS optimization. The label assigned to the

whole sequence y, takes binary values in case of detection

and takes multiple values (dialogue, discussion, monologue,

k
h

y

l
h

x
k

x
l

Figure 5: Our model. y is the social interaction label, hl

is the hidden state label assigned to frame l and xl contains

the features extracted from a local window around frame l.

walk dialogue, walk monologue) when trained for recogni-

tion. During testing, the label y for which the potential Ψ is

maximum is assigned to the sequence.

5. Experiments

We present our social interaction detection and recogni-

tion results on a dataset collected at theme parks.

Dataset: To collect our dataset, we sent a group of more

than 25 individuals to theme parks for three days. Each

day a subset of the individuals used a head-mounted GoPro

camera to record throughout the day. Our dataset contains

more than 42 hours of video recorded by 8 subjects. The

group usually broke into smaller groups during the day. As

a result, each video contains a significant amount of experi-

ences that are not present in the other videos. The cameras

were fixed on caps. The GoPro cameras capture and store a

high definition 1280×720, 30 fps video. We extract images

at 15 fps, resulting in over two million images in total.

We manually labeled the start and end time of intervals

corresponding to types of social interactions throughout the

videos. We have six labels: dialogue, discussion, mono-

logue, walk dialogue, walk discussion and background.

Each of these interactions can take place at a dinner table

with group of friends, while walking, or while standing in

a line, etc. We train our social interaction detectors on

videos from five subjects and test on videos from the re-

maining three subjects.

Attention Estimation Results: Example results for face

localization and attention estimation are shown in Fig 4.

Our method both estimates who is looking at who, and in

addition uses the context from the rest of the faces to es-

timate where in space an individual is attending. For ex-

ample in Fig 4(c), the group of individuals with red circles

around their faces are looking at the lady wearing a white

shirt whose face was not detected. Our method realizes that

these four individuals are looking at the same location and

estimates this location in space. We quantitatively measure

the performance of our method. We manually label who

each person is looking at in a subset of the frames (about

1000 frames). For each frame, we connect each detected

face to the one it is looking at. We split the ground-truth

into two sets and use the first set to train the parameters of

our model. In 71.4% of the cases our method correctly es-
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Figure 6: ROC curves of detecting types of social interactions are shown in (a-e). The area under each curve is provided

in the figure. In case of dialogue and discussion, the attention features outperform flow and location features. In case of

monologue, location features perform the best. First-person motion features significantly outperform the rest in detecting

walk dialogue and walk discussion. In addition, we show our recognition results using all features in (f).

timates who is looking at who.

Detection and Recognition of Social Interactions:

During training, for each type of social interaction, we ran-

domly select 100 intervals (of 200 frames each) from each

subject’s video and 300 intervals from the background. As

a result, the total number of intervals used for training are

4000. To learn a detector for a particular type of social in-

teraction, we set the label of intervals corresponding to that

type to positive and the rest to negative. During the test, we

perform the detection on a 200 frame long interval around

every frame of the test video. We set the number of hidden

states of HCRF to 5 for the detection task. In Fig 6(a-e), we

show the performance of our method on detecting different

types of social interactions. For each type, we compare the

performance of different features. Attention and location

based features perform better at detecting dialogue, discus-

sion and monologue, while first-person motion features per-

form better on walk dialogue and walk discussion. We show

that the combination of these features together significantly

improves the results for every type of social interaction.

We train a multi-label HCRF model for the recognition

of social interactions. We set the number of hidden states

to 10 for the recognition task. In Fig 6(d), we show the

confusion matrix for recognizing social interactions. Walk

dialogue and walk discussion contain very similar motion

patterns and there is a significant confusion between them.

Social Networks: Our focus in this paper is not analyz-

ing or recovering social network of individuals, however,

here we show the great potential for such task in first-person

videos. We cluster the faces into multiple bins. We manu-

ally assign each bin to one of the individuals by looking at

the faces it contains. We weigh the connection of a subject

(person wearing the camera) to other people based on the

number of faces in the cluster corresponding to that indi-

vidual. The resulting network is illustrated in Fig 7.

6. Conclusion and Statistics

We describe a novel approach for detection and recogni-

tion of social interactions such as dialogue, discussion, and

monologue, in day-long first-person videos. Our method

constructs a description of the scene by transferring faces

to 3D space and uses the context provided by all the faces

to estimate where each person is attending. The patterns of

attention are used to assign roles to individuals in the scene.

The roles and locations of the individuals are analyzed over

time to recognize the social interactions. We believe this is

the first work to present a comprehensive framework for an-

alyzing social interactions based on the patterns of attention
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25

S1 S2 S3 S4 S5 S6 S7 S8

Figure 7: The social network built using our method. The representative faces of persons in the group P1...P25 are shown.

Subjects wearing the cameras S1...S8 are shown by squares. We weigh the connections based on how frequently a person’s

face appears in the video captured by a subject. It is possible to notice some individuals like P1 who was the tour guide

are popular among the subjects. In addition, one can notice the similar connection patterns between S1 and S4 who were

spending a significant time together throughout the day.

which are visible in first-person video. We present encour-

aging results on a challenging new dataset consisting of 42

hours of video captured at a popular amusement park.

7. Acknowledgment

Portions of this work were supported in part by ARO

MURI award number W911NF-11-1-0046, National Sci-

ence Foundation award IIS-1029679, and a gift from the

Intel Corporation.

References

[1] O. Aghazadeh, J. Sullivan, and S. Carlsson. Novelty

detection from an ego-centric perspective. In CVPR,

2011. 2

[2] A. Aris, J. Gemmell, and R. Lueder. Exploiting lo-

cation and time for photo search and storytelling in

mylifebits. In Technical Report, MSR-TR-2004-102,

2004. 2

[3] B. Benfold and I. Reid. Guiding visual surveillance by

tracking human attention. In BMVC, 2009. 3

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert.

High accuracy optical flow estimation based on a the-

ory for warping. In ECCV, 2004. 6

[5] W. Choi, K. Shahid, and S. Savarese. Learning context

for collective activity recognition. In CVPR, 2011. 3,

5

[6] T. Choudhury. Sensing and modeling human net-

works. In Doctoral Thesis, MIT, 2004. 2

[7] L. Ding and A. Yilmaz. Learning relations among

movie characters: a social network perspective. In

ECCV, 2010. 2

[8] A. Fathi, A. Farhadi, and J. M. Rehg. Understanding

egocentric activities. In ICCV, 2011. 2

[9] A. Fathi, X. Ren, and J. M. Rehg. Learning to recog-

nize objects in egocentric activities. In CVPR, 2011.

2

[10] J. Gemmell, L. Williams, K. Wood, R. Lueder, and

G. Bell. Passive capture and ensuing issues for a per-

sonal lifetime store. In ACM Workshop on Continuous

Archival and Retrieval of Personal Experiences, 2004.

1, 2

[11] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto.

Fast unsupervised ego-action learning for first-person

sports videos. In CVPR, 2011. 2

[12] T. Lan, Y. Wang, W. Yang, and G. Mori. Beyond ac-

tions: discriminative models for contextual group ac-

tivities. In NIPS, 2010. 2

[13] I. Laptev, M. Marszalek, C. Schmid, and B. Rozen-

feld. Learning realistic human actions from movies.

In CVPR, 2008. 2

[14] M. J. Marin-Jimenez, A. Zisserman, and V. Ferrari.

"here’s looking at you, kid." detecting people looking

at each other in videos. In BMVC, 2011. 3

[15] V. I. Morariu and L. S. Davis. Multi-agent event recog-

nition in structured scenarios. In CVPR, 2011. 3

[16] B. Ni, S. Yan, and A. Kassim. Recognizing human

group activities with localized causalities. In CVPR,

2009. 3

[17] A. Patron-Perez, M. Marszalek, A. Zisserman, and

I. D. Reid. High five: recognizing human interactions

in tv shows. In BMVC, 2010. 3

[18] A. Quattoni, S. Wang, L-P. Morency, M. Collins, and

T. Darrell. Hidden-state conditional random fields. In

PAMI, 2007. 6

[19] B. Schiele, N. Oliver, T. Jebara, and A. Pentland. An

interactive computer vision system - dypers: dynamic

personal enhanced reality system. In ICVS, 1999. 2

[20] T. Yu, S-N Lim, K. Patwardhan, and N. Krahnstoever.

Monitoring, recognizing and discovering social net-

works. In CVPR, 2009. 2

1233


