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Abstract

In this paper we deal with classifying coarse, large-scale
environment shapes using image motion observed by a mov-
ing camera or robot. We apply approximate Bayesian model
selection over a set of learned linear optical flow templates
to explain the motion between adjacent video frames. Each
template is a learned probabilistic model of the flow fields
that may be observed in a large-scale environment shape
types such as ‘left of path’, ‘center of path’, ‘right of path’,
etc. We perform inference directly from spatial image gra-
dients instead of first computing optical flow. Linear opti-
cal flow templates encode a set of basis optical flow fields,
which are valid under the assumption that the scene depth
field remains constant over time, hold for nearly arbitrary
optics, and do not require a calibrated camera or known
camera motion to learn. Our results show that our method
classifies between training and evaluation datasets whose
corresponding environment types are similar in large-scale
structure but different in appearance and contain outliers
like passing objects. We also perform a comparison with a
neural network classifier using Gist features.

1. Introduction

In this paper we deal with classifying coarse, large-scale
environment shapes using the image motion observed by
a moving camera or robot. For each pair of video frames
we perform approximate Bayesian model selection over a
set of learned linear optical flow templates, based on how
well each explains image motion. The templates are learned
probabilistic models of the flow fields that may be observed
in environment shape types such as ‘left of path’, ‘center
of path’, ‘right of path’, etc. Importantly, we perform in-
ference directly from spatial image gradients instead of first
computing optical flow.

Each linear optical flow template is a learned probabilis-
tic model of the flow fields that may be observed in a sin-
gle large-scale environment shape. As shown in Figure 1,

1.00 0.28 2.03

+
Optical flow 
color code

Infer template and coefficients 
to explain evidence

Each template is comprised of basis flow fields

We learn templates corresponding to each environment shape

yT = [ ]

Figure 1: Bottom: we classify large-scale environment
shape types such as ‘left of path’, ‘center of path’, ‘right
of path’ with approximate model selection over a set of lin-
ear optical flow templates. Middle: a single linear optical
flow template comprises a set of basis flows that span the
subspace of possible optical flow fields resulting from ego-
motion in the template’s environment shape. Top: in the il-
lustrated video frame, the image motion is explained by the
particular linear combination specified by the latent variable
assignment y = [ 1.00 0.28 2.03 ]

T, which combines for-
ward motion with some camera rotation caused by uneven
ground and turning of the platform. Because we learn the
templates with an unsupervised method, the basis flows do
not correspond to canonical motions such as pure forward
motion or pure pitch, and are instead combinations of such
motions.
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this model implicitly encodes the camera optics and typi-
cal scene depth field as seen by the camera. Explicitly this
encoding is a linear mapping from latent variables to flow
fields, through a set of basis flows..

We learn the linear optical flow templates from video
recorded in each environment type using the method of
Roberts et al. [25]. Known environment type labels, but
not known camera motion, are required for learning.

Determining coarse environment shape is important for
high-speed autonomous robot navigation. Modern au-
tonomous mobile robot control methods discretely switch
between different controllers, sometimes called “motion
primitives”, depending on the shape of the desired trajec-
tory [8, 26]. In addition to information about the position
and velocity of the robot, these methods need to know the
discrete class, or type, of trajectory to follow or control to
perform, which in turn depends on the environment shape.
In autonomous driving, examples of important discrete en-
vironment shapes include ‘wall on left’, ‘right turn’.

Additionally, coarse environment shape is important for
high-level vision tasks that reason about 3D structure and
object locations. A rough idea of the scene structure permits
application of top-down knowledge such as “pedestrians ap-
pear on the ground”. This idea has been investigated heav-
ily under scenarios like urban driving and indoor scene un-
derstanding, with information from monocular cues, stereo,
and laser point clouds [12, 3, 28].

Scene classification from image appearance is sensitive
to coarse environment structure, though does not explicitly
consider the structure. Oliva and Torralba [22] describe the
“spatial envelope” and use image frequency and location in-
formation to classify gist, degrees of “size”, “perspective”,
“openness”, “depth”, etc., and differentiate between moun-
tains, streets, forests, etc.. Later work has combined this
with other models and cues, including saliency [27] and ex-
plicit 3D information [29]. Recent work has even achieved
autonomous driving by mapping between Gist and control
action [1, 24]. Another approach to scene classification
leverages the statistics of local image features [6, 16, 23].
Previous work had used similar methods for object recogni-
tion.

The current standard for autonomous driving is to com-
pute a 2D traversability map for path planning using in-
formation from 3D laser range scans, stereo correspon-
dences, and structure from motion; for examples see [17,
13]. Drawbacks of this scene include large computational
resources required to deal with large point clouds, and
powerful sensors, including 3D LIDAR and wide-baseline
stereo rigs, to collect point clouds dense and complete
enough to support planning. Recent methods produce sim-
ilar traversability maps using image appearance and learn-
ing [19, 15]. Becker et al. [2] accumulate optical flow in-
formation over short spans of time to infer a dense 3D re-

construction of the scene in front of the robot.
Recent work has been towards obtaining 3D information

for navigation aided by constraints from top-down mod-
els. Though not limited to robotics, Hoiem et al. [12] use
monocular cues to estimate 3D structure. Brostow et al. [3]
segment images into relevant regions such as street, side-
walk, car, etc. using structure-from-motion cues. Sturgess
et al. [28] estimate similar segmentations using motion ap-
pearance and structure-from-motion information. Geiger et
al. [9] infer 3D street and traffic patterns from video from
a moving platform, combining information from vehicle
tracking, vanishing points, and image appearance. Recent
work in “Manhattan World” environments produces high-
quality estimates of large structures like walls and floors,
see for example [7, 30].

Optical flow was used for place recognition by Nourani-
Vatani et al. [21], who matched flow fields to a database
of locations using the flow field spatial statistics. Because
they subtract rotation from the flow fields, the statistics are
sensitive to scene depth. Mozos et al. [20] apply learning
to categorize hallways, doorways, and rooms from 2D laser
range scans coupled with visual features.

A difference between our method and these “pure ma-
chine learning” approaches is that we opt for a constrained
optical flow model that leverages assumptions about the
physical scene structure and camera motion. Though this
can prevent overfitting and reduce sensitivity to noise, it also
limits the types of variability that can be captured by our
model. Thus for some situations a pure learning approach
would be preferred. Our future plans include relaxing some
model assumptions to capture more variability.

While our goal is related to that of scene classification,
the information of image motion we use is quite different
from the image appearance used in scene classification. Im-
age appearance is sensitive to large-scale scene structure,
but also to many other possible variations such as texture
and lighting. Scene classification work has not been evalu-
ated with respect to the goal of classifying large-scale envi-
ronment structure as it is pertinent to mobile robot naviga-
tion. Thus, in this paper we compare our results to a neural
network classifier using Gist features.

In Section 2 we introduce the notion of linear optical
flow templates and in Section 3 describe our method of ap-
proximate model selection performed at runtime. In Sec-
tion 4 we present quantitative and qualitative results and a
comparison with scene classification with Gist features.

2. Linear Optical Flow Templates
In this section we introduce the notion of probabilistic

linear optical flow templates. Each template models an en-
vironment shape type by encoding a continuous probability
density over the possible flow fields a robot may observe as
it moves through that environment type with any velocity.

2
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(a) Rotation about +X ,
v = [ 1 0 0 0 0 0 ]ᵀ.

X
Y

Z

(b) Rotation about +Y ,
v = [ 0 1 0 0 0 0 ]ᵀ.

X
Y

Z

(c) Rotation about +Z,
v = [ 0 0 1 0 0 0 ]ᵀ.

Figure 2: For illustrative purposes, three basis flows cor-
responding to rotational camera motion, for rotation about
canonical camera axes for a spherical imaging surface.
These basis flows form the first through third columns of
the velocity mapping flow matrix V .

Linear optical flow templates assume that the scene depth
field observed by the camera is roughly constant over time.

2.1. Linearity of Optical Flow

An optical flow template encodes a linear mapping from
low-dimensional set of latent variables y ∈ Rq to predicted
optical flow

ui = Wiy (1)

whereWi ∈ R2×q is the linear mapping to flow correspond-
ing to the ith image location.

Linear optical flow templates take advantage of the linear
relationship between camera velocity and optical flow when
scene depth at each image location remains constant over
time. The optical flow ui at the ith image location is related
to camera velocity v = [ωx ωy ωz vx vy vz]

T, assuming no
noise, according to

ui = Vi (zi) v (2)

where Vi (zi) is an optical flow matrix, which depends on
the camera optics and which depends nonlinearly on the
scene depth zi at the ith image location. For a standard per-
spective camera, the flow matrix is (for example, see [11])

Vi (f, z)
∆
=

[
xiyi
f

−f−x2
i

f yi
−f
zi

0 xi

zi
f+y2i
f

−xiyi
f −xi 0 −f

zi

yi
zi

]
,

(3)
where (xi, yi) is the image location at the ith pixel. When
the focal length f and the scene depth at each pixel zi re-
main constant over time, the flow matrices Vi for each pixel
are also constant, and thus V also defines a special linear
optical flow template where the velocity components are the
latent variables.

Remarkably, this linearity holds for more general cam-
eras of nearly arbitrary optics for which a parametric cali-
bration is not possible, including distortion, catadioptrics,

and multiple viewpoints, as shown by Roberts et al. To
illustrate this, Figure 2 shows the first three columns of a
velocity-mapping flow matrix for a spherical imaging sur-
face. In these cases flow matrices W in latent variables,
or flow matrices V in platform velocity, may be learned
from recorded video [25] using unsupervised and super-
vised methods, respectively.

In our application, the latent variable “version” of linear
optical flow templates as in Eq. 1 has advantages over the
velocity mapping version in Eq. 2, so we opt to use the for-
mer in this paper. First, while calculating the velocity map-
ping V requires either known robot’s velocity while learn-
ing, or a known camera calibration and scene structure, the
latent variable mapping W may be learned from recorded
video with unknown camera motion using the method pre-
sented in [25].

An additional advantage of the latent variable mapping is
that some variations in inverse depth 1

zi
are approximately

captured by a linear relationship with the latent variables,
yet are not linear in the camera velocity. This allows the
linear optical flow template to remain valid under small
amounts of “nonlinear- 1

zi
” motions, like side-to-side and

pitching motions of a mobile ground robot. Our experi-
ments include such motions.

2.2. Robust Probabilistic Linear Mapping

Instead of a deterministic relationship, a linear optical
flow template defines a probability density on optical flow
that is robust to outliers,

p (ui |y, λi) ∝

{
N (Wiy,Σ

v
u) , λi = 1

N
(
Wiy,Σ

f
u

)
, λi = 0

(4)

where Σv
u ∈ R2×2 is the (small) covariance of an optical

flow vector that is an inlier to the template, Σf
u is the (large)

covariance of an outlier to the template, and λi ∈ {1, 0}
indicates a pixel is an inlier or an outlier, respectively, to
the template. In this paper we will derive an expectation-
maximization algorithm to bound this likelihood using esti-
mated inlier probabilities, but inlier assignments could also
be calculated using other methods, such as RANSAC. Thus
an optical flow template is

(
W,Σv

u,Σ
f
u, p (λ)

)
, where p (λ)

is a constant Bernoulli prior probability that any pixel is an
inlier to the template.

2.3. Learning the Linear Optical Flow Templates

We learn the optical flow templates(
Wk,Σ

v
uk,Σ

f
uk, p (λk)

)
for each kth environment

type from videos collected during robot motion using
the method presented in [25]. This method uses an
expectation-maximization algorithm to optimize for the
mapping W treating the latent variables and inlier/outlier
indicators as hidden variables. To compute sparse optical

3
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flow input to the learning method we use the pyramidal
Lucas-Kanade tracker [18] in OpenCV.

We apply the method independently to videos captured
separately in each known environment type, with unknown
camera velocity. Learning multiple optical flow templates
in an unsupervised manner, from arbitrary video with un-
known environment type labels, is part of our ongoing work.

3. Inferring the Environment Type
In this section we describe a method for inferring the

probability of each environment type directly from the spa-
tial image gradients of two adjacent video frames. This is
greatly preferable to first extracting optical flow because
optical flow is an under-constrained and computationally-
intensive problem in the absence of top-down information,
in part due to the aperture problem. The optical flow tem-
plates provide top-down information, reducing the problem
down to optimizing only a handful of latent variables (their
dimensionality q ranges from 3 to 6 in our experiments).

We now derive the posterior distribution over the envi-
ronment type kt at time t conditioned on measuring the pre-
vious and current frames, It,t−1. Ideally, this would be ob-
tained by marginalizing out the unknown latent variables
ykt and indicator variables λkt,

p (kt |It,t−1) =

ˆ

ykt

∑
λkt

p (kt, ykt, λkt |It,t−1)

∝
ˆ

ykt

∑
λkt

p (It |ykt, λkt, kt, It−1) p (ykt) p (λkt) p (kt)

(5)

where we assume p (kt) to be a categorical, i.e. constant-
probability, prior over the environment types.

3.1. Expected Log-likelihood Approximation

In practice, we replace the sum over the latent variable
assignments with an expected log-likelihood formulation
from an expectation-maximization (EM) algorithm. The
true sum over λkt in Eq. 5 is an intractable sum over all
possible combinations of inlier assignments for all pixels.
Given an expectation 〈λkti〉 ∈ [0, 1] of the inlier indication,
a lower bound (see [5]) on the image likelihood with λkt
marginalized out is

p (It |ykt, kt, It−1) =
∑
λkt

p (It |ykt, λkt, kt, It−1)

=
∑
λkt

∏
i

p (Iti |ykt, λkti, kt, It−1)

≈ exp
∑
i

(〈λkti〉 L (Iti |ykt, λkti=1, kt, It−1) +

〈1− λkti〉 L (Iti |ykt, λkti=0, kt, It−1)) ,

(6)

where L (·) ∆
= log p (·) + C is a log-likelihood. Using a

similar scheme, we replace the prior p (λkt) in Eq. 5 with

p (λkt) ≈

exp
∑
i

(L (λk=1) 〈λkti〉+ L (λk=0) 〈1− λkti〉) (7)

In practice, we find these lower bounds to be suitable ap-
proximations for the purpose of model selection.

Using EM, the expectation 〈λkti〉 is evaluated as

〈λkti〉 ≡ p (λkti=1 |ykt, kt, It,t−1,i)

=
p (Iti |ykt, kt, It−1,i) p (λit)|λit=1∑

λit={1,0}
p (Iti |ykt, kt, It−1,i) p (λit)

. (8)

3.2. Integrating out Optical Flow

In order to perform inference directly on image gradi-
ents without first computing optical flow, and thereby eval-
uate the likelihood p (Iti |ykt, λkti, kt, It−1) that appears in
Eq. 6, we marginalize out the unknown optical flow,

p (Iti |ykt, kt, It−1) =

ˆ

uti

p (Iti |uti, It−1) p (uti |ykt, kt) .

(9)
An issue is that the image is nonlinear so Eq. 9 cannot be

evaluated exactly in closed-form. Instead, we approximate
it with a Gaussian centered at the maximum-likelihood esti-
mate (MLE) of the latent variables. To find the MLE we per-
form nonlinear Gauss-Newton optimization. We start with
an initial guess of the latent variables

◦
yt, which induces

◦
ut ≡ Vk

◦
ykt signifying the optical flow predicted accord-

ing to the template given the latent variable estimate. Let
xi ∈ R2 be the image location at the ith pixel location. Lin-
earizing the image by computing the spatial gradient ∇Iti
at each ith image location, we define the image likelihood
p (It |ut) as a probabilistic version of the brightness con-
stancy constraint from classical optical flow estimation,

p (Iti |δuti, It−1) ≈ N (It−1(xi −
◦
uti)−∇Itiδuti, σI),

(10)
where δuti ≡ uti −

◦
uti, σI is the standard deviation of a

small amount of Gaussian noise on the image intensity, and
where I (x) is the image intensity at the pixel coordinates
x. In practice we evaluate the image intensity by resam-
pling with a Gaussian kernel because in general the pixel
locations are non-integral.

Marginalizing out the optical flow in Eq. 9 is then done
in closed-form using this Gaussian-approximated image-
likelihood in Eq. 10 and the expected log-likelihood approx-
imation from Eq. 6,

p (It |δyt, kt) ∝ exp
−1

2

∑
i

J2
ti

(
Iti −∇ItiVkiδykt

)2
,

(11)

4
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where Iti
∆
= Iti − It−1

(
xi −

◦
uti

)
and

J2
ti

∆
= 〈λkti〉

(
ItiΣ

v
uI

T
ti + σv

I
)−1

+ 〈1− λkti〉
(
ItiΣ

f
uI

T
ti + σf

I
)−1

is the precision on the spatial image gradient with the flow
uti marginalized out, and δyt ≡ yt −

◦
yt. In the quantity

∇ItiVkiδykt in Eq. 11, the term ∇ItiVki is the image Ja-
cobian w.r.t. the latent variables, analogous to the Jacobian
images w.r.t. camera motion described in more detail in [4].

We iteratively update the latent variable estimate
◦
yt with

the increment δyt, until at convergence it becomes the final
center of the Gaussian approximation of Eq. 11.

3.3. Computing the Environment Type Marginal

Finally, after approximating the marginal over the in-
lier indicator variables with the expected log-likelihoods in
Eqs. 6 and 9, and approximating the image probability in
Eq. 6 as a marginal Gaussian centered around the MLE of
the latent variables ykt (with the flow ut marginalized out)
in Eq. 11, we can write the environment type marginal as

p (kt |It,t−1) ∝

ˆ
ykt

p (It |ykt, kt, It−1) p (ykt)


p (λkt) p (kt) (12)

where each component likelihood is either constant or
Gaussian. The integral is over the joint Gaussian
p (It |ykt, kt, It−1) p (ykt) ≡ p (It, ykt |kt, It−1),

p (It, ykt |kt, It−1) ∝ exp

−1

2

(∑
i

J2
ti

(
Iti −∇ItiVkiδykt

)2
+
∥∥∥◦
ykt + δykt

∥∥∥2
)
(13)

Interestingly, while integrating out the latent variable incre-
ment δyky using Gaussian elimination would result in the
marginal p (It |kt, It−1) having a dense, intractable I × I
information matrix, the structure of the joint Gaussian in
Eq. 13 leads to an efficient factorization of the marginal us-
ing the Schur complement. To do this, note that the log of
Eq. 13 can be written as

−1

2

 δykt
It
1

T  Aq×q BT
q×I

◦
ykt

BI×q DI×I 0I×1
◦
yTkt 01×I

◦
yTkt

◦
ykt

 δykt
It
1


(14)

where A, B, and D are

A
q×q

∆
= Iq×q +

∑
i J

2
tiV

T
ki∇ITti∇ItiVki

B
I×q

∆
=

 −J
2
t1∇It1V1

−J2
t2∇It2V2

...

 D
I×I

∆
=

 J2
t1

J2
t2

. . .


(15)

Using the Schur complement, the information matrix ΛI ,
information vector ηI , and constant term fI of the marginal
p (It |kt, It−1) are

ΛI = D −BA−1BT ηI = −BA−1 ◦
ykt

fI =
◦
yTkt
(
I−A−1

) ◦
ykt

(16)

To compute the normalizing constant of the resulting Gaus-
sian, the determinant of the information matrix can be cal-
culated efficiently using the matrix determinant lemma,

|ΛI | = det
(
A−BTD−1B

)
detA−1 detD (17)

Combining Eqs. 16 and 17, the marginal image likelihood
is

p (It |kt, It−1) =

(2π)
−I
2 |ΛI |

1
2 exp

−1

2

(
ITt ΛIIt + ITt ηI + fI

)
(18)

where It is the vector of all Iti concatenated together for all
image locations i.

Importantly, with the above factorization evaluating the
environment type marginal in Eq. 12 is computationally ef-
ficient. This is because in Eq. 18 neither the products with
the dense I × I information matrix ΛI nor the determinant
|ΛI | written need to be calculated directly. Instead Eqs. 16
and 17 evaluate them efficiently due to the diagonal form of
D, the small width q of B, and the small size q × q of A.
Here q is the length of the latent variable vector yt, which
in our experiments is on the order of q ≈ 5.

The last piece required to evaluate the environment type
marginal in Eq. 12 is to normalize it by dividing by the sum
of the evaluated likelihoods of Eq. 12 for each kt.

4. Experimental Results
We evaluate our method with qualitative and quantita-

tive accuracy experiments, as well as a quantitative accu-
racy comparison with a neural network classifier using Gist
features. All datasets were collected from a 640×480 30Hz
Unibrain Fire-i camera mounted on a wheeled platform.

The free parameters of our method are the standard de-
viation of the image intensity noise for inlier and outlier
pixels, for which we used σv

I = 1
255 and σf

I = 5
255 , both

in normalized grayscale units, and the per-pixel inlier prior,

5
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(a) Our method, model selection over linear optical flow templates (overall
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Figure 3: Confusion matrices showing classification results
of our method and a neural network classifier using Gist fea-
tures. The images are representative of each environment
type in the training and testing datasets. Our higher accu-
racy on ‘left wall’, ‘right wall’, and ‘walkway’ highlight
our use of image motion information versus image appear-
ance. Gist’s higher accuracy in differentiating between ‘left
curve’ and ‘right curve’ is due to the appearance similarity
between the training and testing sets, which were taken on
two different floors of the same building. The image mo-
tion information, on the other hand, is subtle in these two
environments because the hallway curvature is gentle.

p (λkti=1) = 0.95. The optical flow covariances Σv
k and

Σfk are learned from the data as part of the templates.

In our implementation, we perform the optimization
in Section 3.2 at multiple scales, creating a Gaussian-
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Figure 4: Classification accuracy for linear optical flow
templates learned with various numbers of basis flows, i.e.
latent variable dimensionalities q, learned and evaluated
with the same datasets as in Figure 3.

resampled pyramid both of the images and the basis flows,
and initializing the optimization at each level from the next
smaller one. The smallest level is initialized with ykt = 0.
We initialize all indicator expectations with 〈λkti〉 = 1. We
perform the optimization using Gauss-Newton optimiza-
tion.

Additionally, it is not necessary to perform inference up
to the largest pyramid level. In our experiments we stop at
level 3, corresponding to 80 × 60 images and basis flows
scaled down from the original 640× 480. Additionally, for
optimization and inference (i.e. in all ranges over i in Sec-
tion 3), we sample only every other pixel, meaning that for
the same image size, 1200 pixels are sampled at the largest
pyramid level. With these parameters our single-threaded
research implementation operates at approximately 15Hz
on a 2.2GHz Intel Core i7 laptop.

Our method is highly parallelizable, in that the opti-
mization and likelihood computation described in Section 3
may be performed independently and in parallel for each
template. Also the image filtering operations such as gra-
dient computations, resampling, and differencing may be
threaded or even implemented on DSP, FPGA, or GPU
hardware [14].

4.1. Quantitative Evaluation

We learned linear optical flow templates for the environ-
ments exemplified by the top row of thumbnails of Figure 3,
and performed inference on the environments exemplified
by the left column of thumbnails. For some of these en-
vironments, between the training and evaluation sets, the
large-scale structure is similar but the image appearance is
quite different. We empirically selected to learn templates
with q = 3 basis flows as this provided the highest accuracy.

Figure 3 shows the confusion matrices for our method
and a neural network classifier using Gist features. The
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Figure 5: Time-smoothed plot of the inferred environment type at each frame. Camera motion for this evaluation sequence
was a rough sinusoidal motion along the walkway.

Gist features were computed by the software1 accompany-
ing [27]. We selected the subset of Gist features suggested
by [27], and trained a neural network with 200 and 100 node
hidden layers for 500 epochs (verifying that error on a hold-
out set did not increase during training) using Weka [10].

Figure 4 shows the classification accuracy on the same
evaluation set for models learned with various numbers of
basis flows, i.e. latent variable dimensionality q.

Our accuracy on average is comparable to the Gist fea-
ture classifier, but the key point to note is the difference in
the accuracy of the Gist feature classifier when the train-
ing and evaluation images appear similar versus when they
appear different. When appearance differs, the accuracy of
Gist decreases, where the accuracy of our method remains
the approximately the same.

4.2. Qualitative Evaluation

We learned three linear optical flow templates on video
sequences collected from the platform moving down a
walkway. One template was learned from the platform mov-
ing along the left side of the walkway, one along the center,
and one along the right side.

The dataset is far from perfect, as the walkway alternated
between sloped and flat causing platform pitch, contained
platform vibration, and yawing motion of the platform as it
did not move in a perfectly straight line. Additionally large
areas of the frames are textureless.

For evaluation, we performed inference using our
method amongst the three learned templates. The input
video for evaluation was a sequence in which the platform
moved in a roughly sinusoidal motion between the left and

1Available from http://ilab.usc.edu/siagian/Research/Gist/Gist.html

right sides of the walkway. The results are shown in Fig-
ure 5, which a time-smoothed plot of the environment type
with the highest likelihood at each frame.

5. Summary
In this paper we presented a method for classifying

coarse environment shape from image motion. To do this
classification, the method performs approximate model se-
lection over a collection of linear optical flow templates.
Each template encodes a coarse environment shape, by
means of a set of basis flows spanning the subspace of op-
tical flow fields that a moving platform may observe in that
environment, under the assumption of per-pixel depth con-
stancy over time. The input is a video stream, and the output
is a set of likelihoods for each frame that the image change
from the previous frame is explained by each linear opti-
cal flow template. Inference takes place directly on spatial
image gradients, not requiring optical flow to be computed
first. Our results show that our method classifies between
training and evaluation datasets whose corresponding envi-
ronment types are similar in large-scale structure but differ-
ent in appearance and contain outliers like passing objects.
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