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Abstract

We introduce a saliency model based on two key ideas.
The first one is considering local and global image patch
rarities as two complementary processes. The second one
is based on our observation that for different images, one
of the RGB and Lab color spaces outperforms the other in
saliency detection. We propose a framework that measures
patch rarities in each color space and combines them in
a final map. For each color channel, first, the input im-
age is partitioned into non-overlapping patches and then
each patch is represented by a vector of coefficients that
linearly reconstruct it from a learned dictionary of patches
from natural scenes. Next, two measures of saliency (Local
and Global) are calculated and fused to indicate saliency
of each patch. Local saliency is distinctiveness of a patch
from its surrounding patches. Global saliency is the inverse
of a patch’s probability of happening over the entire image.
The final saliency map is built by normalizing and fusing
local and global saliency maps of all channels from both
color systems. Extensive evaluation over four benchmark
eye-tracking datasets shows the significant advantage of our
approach over 10 state-of-the-art saliency models.

1. Introduction
The human visual system has to process an enormous

amount of incoming information (∼ 108 bit/s) from the

retina. Similarly, in computer vision, many systems suf-

fer from the high computational complexity of inputs, es-

pecially when these systems are supposed to work in real

time. Visual saliency is a concept that offers efficient solu-

tions for both biological and artificial vision systems. It is

basically a process that detects scene regions different from

their surroundings (often referred as bottom-up saliency).

Then, higher cognitive and usually more complex opera-

tions are focused only on the selected areas.

Recently, modeling visual saliency has raised much in-

terest in theory and applications (see [47] for a review). For

example in computer vision, it has been used for image and

video compression [49], image segmentation, and object

Figure 1. One color system does not work for all images. Top (Bottom):

Sample images where our model is able to detect the outliers in CIE Lab

(RGB) color space. For some images both color spaces work equally well.

Last column shows combined maps from both color spaces. Images are

taken from the TORONTO dataset [14].

recognition [52]. In computer graphics, detecting salient re-

gions has been employed for content-aware image cropping,

photo collage [50], and stylization of images [53]. Saliency

computation has also applications in other areas such as ad-

vertisement design [51] and visual prosthetics [48]. Our

focus in this paper is proposing a new and more predictive

(with respect to human eye tracking data) model of bottom-

up visual saliency by integrating local and global saliency

detection in both RGB and Lab color spaces (see Fig. 1).

Related works on saliency modeling. A majority

of computational models of attention follow the structure

adapted from the Feature Integration Theory (FIT) [15] and

the Guided Search model [1]. Koch and Ullman [19] pro-

posed a computational architecture for this theory and Itti et
al. [4] were among the first ones to fully implement and

maintain it. The main idea here is to compute saliency in
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each of several features (e.g., color, intensity, orientation;

saliency is then the relative difference between a region and

its surrounding) in parallel, and to fuse them in a scalar map

called the “saliency map”. Le Meur et al. [18] adapted

the Koch-Ullman’s model to include features of contrast

sensitivity, perceptual decomposition, visual masking, and

center-surround interactions. Some models have added fea-

tures such as symmetry [20], texture contrast [36], curved-

ness [21], or motion [41] to the basic structure.

In addition to the mentioned cognitive models, several

probabilistic models of visual saliency have been developed

over the past years. In these models, a set of statistics or

probability distributions are computed from either the cur-

rent scene, or from a set of natural scenes over space or

time or both. Itti and Baldi [10] defined surprising stim-

uli as those which significantly change beliefs of an ob-

server, measured as the Kullback-Leibler (KL) distance be-

tween posterior and prior beliefs. Harel et al. [7] used graph

algorithms and a measure of dissimilarity to achieve effi-

cient saliency computation with their Graph Based Visual

Saliency (GBVS) model. Torralba et al.’s contextual guid-

ance model [26] consolidates low-level salience and scene

context when guiding search. Areas of high salience within

a selected contextual region are given higher weights on

an activation map than those that fall outside the selected

contextual region. Some Bayesian models formulate visual

search and derive a measure of bottom-up saliency as a by-

product. For example, Zhang et al.’s model [12], Saliency

Using Natural statistics (SUN), combines top-down and

bottom-up information to guide eye movements during real-

world object search tasks. However, unlike Torralba et al.’s
model, SUN implements target features as the top-down

component. Gao and Vasconcelos [23] define saliency as

maximizing classification accuracy. They utilize the KL

distance to measure mutual information between features at

a scene location and class labels. The higher mutual infor-

mation between a region and class of interest, the higher the

saliency of that region. Seo and Milanfar [11] using local

regression kernels build a “self-resemblance“ map, which

measures the similarity of a feature matrix at a pixel of in-

terest to its neighboring feature matrices.

Bruce and Tsotsos [14] proposed the Attention based on

Information Maximization (AIM) model by employing the

first principles of information theory. They model bottom-

up saliency as the maximum information sampled from an

image. More specifically, saliency is computed as Shan-

non’s self-information −log p(f), where f is a local vi-

sual feature. Hou and Zhang [9] introduced the Incremental

Coding Length (ICL) approach to measure the respective

entropy gain of each feature. The goal is to maximize the

entropy of the sampled visual features.

Some models measure saliency in the frequency domain.

Hou and Zhang [8] propose a method based on relating ex-

tracted spectral residual features of an image in the spectral

domain to the spatial domain. Guo et al. [24] show that in-

corporating the Phase spectrum of the Quaternion Fourier

Transform (PQFT) instead of the amplitude transform leads

to better saliency predictions in the spatio-temporal domain.

Some models learn saliency. Kienzle et al. [2] utilize

support vector machines (SVM) to learn saliency of each

image patch directly from human eye tracking data. Sim-

ilarly, Judd et al. [3] train a linear SVM from human eye

movement data, using a set of low, mid, and high-level

image features to define salient locations. Feature vectors

from highly fixated locations are assigned class label +1
while less fixated locations are assigned label −1. Zhao

and Koch [22] used least-squares regression to learn the

weights associated with a set of feature maps from subjects

freely fixating natural scenes drawn from four different eye-

tracking data sets. They find that the weights can be quite

different for different data sets, but their face-detection and

orientation channels are usually more important than color

and intensity channels. Navalpakkam and Itti [29] define

visual saliency in terms of signal to noise ratio (SNR) of

a target object versus background and learn parameters of a

linear combination of low-level features that cause the high-

est expected SNR for detecting a target from distractors.

Contributions. The models reviewed above fall into

two general categories: 1) models that calculate saliency by

implementing local center-surround operations (e.g., Itti et
al. [4], Surprise [10], Judd et al. [3], GBVS [7], and

Rahtu et al. [39]), 2) models that find salient regions glob-

ally by calculating rarity of features over the entire scene

(e.g., AIM [14], SUN [12], Torralba [26], SRM [8], ICL [9],

and Rarity model [25]). Our first contribution is to propose

a unified model that benefits from the advantages of both ap-

proaches, which thus far have been treated independently.

Note that the ideas of local and global context have been

(separately) considered in the past [44][17] by salient ob-

ject detection/segmentation approaches, but those have not

yet been tested with human fixation prediction, which is the

goal of most models (including ours).

Almost all saliency approaches utilize a color channel.

Some have used RGB (e.g., [4][3][14][12]) while others

have employed Lab (e.g., [42][18][39]), inspired by the

finding that it better approximates human color perception.

In particular, Lab aspires to perceptual uniformity, and its

L component closely matches human perception of light-

ness, while the a and b channels approximate the human

chromatic opponent system. RGB, on the other hand, is of-

ten the default choice for scene representation and storage.

We argue that employing just one color system does not al-

ways lead to successful outlier detection. In Fig.1, we show

that interesting objects in some images are more salient in

Lab color space, while, for some others, saliency detec-

tion works better in RGB. Hence, a yet unexplored strat-

479



L a b

N N

N

G
lo

ba
l S

al
ie

nc
y

Lo
ca

l S
al

ie
nc

y

N N

N

G
lo

ba
l S

al
ie

nc
y

Lo
ca

l S
al

ie
nc

y

N N

o o o
o = max

G
lo

ba
l S

al
ie

nc
y

Lo
ca

l S
al

ie
nc

y

+ Lab Saliency

Input

+ System
Output

R G B

+ RGB Saliency

N

Human
inter-observer

model

Final
saliency

map

N

N

Figure 2. Diagram of our proposed model. First, the input image is

transformed into Lab and RGB formats. Then, in each channel of a color

space, a global saliency map based on rarity of an image patch in the entire

scene, and a local saliency map, the dissimilarity between a patch and its

surrounding window, are computed, normalized, and combined. Outputs

of color channels (i.e., L, a, or b, similarly for RGB) are normalized and

combined once more to form the output of a color system. The final map

is the summation of the normalized maps in two color spaces.

egy, which is our second contribution, is combining saliency

maps from both color spaces.

We compare accuracy of our model and its subcompo-

nents with the mainstream models over four benchmark eye

tracking datasets. These are top-ranked models that previ-

ous studies have shown to be significantly predictive of eye

fixations in free viewing of natural scenes.

2. Proposed Saliency Model
Our proposed framework is presented in Fig. 2. An in-

put image in two formats (Lab and RGB) undergoes the

same saliency detection and the resultant maps in each color

system are normalized and summed. In each color format,

two local and global saliency operations are applied to each

color sub-channel separately. While the first operation de-

tects outliers in a local surrounding, the latter calculates the

rarity of a feature or a region over the entire scene. Then,

local and global rarities are combined to generate the output

of each channel. Channel output maps are then normalized

and summed once more to generate the saliency map. The

whole process can be performed over several scales. There

is no need to directly calculate the orientation channel in

our model (since some patches from the chosen ensemble

will emulate it; see below).

There is a large body of behavioral support for both local

and global operations from the cognitive science literature.

While early studies favored the thesis that local contrast at-

tracts attention [15][19][4], recent work has shifted toward

understanding top-down conceptual factors which seem to

operate at the object level (see Figs. 1 and 7 for some ex-

amples). Such factors in free-viewing include human body,

signs, cars, faces and text [3][45]. Particularly, Einhäuser et
al. [30], showed that objects predict human fixations bet-

Figure 3. A dictionary of 200 basis functions learned from a large repos-

itory of natural images for the L channel of the Lab color space. Image size

and patch size (w) were 512× 512 and 8× 8, respectively.

ter than low-level saliency. Also it has been shown that in-

teresting objects are more salient within a scene, providing

support in favor of object-based attention [43]. As rare fea-

tures are more likely to belong to a single object and since

objects are rare compared to background in natural scenes,

we believe that global saliency can help detecting top-down

object-level concepts. Thus, instead of leaning on only one

component (local or global), an effective strategy is inte-

grating both of these complementary processes.

We estimate saliency on a patch-by-patch basis: each im-

age patch is projected into the space of a dictionary of image

patches (basis functions) learned from a repository of natu-

ral scenes. Each patch of an image is then represented by a

vector of basis coefficients that can linearly reconstruct it.

2.1. Image representation

It is well known that natural images can be sparsely rep-

resented by a set of localized and oriented filters [27][28].

Also, recent progress in computer vision has demonstrated

that sparse coding is an effective tool for image repre-

sentation for several applications such as image classifica-

tion [31][32], face recognition [33], image denoising [34],

as well as saliency detection [14][12][9]. The underlying

idea behind sparse coding is that a vision system should be

adapted based on statistics of the visual environment where

it is supposed to operate. As a supporting evidence for this

theory, it has been shown that receptive fields (RF) of some

neurons in V1 cortex resemble those RFs that are learned

by sparse coding algorithms [27].

Mathematically, given a set of n m−dimensional ba-

sis signals (dictionary) D = [d1, d2, . . . dn] ∈ R
m×n, the

sparse coding of an input signal x ∈ R
m can be found by

solving an “l1-norm minimization problem”:

α∗(x,D) = argmin
α∈Rn

1

2
||x− Dα||22 + λ1||α||1 (1)

where ||.||1 denotes the l1-norm and λ1 is a regularization

parameter. Thus, x ∼ x
′
= Dα∗ where x

′
is the estimation

of x. To learn the dictionary D, considering a training set

of q data samples Y = [y1, y2, . . . yq] in R
m×q an empiri-

cal cost function gq(D) = 1
q

∑q
i=1 lu(yi,D) is minimized,
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where lu(y,D) is:

lu(yi,D) = minα∈Rn

1

2
||yi − Dα||22 + λ1||α||1 (2)

We represent an image patch by a linear combination of

some basis functions which correspond or act as feature de-

tectors in early visual areas of the brain (neuron receptive

fields or transfer functions). Given an input image, it is first

resized to 2w × 2w pixels where patch size w is selected in

a way that 2w is divisible to w. Let P = {p1, p2, . . . pn}
represent the set of linearized image patches from top-left

to bottom-right with no overlap. Then using Eq. 1, coef-

ficients that reconstruct each patch are calculated and are

used to represent that patch. By reshaping reconstructed

patches and aligning them, the original image can be repro-

duced.

To learn a dictionary of patch bases (i.e., minimizing

gq(D)), we extracted 500, 000 8×8 image patches (for each

sub channel of RGB or Lab) from 1500 randomly selected

color images from natural scenes. Each basis function in

the dictionary is a 8 × 8 = 64D vector. A sample learned

dictionary of size 200 is shown in Fig. 3. We experimented

with different dictionary sizes (10, 50, 100, 200, 400, and

1000) and realized that fixation prediction results did not

change much. The sparse codes αi are computed with the

above basis using the LARS algorithm [5] implemented in

the SPAMS toolbox1.

2.2. Measuring visual saliency

Our model is based on two saliency operations. The

first one, local contrast, considers the rarity of image re-

gions with respect to (small) local neighborhoods (guided

by the well-established computational architecture of Koch

and Ullman [19] and Itti et al. [4]). The second operation,

global contrast, evaluates saliency of an image patch using

its contrast with respect to the patch statistics over the entire

image. Finally, local and global contrast maps are consoli-

dated. We repeat the process for each channel of both RGB

and Lab color systems and fuse saliency maps of each sub

channel of a color space to generate a saliency map for each

color system. At each stage, maps are normalized before

integration (See Fig. 2).
Local saliency. Local saliency (Sl) in our model is

the average weighted dissimilarity between a center patch
i (blue rectangle in Fig. 4) and its L patches in a rectangular
neighborhood (red rectangle in Fig. 4):

Sc
l (pi) =

1

L

L∑

j=1

W−1
ij Dc

ij (3)

where Wij is the Euclidean distance between the center

patch i and the surround patch j. Thus, those patches fur-

ther away from the center patch will have less influence on

1http://www.di.ens.fr/willow/SPAMS/index.html
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Figure 4. Illustration of global and local saliency for an image patch.
Global saliency measures the rarity of patch in the entire scene while local

rarity measures the difference between a patch and its surrounding context.

the saliency of the center patch. Dij denotes the Euclidean

distance between patch i and patch j in the feature space be-

tween αi and αj , vectors of coefficients for patches i and j,

respectively derived from sparse coding (Sec. 2.1). While

here we use the Euclidean distance (l2 distance), the KL

distance [23][38], l1 distance [17], or correlation coefficient

have also been used in the past to calculate patch similarity.

Superscript c denotes color sub channels (L, a, or b in Lab
or R,G, or B in RGB).

Global saliency. It often happens that a local patch is

similar to its neighbors but the whole region (i.e., local

+ surrounding) is still in global rarity in the entire scene.

Using only the local saliency may suppress areas within a

homogeneous region resulting in blank holes, which some-

times impedes object-based attention (e.g., a uniformly tex-

tured object would only be salient at its borders). To rem-

edy such shortcoming, we build our global saliency oper-

ator guided by the information-theoretic saliency measure

of Bruce and Tsotsos [14]. Instead of each pixel, here we

calculate the probability of each patch P (pi) over the entire

scene and use its inverse as the global saliency:

Sc
g(pi) = P (pi)

−1 =
(
Πn

j=1P (αij)
)−1

log
(
Sc
g(pi)

)
= −log(P (pi)) = −

n∑

j=1

log(P (αij))

Sc
g(pi) ∝ −

n∑

j=1

log(P (αij))

(4)

To calculate P (pi), we assume that coefficients α are con-

ditionally independent from each other. This is to some ex-

tent guaranteed by the sparse coding algorithm [5]. For each

coefficient of the patch representation vector (i.e., αij), first

a binned histogram (100 bins here) is calculated from all

of the patches in the scene and is then converted to a pdf

(P (αij)) by dividing to its sum. If a patch is rare in one of

the features, the above product will get a small value lead-

ing to high global saliency for that patch overall. Fig. 4

illustrates the process of calculating global saliency.

Combined saliency. Local and global saliency maps are
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then normalized and combined:

Sc
lg(pi) = N (Sc

l (pi)) ◦ N (Sc
g(pi)) (5)

where ◦ is an integration scheme (i.e., {+, ∗, max, or
min}). Through the experiments, we found that max in this

stage leads to slightly higher accuracy than others. Then,

saliency values of a patch in all channels are normalized

and summed again to generate the saliency of a patch in

each color system. For Lab color system, we have:

SLab
lg (pi) =

∑

c∈L,a,b

N (Sc
lg(pi)) (6)

The same operation applies to the RGB color space. Fi-

nal saliency for a patch is then summation of normalized

saliency maps in both color systems:

Slg(pi) = N (SLab
lg (pi)) +N (SRGB

lg (pi)) (7)

Normalization (N ). Similar to [4] first, the average

of all local maxima (defined as greater than 4 neighboring

points) with intensity above a threshold is calculated (Ml).

Then a map is multiplied by p = (Mg −Ml)
2 where Mg is

the global maximum in the map (known as maxnorm).

Extension to the scale space. Since objects appear

at different sizes and depths, it is necessary to perform

saliency detection at several spatial scales. To make our ap-

proach multi-scale, we calculate the saliency of downsam-

pled images (divisions by 2) from the original image and

then take the average after normalization:

S(x) =
1

M

M∑

i=1

N (Si
lg(x)) (8)

where M is the number of scales and Si
lg(x) is the saliency

of pixel x derived from the saliency map created by Eq. 7.

Finally, we smooth the resultant map by convolving it with

a small Gaussian kernel for better visualization.

Handling center-bias. A tedious and challenging factor

in saliency modeling is handling center-bias in eye track-

ing data, which is the tendency of human subjects to pref-

erentially look near the image center [13]. This generates

a high central peak in the overall 2D histogram of fixa-

tions, resulting in high scores for a trivial saliency model

whose map is just a Gaussian blob at the image center.

To account for center-bias, some models intrinsically (e.g.,

GBVS [7], E-Saliency [37]) or extrinsically (e.g., Judd et
al. [3] and Yang et al. [16]) add a center prior to their algo-

rithms2. Here, instead of adding center bias to our model,

we use a scoring metric that discounts center-bias in a non-

parametric manner (See next section) when evaluating our

and other saliency models against eye-tracking data.

2Some models add center-bias by either fitting a 2D Gaussian to fixation data or
simply by just using the average fixation map (i.e., 2D histogram).

3. Experimental Setup

To validate our proposed method, we carried out several

experiments on four benchmark datasets using the “shuf-

fled AUC” score described below3. The main reason behind

employing several datasets is that current datasets have dif-

ferent image and feature statistics, stimulus variety, biases

(e.g., center-bias), and eye tracking parameters. Hence, it is

necessary to employ several datasets as models leverage dif-

ferent features that their distribution varies across datasets.

Evaluation metric. The most widely used score for

saliency model evaluation is the AUC [14]. In AUC, hu-

man fixations for an image are considered as the positive

set and some points from the image are randomly chosen

(uniformly) as the negative set. The saliency map is then

treated as a binary classifier to separate the positive sam-

ples from the negatives. By thresholding over the saliency

map and plotting true positive rate vs. false positive rate,

an ROC curve is achieved and its underneath area is calcu-

lated. A problem with AUC is that it generates a large value

for a central Gaussian model and is thus affected by center-

bias [13]. To tackle center bias, Zhang et al. [12] introduced

shuffled AUC score, with the only difference that instead of

selecting negative points randomly from a uniform distribu-

tion, all human fixations (except the positive set) are used

as the negative set. Shuffled AUC score generates a value

of 0.5 for both a central Gaussian and a completely uniform

map. Please note that in addition to shuffled AUC, there are

also some other scores that have been often used in the past,

for example Normalized Scanpath Saliency (NSS) [35], KL

distance [10], and Correlation Coefficient [46]. But here we

avoid using them as they are all affected by center-bias. In-

stead, we adopt the shuffled AUC score which is becoming

a standard for saliency model evaluation [40][12].

Utilized fixation datasets are briefly described below.

TORONTO4 [14]. This is the most widely used dataset

for model comparison. It contains 120 color images with

resolution of 511× 681 pixels from indoor and outdoor en-

vironments. Images are presented at random to 20 subjects

for 3 seconds with 2 seconds of gray mask in between.

MIT5 [3]. This is the largest dataset containing 1003

images (resolution from 405× 1024 to 1024× 1024 pixels)

collected from Flicker and LabelMe datasets. There are 779

landscape and 228 portrait images. Fifteen subjects freely

viewed images for 3 sec. with 1 sec. delay in between.

KOOTSTRA6 [20]. This dataset contains 101 images

from 5 different categories: 12 animals, 12 automan, 16
buildings, 20 flowers, and 41 natural scenes. Images are ob-

3Our software for score calculation and saliency maps over 4

datasets are available at: https://sites.google.com/site/
saliencyevaluation/.

4Available at: http://www-sop.inria.fr/members/Neil.Bruce
5This dataset is available at: http://people.csail.mit.edu/tjudd/
6This dataset is available at: http://www.csc.kth.se/˜kootstra/
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models over 4 benchmark datasets. X-axis indicates the σ of the Gaussian kernel (in image width) by which maps are smoothed. NUSEF dataset contains

some images with copyright which are not easily accessible and we don’t use. Only 412 images are used here.

AIM GBVS SRM ICL Itti Judd PQFT SDSR SUN Surprise Local Global LG Gauss IO
Dataset [14] [7] [8] [9] [4] [3] [24] [11] [12] [10] Sl Sg Slg

TORONTO [14] 0.67 0.647 0.685 0.691 0.61 0.68 0.657 0.687 0.66 0.605 0.691 0.69 0.696 0.50 0.73
Optimal σ 0.01 0.02 0.05 0.01 0.07 0.03 0.04 0.05 0.03 0.06 0.04 0.03 0.03 - -

MIT [3] 0.664 0.637 0.65 0.666 0.61 0.658 0.65 0.646 0.649 0.62 0.653 0.676 0.678 0.50 0.75
Optimal σ 0.02 0.02 0.05 0.03 0.06 0.02 0.04 0.05 0.04 0.05 0.04 0.04 0.03 - -

KOOTSTRA [20] 0.575 0.563 0.576 0.589 0.57 0.587 0.57 0.59 0.55 0.566 0.591 0.578 0.593 0.50 0.62
Optimal σ 0.01 0.01 0.04 0.01 0.07 0.02 0.03 0.03 0.02 0.07 0.03 0.02 0.03 - -

NUSEF [6] 0.623 0.595 0.62 0.614 0.56 0.61 0.60 0.60 0.60 0.58 0.583 0.627 0.632 0.49 0.66
Optimal σ 0.04 0.01 0.06 0.03 0.09 0.03 0.05 0.04 0.04 0.06 0.05 0.04 0.05 - -

Table 1. Maximum performance of models shown in Fig. 5. Numbers in second rows are the sigma values where models take their maximum perfor-

mance. Parameter settings: Surround window size = 1; number of scales = 1 (256× 256). Accuracies of three best models over each dataset are shown in

bold face font. LG is the Local+Global model and IO stands for the human inter-observer model.

served by 31 subjects in the age range of 17 to 32 for 5 sec-

onds. Image resolution is 768×1024 pixels. This dataset is

specially challenging because there are not explicit objects

or salient regions within many of the images.

NUSEF7 [6]. This dataset includes 758 images contain-

ing emotionally affective scenes/objects such as expressive

faces, nudes, unpleasant concepts, and interactive actions.

In total, 75 subjects free-viewed part of the image set for 5

seconds each (on average 25 subjects per image).

4. Performance Evaluation
Here, along with the evaluation of our model, we also

compare 10 state-of-the-art bottom-up saliency models.

Softwares for these models are publicly available8. Addi-

tionally, we implemented two simple models, to serve as

baseline: Gaussian Blob (Gauss) and Human inter-observer

(IO). Gaussian blob is simply a 2D Gaussian shape drawn

at the center of the image; it is expected to predict human

gaze well if such gaze is strongly clustered around the cen-

ter [13]. The human model outputs, for a given stimulus, a

map built by integrating fixations from other subjects than

the one under test while they watched that stimulus. The

human map is usually smoothed by convolving with a small

7Available at: http://mmas.comp.nus.edu.sg/NUSEF.html
8 AIM: http://www-sop.inria.fr/members/Neil.Bruce/

GBVS: http://www.klab.caltech.edu/˜harel/
SRM & ICL: http://www.klab.caltech.edu/˜xhou/
Itti & Surprise: http://ilab.usc.edu/toolkit/
Judd: http://people.csail.mit.edu/tjudd/
PQFT: http://visual-attention-processing.googlecode.com/
SDSR: http://alumni.soe.ucsc.edu/˜rokaf/
SUN: http://cseweb.ucsd.edu/˜l6zhang/

Gaussian kernel. This model provides an upper-bound on

prediction accuracy of saliency models to the degree that,

different humans may be the best predictors of each other.

Model maps were resized to the size of the original image,

onto which eye data have been recorded.

An important parameter in model comparison is smooth-

ness (blurring) of saliency maps [40]. Here, we smoothed

the saliency map of each model by convolving it with a vari-

able size Gaussian kernel. Fig. 5 presents the shuffled AUC

score of models over the range of standard deviations σ of

the Gaussian kernel in image width (from 0.01 to 0.13 in

steps of 0.01). The maximum score value over this range

for each model is shown in Table 1. Smoothing the saliency

map dramatically affects the accuracy of some models (e.g.,

Itti, Surprise, PQFT, and SUN). Our combined saliency

model (local + global and RGB + Lab) outperforms other

models over 4 datasets with a larger margin over the MIT

and NUSEF datasets. Our local and global saliency oper-

ators have less accuracy than the combined model but are

still above several models. Results show that global saliency

works better than local saliency operator over large datasets

(MIT and NUSEF) while they are close to each other over

TORONTO dataset. Models were more successful over the

TORONTO and MIT datasets and less over KOOTSTRA

and NUSEF, possibly because of the higher complexity of

stimuli in these datasets. The NUSEF dataset contains many

affective and emotional stimuli while KOOTSTRA dataset

contains images without well-defined interesting and salient

objects (e.g., nature scenes, trees, and flowers).
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Dataset RGB Lab RGB + Lab
Sl Sg Slg Sl Sg Slg Sl Sg Slg

TORONTO 0.646 0.647 0.653 0.670 0.660 0.660 0.678 0.668 0.683
MIT 0.627 0.639 0.640 0.646 0.644 0.651 0.658 0.663 0.667
KOOTSTRA 0.574 0.572 0.578 0.572 0.555 0.570 0.589 0.573 0.591
NUSEF 0.599 0.610 0.610 0.556 0.596 0.592 0.569 0.614 0.616

Table 2. RGB vs. Lab for saliency detection. Sl: Local; Sg : Global;

Slg : Local + Global. Parameter settings: scales (M ) =1 (256×256); Win-

dow size = 1. Results are over original saliency maps without smoothing.

Among compared models, ICL [12], AIM [14],

SDSR [11], and Judd et al. [3] performed higher than the

rest. Itti et al. [4] and Surprise [10] models are ranked at

the bottom. As we expected, a trivial Gaussian blob located

at the image center scores around 0.5 over all datasets and

human model scores the best providing a gold standard for

visual saliency models. Humans are less correlated over

KOOTSTRA and NUSEF datasets.

Lab vs. RGB for saliency detection. To assess the

power of Lab and RGB color spaces for saliency detection,

we performed an experiment using each of the two color

systems. Results over all four datasets are shown in Table 2.

According to our results, it is not possible to tell which color

system is the best. The Lab color space leads to higher accu-

racies over TORONTO and MIT datasets while RGB works

better over KOOTSTRA and NUSEF datasets. Integrating

both color systems leads to higher accuracy than each one

taken separately, consistently over all four datasets. This

indicated the importance of saliency integration over both

color systems. Also note that over each component (local

or global), combination of RGB and Lab leads to higher

performance than each of the color systems.

Influence of surrounding window size and number of
scales. Here we analyze how the size of the surrounding

window (and hence number of neighbors) and number of

spatial scales affect performance of our models. As the left

diagram of Fig. 6 shows, increasing the number of neigh-

bors reduces the accuracy of the local saliency operator.

Correspondingly, this reduces the accuracy of the combined

model. Note that the global operator is not affected by this

parameter. Shown in the right panel of Fig. 6, increasing

the number of scales enhances the results to a certain point

(here using 3 scales [256, 128, and 64]) and then drops

(when using 4 scales [512 256 128 64]).

Runtime aspects. It takes approximately 5 seconds for

our model to process a 256 × 256 image in both RGB and

Lab color spaces using a personal computer running Linux

Ubuntu with 5.8 GB RAM and 12 Core Intel i7 3.2 GHz

CPU. Our model is faster than AIM (16 sec), Judd (without

object detectors)(4.7 sec), close to SDSR (2.4) and GBVS

(2), and slower than PQFT (1 sec), SUN (1), Itti (0.28) (us-

ing [52]), and ICL (0.1) models. Our global saliency opera-

tor is appx. 3 times faster than our local saliency operator.

For qualitative assessment, we show in Fig. 7 saliency
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Figure 6. Parameter analysis. Left: Effect of the surround window size on accu-
racy over TORONTO dataset using 256×256 images (M = 1). Right: Influence of
scale on results over TORONTO and KOOTSTRA datasets (window size =1). First
three bars are 256,128,64 and fourth one represents four scales 512,256,128,64.

maps of our combined saliency model and compared mod-

els for sample images from TORONTO and MIT datasets.

5. Conclusions and Future Works
We enhance the state-of-the-art in saliency modeling by

proposing an accurate and easy-to-implement model that

utilizes image representations in both RGB and Lab color

spaces. Furthermore, we introduce one local and one global

saliency operator each representing a class of previous mod-

els to some extent. We conclude that integration of local and

global saliency operators works better than just using ei-

ther one, which encourages more research in this direction.

Similarly, combining both color systems strongly benefits

saliency detection and eye fixation prediction.

There are two areas that we would like to improve upon.

The first one is incorporating top-down factors for fixation

prediction. The large gap between models and the human

inter-observer model (see Table 1) is mainly due to role

of top-down concepts (e.g., faces, text [45], people, and

cars [3], affective and emotional stimuli or actions within

scenes [6]) when freely viewing scenes. While some of

these factors have been utilized for saliency detection in the

past [3], adding more top-down features (e.g., by reliable

detection of text on natural scenes) can scale up accuracy of

current models. The second area is extending our model for

saliency detection in spatio-temporal domain (videos).

Supported by the National Science Foundation (grant number BCS-

0827764), and the Army Research Office (W911NF-08-1-0360 and

W911NF-11-1-0046), and U.S. Army (W81XWH-10-2-0076). The authors

affirm that the views expressed herein are solely their own, and do not

represent the views of the United States government or any agency thereof.

References
[1] J. M. Wolfe and T. S. Horowitz. What attributes guide the deployment of visual

attention and how do they do it? Nat. Rev. Neurosci., 5:1-7, 2004. 1

[2] W., Kienzle, A. F., Wichmann, B., Scholkopf, and M. O. Franz. A nonparamet-
ric approach to bottom-up visual saliency. NIPS, 2007. 2

[3] T. Judd, K. Ehinger, F. Durand and, A. Torralba. Learning to predict where
humans look, ICCV, 2009. 2, 3, 5, 6, 7

[4] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for
rapid scene analysis. IEEE PAMI, 1998. 1, 2, 3, 4, 5, 6, 7

[5] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factor-
ization and sparse coding. J. of Machine Learning, 2010. 4

484



Figure 7. Visual comparison of our combined saliency model and 10 state-of-the-art models over samples from TORONTO (top) and MIT datasets.

[6] R. Subramanian, H. Katti, N. Sebe, M. Kankanhalli, and T.S. Chua. An eye
fixation database for saliency detection in images. ECCV, 2010. 6, 7

[7] J. Harel, C. Koch, P. Perona. Graph-based visual saliency. NIPS, 2006. 2, 5, 6

[8] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR,
2007. 2, 6

[9] X. Hou and L. Zhang. Dynamic visual attention: Searching for coding length
increments. NIPS, 2008. 2, 3, 6

[10] L. Itti and P. Baldi. Bayesian surprise attracts human visual attention. NIPS,
2005. 2, 5, 6, 7

[11] H.J. Seo and P. Milanfar. Static and space-time visual saliency detection by
self-resemblance. Journal of Vision, 9, 2009. 2, 6, 7

[12] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, SUN: A
Bayesian framework for saliency using natural statistics. J. of Vision, 8(32):1-
20, 2008. 2, 3, 5, 6, 7

[13] B.W. Tatler. J. Vision, 14(7):1-17, 2007. 5, 6

[14] N.D.B. Bruce and J.K. Tsotsos. Saliency based on information maximization.
NIPS, 2005. 1, 2, 3, 4, 5, 6, 7

[15] A.M. Treisman and G. Gelade. A feature integration theory of attention. Cog-
nitive Psych., 12:97-136, 1980. 1, 3

[16] Y. Yang, M. Song, N. Li, J. Bu, and C. Chen. What is the chance of happening:A
new way to predict where people look. ECCV,2010. 5

[17] L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency detection by
spatially weighted dissimilarity. CVPR 2011. 2, 4

[18] O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau. A coherent computational
approach to model bottom-up visual attention. PAMI, 2006. 2

[19] C. Koch and S. Ullman. Shifts in selective visual attention: Towards the under-
lying neural circuitry. Human Neurobiology, 1985. 1, 3, 4

[20] G. Kootstra, A. Nederveen, and B. de Boer. Paying attention to symmetry.
BMVC, 2008. 2, 5, 6

[21] R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and
color. . ICCV, 2009. 2

[22] Q. Zhao and C. Koch. Learning a saliency map using fixated locations in natural
scenes. Journal of Vision, 11(3), 2011. 2

[23] D. Gao, V. Mahadevan, and N. Vasconcelos. The discriminant center-surround
hypothesis for bottom-up saliency. NIPS, 2007. 2, 4

[24] C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detec-
tion model and Its applications in image and video compression. IEEE Trans.
on Image Processing, 2010. 2, 6

[25] M. Mancas. Computational attention: Modelisation and application to audio
and image processing. PhD. thesis, 2007. 2

[26] A. Torralba, A. Oliva, M. Castelhano and J.M. Henderson. Contextual guidance
of attention in natural scenes: The role of Global features on object search.
Psychological Review, 2006. 2

[27] B. Olshausen and D. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 1996. 3

[28] E. Simoncelli and B. Olshausen. Natural image statistics and neural represen-
tation. Annual review of neuroscience, 24, 2001. 3

[29] V. Navalpakkam and L. Itti. An integrated model of top-down and bottom-up
attention for optimizing detection speed. CVPR, 2006. 2
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