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Abstract
Despite a considerable amount of previous work on

bottom-up saliency modeling for predicting human fixations
over static and dynamic stimuli, few studies have thus far
attempted to model top-down and task-driven influences of
visual attention. Here, taking advantage of the sequential
nature of real-world tasks, we propose a unified Bayesian
approach for modeling task-driven visual attention. Sev-
eral sources of information, including global context of a
scene, previous attended locations, and previous motor ac-
tions, are integrated over time to predict the next attended
location. Recording eye movements while subjects engage
in 5 contemporary 2D and 3D video games, as modest coun-
terparts of everyday tasks, we show that our approach is
able to predict human attention and gaze better than the
state-of-the-art, with a large margin (about 15% increase
in prediction accuracy). The advantage of our approach is
that it is automatic and applicable to arbitrary visual tasks.

1. Introduction
Visual attention is an important facet of our vision in

everyday life. It makes processing complex visual scenes

tractable through sequential selection of localized image

regions. It is commonly believed that visual attention is

guided by two components: 1) a bottom-up (BU), task-

independent, and image-based component that instinctively

draws the eyes to places in the scene that contain discontinu-

ities in image features, such as motion, color, and texture,

and 2) a top-down (TD) component that guides attention

and gaze in a task-dependent and goal-directed manner, or-

chestrating the sequential acquisition of information from

the visual environment. In everyday life, these two compo-

nents are combined in the control of gaze.

In computer vision, research on visual attention has been

primarily focused on the BU component. Early studies were

directly influenced by cognitive studies of visual search and

Feature Integration Theory (FIT) [12]. This led Koch and

Ullman [13] to define the saliency map: A topographic map

with retinotopic organization where locations that stand out

in an image (e.g., because of distinctive features such as

color, texture, and motion) are highlighted. The first com-
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Figure 1. Bottom-up saliency does not account for task-driven eye move-

ments. Predictions of 6 state-of-the-art BU saliency models in a driving

scene and our model (red box). Red diamond and blue circle show human

fixation and maximum of a model, respectively. See Table 2 for results.

plete implementation and verification of this architecture

was done by Itti et al. [7]. Several other approaches for de-

tecting image-based outliers have also been proposed, based

on information theory [14], discriminant hypothesis [15],

spectral models [16], sparse and efficient coding [17], and

Bayesian and graphical models [18][19][21].

Today, saliency detection and eye movement predic-

tion over static images and videos is a reasonably well-

researched area and there are many models with good ac-

curacy, although of course improving tolerance to noise and

invariance of algorithms is always possible. However, suc-

cess of BU models is limited to a small range of everyday

tasks, such as free-viewing [7][14][18] and their adaptation

to visual search [22][11]. BU models usually can not pre-

dict exact fixation points and leave more than half of them

unaccounted [25] (Fig. 1). One problem with models based

on saliency maps is that they are correlated with fixation be-

haviors but don’t tell much about the cause for such behav-

iors [26][27]. Diverging from the current trend, we focus on

modeling top-down attention which can boost performance

of several approaches in computer vision. For example in

areas such as object detection and recognition [15][35][36],

especially in spatio-temporal domain for video understand-

ing and action/event recognition (e.g., [37][38]).

We aim to build an attentive vision system that can tell

where it should look as it moves through the world and in-

teracts with the environment. This problem is very impor-

tant but very difficult and largely unsolved. Our approach is

to utilize global visual context [28][18], a low-dimensional

representation of the whole image (the “gist“ of the scene).
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Such a representation can be easily computed, and it relaxes

the need to identify specific regions or segment and recog-

nize all objects in a scene. We focus on interactive envi-

ronments (contemporary 2D and 3D video games), where

visual stimuli are dynamically generated and affected by

deliberative motor actions. We develop top-down models

trained over the same or similar games from data of subjects

during game playing, and we use those models to predict

saccades of a new test subject. Several sources of multi-

modal information, including global context, previous sac-

cades, and previous motor actions, are combined in a unified

Bayesian framework over time. Compared with brute-force

algorithms such as the average of all saccade positions, a

central Gaussian blob, and 6 popular BU models, we show

that our models significantly outperform the state-of-the-art

in terms of accuracy at predicting where a new subject looks

during active gameplay. This indicates the effectiveness of

our approach for modeling complex task-driven attention.

Previous Work. The majority of studies on TD attention

are at the analysis/descriptive level and there are few com-

putational models available, we believe due to conceptual

complexity. Yarbus [1] discovered a compelling finding that

’seeing’ is inextricably linked to the observer’s cognitive

goals. Task dependency of gaze has been extensively stud-

ied for several real-world tasks, such as “sandwich mak-

ing“ [4], “tea making“ [2], and “driving“ [5]. These stud-

ies have revealed that most fixations are directed to task-

relevant locations, and there is a tight temporal relationship

between fixations and task-related behaviors, such that it is

sometimes possible to infer the algorithm of a task from

the pattern of a subject’s eye movements (e.g., in “block

copying“ [4]). In [3], Hayhoe and Ballard elaborate on the

role of internal reward in guiding eye and body movements,

supported by neurophysiological studies. Inspired by the

idea of visual routines [29] and using reinforcement learn-

ing (RL) approaches, Sprague and Ballard [9] proposed

an RL-based top-down attention model for explaining eye

movements of an agent operating in virtual environments.

This approach is interesting but suffers from three limita-

tions that make it hard to apply directly for computer vi-

sion purposes. First, it is limited to laboratory-scale tasks

such as side-walk navigation [9], second, visual processing

is very simple, and, third, it needs explicit definitions of re-

ward functions, subtasks, and arbitration mechanisms.

Our approach has in part similarities with the contex-
tual model of Torralba et al. [18] as we also use the con-
cept of gist. We start with a basic Bayesian formulation
and add new features to account for task-driven attention in
spatio-temporal domain while former has been thus far uti-
lized for bottom-up saliency and visual search over static
stimuli. This model and its decedents (e.g., [19, 11]) orig-
inally formulate object search as estimating the probability
P (O = 1, X|L,G) where X = (x, y) defines the location
of the target in the image, O is a binary variable (O = 1

denotes target presence and O = 0 denotes target absence
in the image), and L and G denote local and global features,
respectively. According to Bayes’ theorem, they expand the
above probability as:

P (O = 1, X|L,G) =

1

P (L|G)
P (L|O = 1, X,G)P (X|O = 1, G)P (O = 1|G)

(1)

The first factor on the right, 1
P (L|G) , is independent of the

target, measures BU saliency, and is solely dependent of lo-

cal image features. The second factor represents top-down

knowledge of target appearance. Image regions with fea-

tures likely to belong to the target object are enhanced. The

third factor provides context-based priors on the location of

the target, and the fourth factor provides the prior probabil-

ity of presence of the target in the scene. If this probabil-

ity is very small, then object search need not be initiated.

Zhang et al. [19] used Independent Component Analysis

(ICA) and Difference of Gaussians (DOG) features learned

from a large repository of natural scenes to estimate the first

factor. From another perspective these models unify the in-

formation theoretic models (e.g., [14]), in the sense both are

based on self-similarity of scene regions. These models as-

sign higher saliency values to regions with rare features. In-

formation of visual feature F is I(F ) = −log P (F ) which

is inversely proportional to the likelihood of observing F .

By fitting a distribution P (F ) to features, rare features can

be immediately found by computing P (F )−1 in an image.

The idea of global context has also been extensively em-

ployed in several areas of computer vision (e.g., [32][10]).

Several other approaches have been proposed to model

top-down attention, specifically for visual search. Naval-

pakkam and Itti [22] proposed a Bayesian approach to de-

rive the optimal gains that should be applied to low-level vi-

sual features contributing to a saliency model [7], to make

an object of interest more salient. The objective was to max-

imize the signal to noise ratio of the expected target ob-

ject versus background clutter, and training was performed

over a set of natural scenes containing ground-truthed ob-

jects. An intuitive solution for the same problem (optimal

gains of feature channels) was suggested earlier by Frin-

trop [23] which is the end result of the SNR maximization

process in [22]. Navalpakkam and Itti [8] proposed concep-

tual guidelines for modeling the role of task on visual atten-

tion, but their method requires the algorithm of the task to

be known, and is not fully implemented.

Perhaps the most similar work to ours (i.e., real-world

and unconstrained tasks) is the work by Peters and Itti [6],

where they used gist as a predictor of fixation, learning from

examples where people looked in scenes of different gists

and while engaged in a particular task. The same scene gist,

however, might not always warrant the same eye movement,

based on the history and sequence of previous fixations and
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actions to date. For example, in one of the games stud-

ied here, even when looking at the exact same scene, eye

movements are often guided by past events, such as differ-

ent customers placing different orders for items which the

player is asked to provide. To tackle the problem that gist of

the scene is not enough, we follow a sequential processing

framework where several factors predictive of eye move-

ments are integrated over time and can resolve the confu-

sion (aliasing) at one snapshot of time.

2. Proposed Model
Our goal is to predict where a human subject attends un-

der the task influence T . This is similar to explaining sac-

cades (jumps in eye movements) in free-viewing, addressed

by bottom-up models, with the difference that here a policy

governs saccades. Since it is difficult to learn general strate-

gies for performing every task, here we focus on learning

models for each task separately. Following a leave-n-out

approach over subjects, first, in the training phase, we com-

pile a training set of feature vectors and eye positions cor-

responding to individual frames from several video game

clips which were recorded while observers were playing

video games. Then, training data is used to learn probability

distributions over image locations for given feature vectors,

and pdfs are later leveraged in the test phase for inferring

the next attended location of a new test subject.

We need a number of variables that cause or correlate

with saccade positions and hence can provide information

regarding the next saccade location. These variables tell

us indirectly about the state of the agent at each time point

of the task. In addition to scene gist, here, we introduce

two new features explained below: motor actions and pre-

vious saccade position and then combine them in a proba-

bilistic manner over time to infer a probability distribution

over scene locations that may attract next saccade:

Global context (Gist, G). Following a brief presenta-

tion of a photograph, humans are able to summarize the

quintessential characteristics of an image, a process previ-

ously expected to require much analysis. A number of mod-

els exist for calculating Gist (e.g., [18][33]). We adopt the

gist model of [10]1 as it is based on the bottom-up saliency

model [7] that we use here as a baseline approach. We

consider 4 scales for each orientation pyramid, 6 scales for

each color pyramid, and 6 scales for intensity. For each

of the maps, average in each of the patches of grid sizes

n × n (here n ∈ {1, 2, 4}) are calculated (thus 21 val-

ues). Overall the final gist vector will be augmentation of

(4×4+6×2+6×1)×21 = 714 values. We then employ

PCA to reduce the dimensionality. We also, investigate the

ability of histogram of oriented gradient (HOG) [30] fea-

tures to represent the global context of a scene2.

1http://ilab.usc.edu/siagian/Research/Gist/Gist.html
2http://pascal.inrialpes.fr/soft/olt/

Previous saccade location (X). A lot of everyday tasks

need a number of perceptions and actions to be performed in

a sequence (e.g., sandwich making [4]). Therefore, know-

ing what object has been attended previously gives an evi-

dence for the next attended object. We implement this idea

over spatial locations. For instance, P (Xt+1 = b|Xt = a)
indicates the probability of looking at location b in the next

time step given that location a is currently fixated (e.g.,

looking at left first and then right, when turning right).

Motor actions (A). Actions and fixations are tightly

linked thus, by knowing a performed action, one can tell

where to look next. We recorded motor actions while hu-

mans were involved in game playing. We assumed that

these actions correspond to some high-level events in the

game (e.g., mouse click for shooting). We logged actions

for driving games (e.g., wheel position, pedals (brake and

gas), left and right signals, mirrors, left and right side views,

and gear change), from which we only generated a 2D fea-

ture vector from wheel and pedal positions between 0 and

255 (Fig. 2). For other games, 2D mouse position and joy-

stick buttons were used (further explained in Sec. 3.1).

2.1. Problem Formulation
In this section, we describe details of our Bayesian ap-

proach of information integration over time to predict sac-

cade in the next time step. Our method is based on Hidden

Markov Models (HMM), which are successful probabilistic

tools for sequence processing. We are particularly inter-

ested in the probability of attending to spatial location X
given all available information I , or P (X|I). One way to

estimate this probability is to follow a discriminative ap-

proach by augmenting all information into a large vector I ,

and using a classifier to map it to X from a set of labeled

training data. An alternative is to follow a Bayesian formu-

lation: P (X|I) = P (I|X)P (X)/P (I) = μP (I|X)P (X).
Parameter μ is selected in a way that resultant probabilities

sum to 1 (i.e.,
∑

j P (Xj |I) = 1). P (X) is simply the prior

distribution of all saccade locations in the training data (sum

of all saccades or average fixation map). A benefit of the

generative approach over the discriminant classifier-based

approach is that, it provides a unified method for informa-

tion integration of sequential data, and makes it suitable for

our purpose. which enhances results.

Formally, the goal of the saccade prediction is to com-

pute a probability distribution over the possible locations

given all features up to time t. Let Xt ∈ {1 . . . n} denote

the saccade location with n as the number of locations in

the image at time t. To generate sufficient data, we resize

the original eye fixation map with one at the attended loca-

tion and zeros elsewhere into a smaller scale map (a w × h
grid). Therefore, Xt is the location of 1 in such map. In the

following we start with the simplest case of P (X|I) when

only global context information is available (i.e., I is equal

to Gist) and add more information in subsequent steps.
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Case 1: Gist only. In this case, only global context infor-
mation from all past and the current time is used. According
to the Bayes theorem we have:

P (Xt|G1:t) = P (Xt|Gt, G1:t−1)

=
P (Gt|Xt)P (Xt|G1:t−1)

P (Gt|G1:t−1)

= μP (Gt|Xt)P (Xt|G1:t−1)

(2)

Following Markov assumption, the current scene Gist (Gt)

has all the necessary information for determining state and

knowing the attended location. Thus Xt is independent of

all previous gists: P (Xt|G1:t−1) = P (Xt). Therefore, we

can write: P (Xt|G1:t) = μP (Gt|Xt)P (Xt) with P (Xt)
as the prior distribution over eye positions.

Case 2: Gist and previous saccade. In the second step,
we add the previous saccade locations to the formulation:

P (Xt|G1:t, X1:t−1)

= P (Xt|Gt, G1:t−1, X1:t−1)

=
P (Gt|Xt)P (Xt|G1:t−1, X1:t−1)

P (Gt|G1:t−1, X1:t−1)

= μ1P (Gt|Xt)P (Xt|G1:t−1, X1:t−1)

= μ1μ2P (Gt|Xt)P (Xt−1|Xt)P (Xt|G1:t−1, X1:t−2)

(3)

where μ1 is equal to P (Gt|G1:t−1, X1:t−1)
−1 and

μ2 is P (Xt−1|G1:t−1, X1:t−2)
−1. Again, considering

Markov assumption and defining μ = μ1μ2, we have:

P (Xt|G1:t, X1:t−1) = μP (Gt|Xt)P (Xt−1|Xt)P (Xt).

Case 3: Gist, previous saccade, and motor actions.
Finally, we combine all evidences in our Bayesian model.
Following the steps in case 2 and simplifying we reach to:

P (Xt|G1:t, X1:t−1, A
j=1:n
1:t−1 )

= μP (Gt|Xt)P (Xt−1|Xt)P (Xt)×Πn
j=1P (Aj

t−1|Xt)
(4)

The above formula assumes that actions are independent

of each other given attended location (i.e., Ak⊥Al|X). An

important point here is whether actions influence saccades

or vice-versa. In the real world the interaction works both

ways: for some situations/tasks, saccades lead actions, how-

ever, sometimes actions can also lead eye movements. Here

to be on the safe side, we did not use the current action.
Computing (4) requires estimation of P (Gt|Xt) and

similarly others. This can be done in several ways using
non-parametric probability density estimation techniques
such as generalized Gaussian model, histogram estimation
or kNNs. We adapted the Kernel Density Estimation (KDE)
approach. One pdf is calculated for each spatial location:

P (G|xi) =
1

m

m∑

i=1

Gh(x− xi) =
1

mh

m∑

i=1

G(x− xi

h
) (5)

where Gh is a Gaussian kernel with smoothing parameter

(sliding window or bandwidth) h and m is number of data

points. We used a Matlab toolbox3 for implementing KDE.

3Publicly available at: http://www.ics.uci.edu/˜ihler/code/
kde.html

2.2. Baseline Benchmark Models
To fully evaluate effectiveness of our model, we imple-

mented the regression model put forward by Peters and

Itti [6] as well as a nearest-neighbor classifier and two other

brute-force yet powerful models.
Linear Regression (REG). This model does not take

into account the temporal progress of a task and simply
maps Gist of the scene to the eye position. Mathematically,
the goal is to optimize the following objective function:

argmin
W

||M ×W −Xsacc||2

Subject to : W ≥ 0.
(6)

where M indicates the matrix of feature vectors (only Gist

feature is used in [6]) and X is the matrix of eye positions

(one fixation per frame). The least-squares solution of the

above objective function is: W = M+ × X , where M+

is the pseudo-inverse of matrix M through SVD decompo-

sition. In our experiments, we only take the largest eigen-

value of the SVD since this avoids numerical instability and

results in higher accuracy. Given vector E = (u, v) as the

eye position over a 20 × 15 map (i.e., w = 20, h = 15)

with u ∈ [1, 20] and v ∈ [1, 15], the gaze density map can

then be represented by vector X = [x1, x2, . . . , x300] with

xi = 1 for i = u + (v − 1) × 20 and xi = 0 otherwise.

Finally, for each test frame, we compute feature vector F
and generate the predicted map P = F ×W which is then

reshaped to a 20 × 15 saliency map. The maximum of this

map is used to direct spatial attention.

k Nearest Neighbor Classifier (kNN). We also imple-

mented a non-linear mapping from features to saccade lo-

cations. The attention map for a test frame is built from

the distribution of fixations of its most similar frames in the

training set. For each test frame, k most similar frames (us-

ing the Euclidean distance) were found and then the pre-

dicted map was the weighted average of the fixation loca-

tions of these frames (i.e., Xi = 1
k

∑k
j=1 D(F i, F j)−1Xj

where Xj is the fixation map of the j − th most similar

frame to frame i which is weighted according to its simi-

larity to frame i in feature space (i.e., D(F i, F j)−1). We

chose parameter k to be 10 which resulted in good perfor-

mance over train data as well as reasonable speed.

In addition to the above, we also devised two brute-force

yet powerful predictors. The first one is simply the average

of all saccade positions which we call Average Fixation
Map (AFM) during the time course of a task over all m

training frames (i.e., AFM = 1
m

∑m
j=1 X

j). In dynamic

environments used in this paper, since frames are generated

on the fly and there are few fixations per frame, aligning

frames (contrary to movies) is not possible. If a method

could dynamically predict eye movements on a frame-by-

frame basis, then achieving a higher accuracy than AFM

is possible. AFM map is also the solution of the regres-

sion with a constant input, and is the output of our Bayesian
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Figure 2. Correlation between actions and saccade positions. Rows indi-

cate events (each frame was manually tagged based on its event). Columns

from left to right include: wheel vs. eye − x, eye − y vs. wheel, sac-

cade coordinates during the dame (eye − x vs. eye − y), and frequency

of pedal positions for DS game. Blue ellipses in the 3rd column indicate

objects in the scene (see Fig. 1). Similar trends happen in the other games

which eventually could help us in prediction of next saccade location.

model with one variable (P (X) only). The second predictor

is a central Gaussian filter (Gauss). The rationale behind

using this model is that humans tend to look at the center of

the screen when game playing (center-bias or photographer-

bias issue [31] by game design construction), therefore a

central Gaussian blob may score well when datasets are cen-

trally biased (See Figs. 3 and 6). Instead of using a fixed-

size Gaussian for all games, we fitted a 2D Bivariate Gaus-

sian to the fixation data of each game using ML algorithm:

f(x, y) =
1

2πσxσy

√
1− ρ2

exp
[ −z
2(1− ρ2)

]
(7)

where z = (x−μx)
2

σ2
x

− 2ρ(x−μx)(y−μy)
σxσy

+
(y−μy)

2

σ2
y

and ρ is

the correlation coefficient between x and y (i.e., ρ =
∑

xy

σxσy
)

where
∑

xy is the covariance matrix.

3. Quantitative Results
Here we report results of our approach for predicting sac-

cades (jumps in eye movements to bring the relevant ob-

ject/location to the fovea)4. While we only process those

frames in which a saccade happened, our method is easily

applicable for predicting fixations (one for each frame).

3.1. Eye Tracking and Data Gathering
To test our models, we have collected a large amount of

multi-modal data from subjects playing video games. We

intend to share our data and accompany software to encour-

age follow-up research on modeling top-down attention.

Human subjects in the age range 20 to 30 played 5 video

games. Subjects were students of anonymous university.

Some subjects played more than one game. First, in a 5 min

training session, aim and rules of the game as well as but-

tons of playing device were explained to the subject. Sub-

jects were then asked to play the game to become famil-

iar with the gaming environment. After training, in a test

4Thresholds to detect saccades were set to a velocity of 20◦/s and an

amplitude threshold of 2◦/s.

session, subjects played a different scenario of the game

than during training (e.g., a different game level) without

experimenter’s intervention. They had different adventures

in games from each other. Before the test session started,

the eye tracker (ISCAN Inc. RK-464) was calibrated using

9 point calibration scheme. Subject’s head was placed on

a chin-rest at the distance of 130cm from the screen, yield-

ing a visual field of 43o × 25o. Subject’s right eye was

recorded. Along with frames and fixations, subject’s ac-

tions were also logged. A computer with Windows OS ran

the PC games (frame rate 30Hz), logged actions (frequency

62Hz), and sent frames to a computer with Linux Mandriva

OS that displayed and saved frames for later analysis. An-

other windows machine controlled the eye tracker camera

and recorded fixations (240Hz). All computers communi-

cated via a LAN network and their clocks were synchro-

nized. Each data item had a time stamp which allowed us to

align frame, action, and fixation data after recording.

Stimuli. To evaluate the power of our model, we applied

it to 5 games with different task algorithms and visual ren-

derings. For some games, scenes change considerably but

for some others background scene is nearly constant mak-

ing gist features less variable and informative.

Two of the games are driving games. The first one, 3D
Driving School (DS) is a driving emulator with simulated

traffic conditions. Players must follow the route and Euro-

pean traffic rules defined by the game. An instructor will

tell the players where to go by a text in a semi-translucent

box above the screen and/or a small arrow on the top-left

corner. Players use automatic transmission to drive around

the entire course. This game has only dashboard view, an

inside view from the driver-side towards the road. The sec-

ond driving game, 18 Wheels of Steel (WS) is a semi/truck

simulator. In this game, players control a big rig to a spe-

cific destination, to retrieve money rewards for delivering a

trailer. Players must drive carefully as the truck cannot ac-

celerate/brake suddenly due to its mass. In this game, play-

ers were told to always make a left turn since there is no ex-

plicit instruction on the screen telling where to go. Players

also used first-person/bumper view. Correlations between

fixation patterns and driving events were found that can help

detecting driver behavior’s and intention (Fig. 2). Fig. 3

shows the average fixation map for DS game and it’s corre-
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Game # Sacc. # Subj Dur. # Frames Size Action

DS 6382 10 10 min 180K 110 J

WS 4849 10 10 ” 180K 110 J

SM 1482 5 5 ” 45K 26 J

BS 1763 5 5 ” 45K 26 M

TG 4602 12 ∼ 4.5 ” 99K 57 N/A

Table 1. Summary statistics of our data including overall number of sac-

cades, subjects, durations per subject, frames, sizes in GB, and action types

(J indicates joystick and M stands for mouse).

sponding fitted Gaussian model.

The third game, Super Mario Bros (SM), is a classic 2D-

side-scrolling action game. Players control Mario to a flag-

pole to finish the level. Mario grows bigger if it consumes

a mushroom and can shoot fireballs if it consumes a flower.

There are various enemies that can be killed by stomping

on them or shooting fireballs. In this game, players were

expected not to take any means of shortcut such as running

on ceiling, teleport pipes, or warp points. Actions in this

game are (x, y) position of joystick ([0, 255] for left/right,

up/bottom) and status of 3 binary buttons including Start,
Jump, and Fire/Run.

The fourth game called Burger Shop (BS) is a 2D time-

management game. Under time pressure, players serve cus-

tomers who order food items such as burgers and fries that

must be assembled from a conveyor belt that brings ingre-

dients. The game ends when all customers are served. For

this game, actions include mouse (x, y) position as well as

status of the mouse buttons (i.e., Left, Middle, and Right).
The fifth game, Top Gun (TG), is a flight-combat sim-

ulator. Players control a jet-fighter plane that can lock tar-

gets and shoot missiles, use afterburners to speed up, and do

air maneuvers. The main objective of the game is to com-

pletely destroy all targets on air and on the ground. Players

use first-person view in this stimuli. Currently, we do not

have motor actions for this game.

Table. 1 shows summary statistics of video game data.

3.2. Evaluation Metrics
To quantify how well model predictions matched ob-

servers’ actual eye positions, we used two metrics:

Normalized Scanpath Saliency (NSS). NSS [34] is

defined as the response value at the human eye position

(xh, yh) in a model’s predicted gaze density map that has

been normalized to have zero mean and unit standard devi-

ation: NSS(t) = 1
σs(x)

(
s(x(t))−μs(t)

)
for frame at time t.

An NSS value of unity indicates the subject’s eye position

falls on a region whose predicted density is one standard de-

viation above average. Meanwhile, an NSS value of zero or
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Figure 4. Grid search for best parameters (KDE kernel width and PCA dimensions
of the Gist vector; Sec. 2) for DS game over train data.
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Figure 5. Prediction accuracy of our KDE model, Itti et al. [7], classifiers

also implemented here, as well as brute-force predictors (AFM and Gaus-

sian) for 5 video games using NSS and AUC (ROC) scores. KDE model

with all features, KDE (All), results in the best performance in all cases,

KDE with only Gist feature outperforms the other compared models.

lower means that the model performs no better than picking

a random position on the map.

Area Under the Curve (AUC). Here, a model’s saliency

map is treated as a binary classifier on every pixel in the im-

age; pixels with larger saliency values than a threshold are

classified as fixated while the rest of the pixels are classified

as non-fixated. Human fixations are used as ground truth.

By varying the threshold, the Receiver Operating Charac-

teristic (ROC) curve is drawn as the false positive rate vs.

true positive rate, and the area under this curve indicates

how well the saliency map predicts actual human eye fixa-

tions [14]. Perfect prediction corresponds to a score of 1.

Results. In the first experiment, we trained the model

over each separate game. Each game segment has a vari-

able number of saccades for each subject. Training was

done over saccades of K − 1 subjects and tested over sac-

cades of the remaining test subject. In each training phase,

the best kernel width and PCA dimensions of gist vector

(see Sec. 2) were found using grid search. Fig. 4 shows
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Game IC
L

[1
7
]

SD
SR

[2
0
]

G
B

V
S

[2
4
]

A
IM

[1
4
]

SU
N

[1
9
]

G
au

ss
[3

1
]

A
FM

K
D

E
(C

-1
)

K
D

E
(C

-2
)

K
D

E
(C

-3
)

DS 0.57 0.54 0.73 0.62 0.658 0.76 0.78 0.82 0.82 0.82
0.19 0.05 0.948 0.54 0.30 1.47 1.66 1.9 1.91 1.95

WS 0.52 0.41 0.73 0.55 0.51 0.76 0.81 0.83 0.83 0.84
0.27 -0.2 1.25 0.66 0.19 1.64 1.9 2.18 2.21 2.46

SM 0.61 0.69 0.72 0.67 0.62 0.67 0.75 0.78 0.79 0.79
0.59 0.74 1.21 0.77 0. 33 0.62 1.07 1.13 1.21 1.11

BS 0.72 0.61 0.73 0.69 0.72 0.72 0.76 0.79 0.81 0.84
1.04 0.54 1.1 0.80 1.2 0.96 1.89 2.1 2.2 2.7

TG 0.62 0.5 0.622 0.6 0.6 0.6 0.73 0.75 0.75 -
0.58 0.01 0.55 0.51 0.29 0.57 1.28 1.36 1.34 -

Table 2. AUC(1st rows) and NSS scores(2nd rows) of 5 state-of-the-art

models and ours over our data. Numbers in bold show best two models in

each row. In almost all cases, while other models fall below Gaussian and

AFM models, KDE (All) scores the best. In some cases, regression and

KNN may score the best (cf. Fig. 5). C-x stands for Case x (See Sec. 2.1).

an example of best parameters over one training session of

the DS game. Fig. 5 shows NSS and AUC scores, as well

as ROC curves for baseline models and all variants of our

model for each individual game. Over all games, KDE with

all features (case 3) resulted in the best performance fol-

lowed by case 2: KDE (Gist + Prev. sacc). KDE with only

Gist feature outperformed classifiers with Gist, which indi-

cates advantage of the KDE approach for using this feature

compared with regression [6]. Random predictor (a ran-

dom value for each location) has zero NSS and AUC near

0.5. AFM predictor achieved higher scores than BU [7] and

Gaussian models over all games, indicating that eye move-

ments were likely mostly guided top-down and BU influ-

ences were weak. AFM outperformed classifiers over the

SM game, indicating that Gist is not a good predictor for

this game; but when we added previous saccade position

and actions, classifiers and KDE performed the best. Using

action features alone in the kNN classifier resulted in NSSs

of 1.41 and 1.80 for the DS and WS games, respectively

higher than Gaussian and close to AFM of each game.

Table 2, shows accuracy of 5 state-of-the-art bottom-

up saliency models, Gaussian, and AFM. In previous re-

search, these models have achieved the highest scores over

eye movement datasets for free-viewing task. Here, almost

all of these models perform worse than AFM, while our ap-

proaches (KDE (All) and KDE (Gist)) perform higher with

a large margin. This again indicates that, while bottom-up

saliency models fail to account for eye fixations in our tasks

which have a strong top-down component, our new models

are able to capture a large amount of task-driven saccades.

Train on DS WS

Test on WS DS

AFM 0.80 (1.74) 0.75 (1.51)

KDE (Gist) 0.80 (1.64) 0.74 (1.40)

KDE (All) 0.79 (1.62) 0.73 (1.51)

Table 3. Confusion matrix of training models

on one driving game and applying it to the

other one using AUC and NSS(parenthesis).

In the second

experiment, we

trained the KDE

models over one

of two driving

games and tested

it on the other to

assess the generalization power of our approach over dif-

ferent tasks. As Table 3 shows, training on a similar game

Gist [10] HOG [30]
Game kNN REG kNN REG

DS 0.80 (1.77) 0.8 (1.86) 0.81 (1.88) 0.81 (2.05)
SM 0.75 (0.88) 0.76 (1.01) 0.74 (0.97) 0.79 (1.23)

Table 4. Comparing AUC and NSS (in parenthesis) of Gist model of Sia-

gian et al. [10] and HOG features for saccade prediction using kNN and

regression classifiers for 3D Driving School and Super Mario games. Di-

mensionality of Gist vector is 714 and dimensionality of HOG is 4800.

Only for REG (HOG) dimensionality of HOG is reduced to 95% of its

variance which preserved about 900 D for DS and 500 for Mario game.

results in higher accuracy than random, and close to per-

formance of Gaussian and AFM predictors of each game

shown in Table 2. Applying the AFM of games to each

other resulted in higher accuracy than the KDE models,

probably because one constant in both games is that sub-

jects look at the center. Since actions and sequence of fixa-

tions are specific for each game, adding them slightly drops

the performance (KDE (Gist) vs. KDE (All)).

In the third experiment, we aimed to compare the power

of HOG features [30] and the Gist features of Siagian et
al. [10]. The notion behind using HOG features is that they

encode rich structural information from the entire scene

and have been very successful in object detection. Table 4

shows the performance of kNN and regression classifiers

over DS and SM games. HOG features were better descrip-

tors of the scene and conveyed more information regarding

saccade locations over both games and using both classi-

fiers. However, because calculating 8 orientation channels

in HOG makes it slower than gist in [10] (about 2 times)

which uses 4, here we performed experiments using the sec-

ond one. HOG also generates high dimensional feature vec-

tors which makes it hard to store and work with.

Figure 6 shows sample frames of video games with cor-

responding saliency maps from models. Predicted maps by

our models show dense activity at task relevant locations

thereby narrowing attention and leading to higher NSS and

AUC scores. These maps change per frame as opposed to

the static AFM and Gaussian models.

4. Discussion and Future Work
We proposed a unified Bayesian approach that is appli-

cable to a large class of everyday tasks where global scene

knowledge, the sequence of fixated locations, and actions,

constrain future eye fixations. In addition to the above-

mentioned factors, there might be other general features in-

fluencing task-driven attention. Our framework allows easy

incorporation of those features for saccade prediction.

An important application of our model is quantitative

analysis of differences among populations of subjects (e.g.,

young vs. elderly or novices vs. experts) in complex tasks

such as driving. It can also be useful for assistant technolo-

gies for demanding tasks, human computer interaction, con-

text aware systems, and health care.

Although employed features convey information regard-

ing the next saccade, it is still possible to gain higher perfor-

mance by knowing more about the scene. For instance, by
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Frame AFMBU map (Itti et al.) REG(Gist) kNN(Gist) kNN(All)KDE(Gist) kDE(All)

DS
W
S

SM
BS

TG

REG(All)

Figure 6. Sample frames of video games and corresponding predicted maps of models. Red diamond indicates the human fixation and blue circles is the

maximum point of each map. Smaller distance hence means better prediction. Currently we don’t have action data for TG game.

calculating the number or state of task-related objects. Such

approach, however, has the drawback that for each task, rel-

evant variables and interactions among them should be de-

fined, thus limiting its generalization. We are now investi-

gating the role of local context (P (O|Lv) in (1)) in mod-

ulation of top-down attention. Instead of predicting fixa-

tion locations, it may be more efficient to bias the visual

system toward features of a relevant object within a global

context. While the exact fixated location at nearly the same

gist may change based on recent history of saccades and ac-

tions, looking for a given object rather than a given location

may exhibit stronger invariance. Also, extraction and ad-

dition of subjective factors such as fatigue, preference, and

experience into our model would be an interesting next step.
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