
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#1696

ECCV
#1696

Classifying Environment Shape from Image
Motion for Mobile Robot Path Following

Anonymous ECCV submission

Paper ID 1696

Abstract. For a high-speed mobile robot following a road, hallway, or
other type of path, modern robot motion controllers must know the
coarse shape of the path, such as whether it curves left or right, or
on which sides it is bounded by dangerous obstacles such as walls. In
this paper, towards addressing the perceptual needs of high-speed mo-
bile robot controllers, we classify these coarse shapes directly from the
image motion observed by a camera mounted on a robot driving along
the paths. We apply approximate Bayesian model selection over a set
of learned probabilistic optical flow subspaces to explain the change be-
tween adjacent video frames. We perform inference directly from spatial
image gradients instead of first computing optical flow. Optical flow sub-
spaces encode a set of basis optical flow fields, which are valid under
the assumption that the scene depth field remains constant over time,
a conditional that holds approximately for a robot following a path-like
environment. We do not require a calibrated camera or known camera
motion. Our experimental results support the claims that our method
efficiently classifies between multiple coarse path shapes, and that to do
so it is important to use information from image motion, instead of image
appearance.

1 Introduction

For a high-speed mobile robot following a road, hallway, or other type of path,
modern robot motion controllers must know the coarse shape of the path, such
as whether it curves left or right, or on which sides it is bounded by danger-
ous obstacles such as walls. Coarse path shape is important to know because
it usually determines the desired robot trajectory, for example to stay in the
middle of the path when going straight, or to execute optimal sliding turns in
sharp corners. Coarse shape is in contrast to a detailed 3D reconstruction of the
environment, which is often not useful for high-speed, dynamic navigation and
control, for reasons we discuss later.

Often, control switches between different types of controllers depending on
the discrete path shape encountered. For example, in case of sharp curves it is
often desirable to execute sliding turn maneuvers common in rally racing, versus
during gentle turns the controller does not slide the tires. In modern control
methods these switched controllers are often called “motion primitives” [1,2].
When navigating using vision, a visual perception method must classify which
discrete path shape the vehicle is encountering.
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1.00 0.28 2.03

+
Optical flow 
color code

Infer template and coefficients 
to explain evidence

Each template is comprised of basis flow fields

We learn templates corresponding to each environment shape

yT = [ ]

Fig. 1: Bottom: we classify large-scale environment shape types such as ‘left of
path’, ‘center of path’, ‘right of path’ with approximate model selection over a
set of linear optical flow templates. Middle: a single linear optical flow template
comprises a set of basis flows that span the subspace of possible optical flow
fields resulting from egomotion in the template’s environment shape. Top: in
the illustrated video frame, the image motion is explained by the particular linear
combination specified by the latent variable assignment y = [ 1.00 0.28 2.03 ]

T,
which combines forward motion with some camera rotation caused by uneven
ground and turning of the platform. Because we learn the templates with an
unsupervised method, the basis flows do not correspond to canonical motions
such as pure forward motion or pure pitch, and are instead combinations of such
motions.

Additionally, coarse environment shape is important for high-level vision
tasks that detect and track obstacles and objects such as trees, cars, and pedestri-
ans. A rough idea of the scene structure permits application of top-down knowl-
edge such as “pedestrians appear on the ground”. This idea has been investigated
heavily under scenarios like urban driving and indoor scene understanding, with
information from monocular cues, stereo, and laser point clouds [3,4,5].

In this paper, towards addressing the perceptual needs of high-speed mobile
robot controllers described above, we develop and evaluate a method to classify
which discrete coarse path shapes on which a vehicle is traveling, directly from
the instantaneous image motion observed by an onboard camera. To do this,
we perform approximate Bayesian model selection over learned models of the
optical flow fields that can be observed while traveling in each path shape, to
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determine which optical flow model best explains the observed image intensity
changes.

For the optical flow models for each shape class, we use probabilistic optical
flow subspaces, which we learn using the method of Roberts et al. [6]. Videos
with known environment type labels are required for learning, but neither camera
motion nor calibration need to be known. As shown in Figure 1, this model
implicitly encodes the camera optics and typical scene depth field as seen by
the camera. Explicitly this encoding is a linear mapping from latent variables to
flow fields, through a set of basis flows.

After reviewing related work in Section 2, we introduce the notion of linear
optical flow templates in Section 3, and in Section 4 describe our method of
approximate model selection performed at runtime. In Section 5 we present
quantitative and qualitative results.

2 Related Work

The current standard for autonomous driving is to compute a 2D traversability
map for path planning using information from 3D laser range scans, stereo cor-
respondences, and structure from motion; for examples see [7,8]. Drawbacks of
this scene include large computational resources required to deal with large point
clouds, and powerful sensors, including 3D LIDAR and wide-baseline stereo rigs,
to collect point clouds dense and complete enough to support planning. Recent
methods produce similar traversability maps using image appearance and learn-
ing [9,10]. Becker et al. [11] accumulate optical flow information over short spans
of time to infer a dense 3D reconstruction of the scene in front of the robot.

Recent work has been towards obtaining 3D information for navigation aided
by constraints from top-down models. Though not limited to robotics, Hoiem et
al. [3] use monocular cues to estimate 3D structure. Brostow et al. [4] segment
images into relevant regions such as street, sidewalk, car, etc. using structure-
from-motion cues. Sturgess et al. [5] estimate similar segmentations using motion
appearance and structure-from-motion information. Geiger et al. [12] infer 3D
street and traffic patterns from video from a moving platform, combining infor-
mation from vehicle tracking, vanishing points, and image appearance. Recent
work in “Manhattan World” environments produces high-quality estimates of
large structures like walls and floors, see for example [13,14].

Optical flow was used for environment shape recognition with a discrimina-
tive learning method by Nourani-Vatani et al. [15], who matched flow fields to a
database of locations using the flow field spatial statistics. Because they subtract
rotation from the flow fields, the statistics are sensitive to scene depth. Mozos
et al. [16] apply learning to categorize hallways, doorways, and rooms from 2D
laser range scans coupled with visual features.

A difference between our method and these “pure machine learning” ap-
proaches is that we opt for a constrained optical flow model that leverages as-
sumptions about the physical scene structure and camera motion. Though this
can prevent overfitting and reduce sensitivity to noise, it also limits the types of
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variability that can be captured by our model. Thus for some situations a pure
learning approach would be preferred. Our future plans include relaxing some
model assumptions to capture more variability.

Our goal of classifying coarse path shape is not addressed by scene clas-
sification from image appearance. It has nonetheless been shown that image
appearance methods are in fact sensitive to coarse environment structure, as de-
scribed by Oliva and Torralba [17], who describe the “spatial envelope” and use
image frequency and location information to classify gist, degrees of “size”, “per-
spective”, “openness”, “depth”, etc., and differentiate between mountains, streets,
forests, etc. Later work combined Gist with other models and cues, including
saliency [18] and explicit 3D information [19]. Recent work has even achieved
autonomous driving by mapping between Gist and control action [20,21]. An-
other approach to scene classification leverages the statistics of local image fea-
tures [22,23,24]. Previous work had used similar methods for object recognition.

In this paper we show that despite appearance-based scene classification be-
ing sensitive to coarse environment structure, much better performance is ob-
tained for the goal of path shape classification when we use information from
image motion, as it is much more directly sensitive to environment structure.
Image appearance based methods can be confounded by pure-appearance vari-
ations such as texture and lighting. To show this, in this paper we compare our
results to a neural network classifier using Gist features.

3 Linear Optical Flow Templates

In this section we describe the compact and efficient optical flow model that we
learn for each coarse path shape. This model encodes a probability density over
the optical flow fields that the vehicle could observe while traveling on the path,
with any velocity. We will refer to the models of each coarse path shape as linear
optical flow templates.

The key observation making the model compact and efficient is that for a
vehicle driving along a path-like environment, the optical flow the vehicle may
observe from an on-board camera lies very close to a subspace. For each optical
flow template, we thus choose the probabilistic optical flow subspace model, as
described by Roberts et al. [6]. This section summarizes the explanation of that
paper.

3.1 Linearity of Optical Flow

An optical flow subspace encodes a linear mapping from low-dimensional set of
latent variables y ∈ Rq to predicted optical flow

ui =Wiy (1)

where Wi ∈ R2×q is the linear mapping to flow corresponding to the ith image
location.
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The key assumption of optical flow subspaces is that scene distance at each
image location remains approximately constant over time, leading to a linear
relationship between camera velocity and optical flow. To show why this linearity
holds, the optical flow ui at the ith image location is related to camera velocity
v = [ωx ωy ωz vx vy vz]

T, assuming no noise, according to

ui = Vi (zi) v (2)

where Vi (zi) is an optical flow matrix, which depends on the camera optics and
which depends nonlinearly on the scene depth zi at the ith image location. For
a standard perspective camera, the flow matrix is (for example, see [25])

Vi (f, z)
∆
=

[
xiyi
f

−f−x2
i

f yi
−f
zi

0 xi

zi
f+y2i
f

−xiyi
f −xi 0 −f

zi

yi
zi

]
, (3)

where (xi, yi) is the image location at the ith pixel. When the focal length f and
the scene depth at each pixel zi remain constant over time, the flow matrices Vi
for each pixel are also constant, and thus V also defines a special linear optical
flow template where the velocity components are the latent variables.

In fact though, remarkably, we can leverage the linearity proved by Eq. 3 to
learn and use the subspace W in Eq. 1 without knowing the camera calibration
nor motion, and even for cameras with nearly-arbitrary, non-pinhole, optics, as
shown in [6].

3.2 Robust Probabilistic Linear Mapping

Instead of a deterministic relationship, a probabilistic optical flow subspace de-
fines a probability density on optical flow that is robust to outliers,

p (ui |y, λi) ∝

{
N (Wiy,Σ

v
u) , λi = 1

N
(
Wiy,Σ

f
u

)
, λi = 0

(4)

where Σv
u ∈ R2×2 is the (small) covariance of an optical flow vector that is an

inlier to the template, Σf
u is the (large) covariance of an outlier to the template,

and λi ∈ {1, 0} indicates a pixel is an inlier or an outlier, respectively, to the
template. In this paper we use expectation-maximization to perform inference
with this model, though other methods, such as RANSAC could be used.

3.3 Learning the Linear Optical Flow Templates

We learn the optical flow templates
(
Wk, Σ

v
uk, Σ

f
uk, p (λk)

)
for each kth environ-

ment type from videos collected during robot motion using the method of [6], an
expectation-maximization algorithm. To compute sparse optical flow input to the
learning method we use the pyramidal Lucas-Kanade tracker [26] in OpenCV.

We apply the method independently to videos captured separately in each
known environment type, with unknown camera velocity. Learning multiple op-
tical flow templates in an unsupervised manner, from arbitrary video with un-
known environment type labels, is part of our ongoing work.
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4 Inferring the Environment Type

As described in the introduction, we infer which discrete path shape class best
explains the image intensity changes and image gradients using approximate
Bayesian model selections over the learned linear optical flow templates. Infer-
ence directly from image gradients and intensity changes is greatly preferable
to first extracting optical flow because optical flow is an under-constrained and
computationally-intensive problem in the absence of top-down information, in
part due to the aperture problem. The optical flow templates provide top-down
information, reducing the problem down to optimizing only a handful of latent
variables (their dimensionality q ranges from 3 to 6 in our experiments).

Ideally, the posterior distribution over the environment type kt at time t
conditioned on measuring the previous and current frames, It,t−1, would be
obtained by marginalizing out the unknown latent variables ykt and indicator
variables λkt,

p (kt |It,t−1) =

ˆ

ykt

∑
λkt

p (kt, ykt, λkt |It,t−1)

∝
ˆ

ykt

∑
λkt

p (It |ykt, λkt, kt, It−1) p (ykt) p (λkt) p (kt) (5)

where we assume p (kt) to be a categorical, i.e. constant-probability, prior over
the environment types. In practice, though, this marginalization is intractable, so
we introduce several approximations, as described in the following sub-sections.

4.1 Expected Log-likelihood Approximation

In practice, we replace the sum over the latent variable assignments with an
expected log-likelihood formulation from an expectation-maximization (EM) al-
gorithm [27]. The true sum over λkt in Eq. 5 is an intractable sum over all
possible combinations of inlier assignments for all pixels. We first replace this
sum with a lower-bound from EM by approximating Eq. 5 as

p (kt |It,t−1) ≈
ˆ

ykt

p (It |ykt, 〈λkt〉 , kt, It−1) p (〈λkt〉) p (ykt) p (kt) , (6)

where 〈λkti〉 ∈ [0, 1] is the expectation of the inlier indicator. We evaluate the
terms involving this expectation using their expected log-likelihoods,

p (It |ykt, 〈λkt〉 , kt, It−1) =

exp
∑
i

(〈λkti〉 L (Iti |ykt, λkti=1, kt, It−1)+ 〈1− λkti〉 L (Iti |ykt, λkti=0, kt, It−1)) ,

(7)
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where L (·) ∆
= log p (·) + C is a log-likelihood. Using a similar scheme,

p (〈λkt〉) = exp
∑
i

(L (λk=1) 〈λkti〉+ L (λk=0) 〈1− λkti〉) (8)

In practice, we find these lower bounds to be suitable approximations for the
purpose of model selection.

Using EM, the expectation 〈λkti〉 is evaluated as

〈λkti〉 ≡ p (λkti=1 |ykt, kt, It,t−1,i)

=
p (Iti |ykt, kt, It−1,i) p (λit)|λit=1∑

λit={1,0}
p (Iti |ykt, kt, It−1,i) p (λit)

. (9)

4.2 Integrating out Optical Flow

In order to perform inference directly on image gradients without first computing
optical flow, and thereby evaluate the likelihood p (Iti |ykt, λkti, kt, It−1) that
appears in Eq. 7, we marginalize out the unknown optical flow,

p (Iti |ykt, kt, It−1) =

ˆ

uti

p (Iti |uti, It−1) p (uti |ykt, kt) . (10)

An issue is that the image is nonlinear so Eq. 10 cannot be evaluated ex-
actly in closed-form. Instead, we approximate it with a Gaussian centered at
the maximum-likelihood estimate (MLE) of the latent variables. To find the
MLE we perform nonlinear Gauss-Newton optimization. We start with an ini-
tial guess of the latent variables

◦
yt, which induces

◦
ut ≡ Vk

◦
ykt signifying the

optical flow predicted according to the template given the latent variable esti-
mate. Let xi ∈ R2 be the image location at the ith pixel location. Linearizing
the image by computing the spatial gradient ∇Iti at each ith image location, we
define the image likelihood p (It |ut) as a probabilistic version of the brightness
constancy constraint from classical optical flow estimation,

p (Iti |δuti, It−1) ≈ N (It−1(xi −
◦
uti)−∇Itiδuti, σI), (11)

where δuti ≡ uti−
◦
uti, σI is the standard deviation of a small amount of Gaussian

noise on the image intensity, and where I (x) is the image intensity at the pixel
coordinates x. In practice we evaluate the image intensity by resampling with a
Gaussian kernel because in general the pixel locations are non-integral.

Marginalizing out the optical flow in Eq. 10 is then done in closed-form using
this Gaussian-approximated image-likelihood in Eq. 11 and the expected log-
likelihood approximation from Eq. 7,

p (It |yt, kt, It−1) ∝ exp
−1
2

∑
i

J2
ti

(
Iti −∇ItiVkiδykt

)2
, (12)
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where Iti
∆
= Iti − It−1

(
xi −

◦
uti

)
and

J2
ti

∆
= 〈λkti〉

(
ItiΣ

v
uI

T
ti + σv

I
)−1

+ 〈1− λkti〉
(
ItiΣ

f
uI

T
ti + σf

I
)−1

is the precision on the spatial image gradient with the flow uti marginalized out,
and δyt ≡ yt −

◦
yt. In the quantity ∇ItiVkiδykt in Eq. 12, the term ∇ItiVki is

the image Jacobian w.r.t. the latent variables, analogous to the Jacobian images
w.r.t. camera motion described in more detail in [28].

We iteratively update the latent variable estimate
◦
yt with the increment δyt,

until at convergence it becomes the final center of the Gaussian approximation
of Eq. 12.

4.3 Computing the Environment Type Marginal

Finally, after approximating the marginal over the inlier indicator variables with
the expected log-likelihoods in Eqs. 7 and 10, and approximating the image
probability in Eq. 7 as a marginal Gaussian centered around the MLE of the
latent variables ykt (with the flow ut marginalized out) in Eq. 12, we can write
the environment type marginal as

p (kt |It,t−1) ∝

ˆ
ykt

p (It |ykt, kt, It−1) p (ykt)

 p (λkt) p (kt) (13)

where each component likelihood is either constant or Gaussian. The integral is
over the joint Gaussian p (It |ykt, kt, It−1) p (ykt) ≡ p (It, ykt |kt, It−1),

p (It, ykt |kt, It−1) ∝ exp
−1
2

(∑
i

J2
ti

(
Iti −∇ItiVkiδykt

)2
+
∥∥∥◦
ykt + δykt

∥∥∥2
)
(14)

Interestingly, while integrating out the latent variable increment δyky using
Gaussian elimination would result in the marginal p (It |kt, It−1) having a dense,
intractable I×I information matrix, the structure of the joint Gaussian in Eq. 14
leads to an efficient factorization of the marginal using the Schur complement.
To do this, note that the log of Eq. 14 can be written as

−1
2

 δyktIt
1

T Aq×q BT
q×I

◦
ykt

BI×q DI×I 0I×1
◦
yTkt 01×I

◦
yTkt

◦
ykt

 δyktIt
1

 (15)

where A, B, and D are

A
q×q

∆
= Iq×q +

∑
i J

2
tiV

T
ki∇ITti∇ItiVki

B
I×q

∆
=

−J
2
t1∇It1V1

−J2
t2∇It2V2

...

 D
I×I

∆
=

J
2
t1

J2
t2

. . .

 (16)
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Using the Schur complement, the information matrix ΛI , information vector ηI ,
and constant term fI of the marginal p (It |kt, It−1) are

ΛI = D −BA−1BT, ηI = −BA−1 ◦
ykt, fI =

◦
yTkt
(
I−A−1

) ◦
ykt (17)

To compute the normalizing constant of the resulting Gaussian, the determi-
nant of the information matrix can be calculated efficiently using the matrix
determinant lemma,

|ΛI | = det
(
A−BTD−1B

)
detA−1 detD (18)

Combining Eqs. 17 and 18, the marginal image likelihood is

p (It |kt, It−1) = (2π)
−I
2 |ΛI |

1
2 exp

−1
2

(
ITt ΛIIt + ITt ηI + fI

)
(19)

where It is the vector of all Iti concatenated together for all image locations i.
Importantly, with the above factorization evaluating the environment type

marginal in Eq. 13 is computationally efficient. This is because in Eq. 19 neither
the products with the dense I × I information matrix ΛI nor the determinant
|ΛI | written need to be calculated directly. Instead Eqs. 17 and 18 evaluate them
efficiently due to the diagonal form of D, the small width q of B, and the small
size q× q of A. Here q is the length of the latent variable vector yt, which in our
experiments is on the order of q ≈ 5.

The last piece required to evaluate the environment type marginal in Eq. 13
is to normalize it by dividing by the sum of the evaluated likelihoods of Eq. 13
for each kt.

5 Experimental Results

In this section we provide experimental evidence to support the claims that a)
our method efficiently classifies between multiple coarse path shapes and b) that
to accomplish this it is important to use information from image motion instead
of image appearance, to capture differences in structure. To support these claims
we perform a quantitative evaluation and comparison with a classifier using
Gist features. Please see the end of this section for implementation details and
parameters.

All datasets contain vibration, yawing, and side-to-side motions of the plat-
form, which violate the ideal linearity described in Section 3, but fit the approx-
imate linearity and are thus handled by our method.

5.1 Quantitative Evaluation

We learned linear optical flow templates for the environments exemplified by
the top row of thumbnails of Figure 2, and performed inference on the envi-
ronments exemplified by the left column of thumbnails. For the first three envi-
ronments, the coarse environment shapes are similar between the training and
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(a) Our method, model selection over lin-
ear optical flow templates (overall accu-
racy 74.7%)
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(b) Neural network classifier using Gist
features (overall accuracy 67.3%)

Fig. 2: Confusion matrices showing classification results of our method and a
neural network classifier using Gist features. The images are representative of
each environment type in the training and testing datasets. Our higher accu-
racy on ‘left wall’, ‘right wall’, and ‘walkway’ highlight our use of image motion
information versus image appearance. Gist’s higher accuracy in differentiating
between ‘left curve’ and ‘right curve’ is due to the appearance similarity between
the training and testing sets, which were taken on two different floors of the same
building. The image motion information, on the other hand, is subtle in these
two environments because the hallway curvature is gentle.
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Fig. 3: Classification accuracy for linear optical flow templates learned with var-
ious numbers of basis flows, i.e. latent variable dimensionalities q, learned and
evaluated with the same datasets as in Figure 2.
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testing datasets, but there are differences such as the height of the wall and
distance to it varying. Additionally, the texture and image appearance is quite
different. The last 2 environment types are left and right curving hallways (which
we consider two different discrete types) with the same curvature. Texture and
appearance differ less between training and testing sets in the curved hallways,
they are from different building floors. The distance from the robot to the wall
varies with side-to-side motions and yawing motions in all videos, and there is
also camera vibration. We empirically selected to learn templates with q = 3
basis flows as this provided the highest accuracy.

Figure 2 shows the confusion matrices for our method and a neural network
classifier using Gist features. The Gist features were computed by the software1
accompanying [18]. We selected the subset of Gist features suggested by [18], and
trained a neural network with 200 and 100 node hidden layers for 500 epochs
(verifying that error on a holdout set did not increase during training) using
Weka [29].

Figure 3 shows the classification accuracy on the same evaluation set for mod-
els learned with various numbers of basis flows, i.e. latent variable dimensionality
q.

Our higher accuracy on ‘left wall’, ‘right wall’, and ‘walkway’ highlights our
use of image motion information versus image appearance. Gist’s higher accuracy
in differentiating between ‘left curve’ and ‘right curve’ is due to the appearance
similarity between the training and testing sets, which were taken on two dif-
ferent floors of the same building. The key point to note is the difference in
the accuracy of the Gist feature classifier when the training and evaluation im-
ages appear similar versus when they appear different. When appearance differs,
the accuracy of Gist decreases, where the accuracy of our method remains the
approximately the same.

5.2 Implementation Details and Parameters

All datasets were collected from a 640×480 30HzUnibrain Fire-i camera mounted
on a wheeled platform. The free parameters of our method are the standard de-
viation of the image intensity noise for inlier and outlier pixels, for which we
used σv

I = 1
255 and σf

I = 5
255 , both in normalized grayscale units, and the per-

pixel inlier prior, p (λkti=1) = 0.95. The optical flow covariances Σv
k and Σf

k are
learned from the data as part of the templates.

In our implementation, we perform the optimization in Section 4.2 at multiple
scales, creating a Gaussian-resampled pyramid both of the images and the basis
flows, and initializing the optimization at each level from the next smaller one.
The smallest level is initialized with ykt = 0. We initialize all indicator expec-
tations with 〈λkti〉 = 1. We perform the optimization using the Gauss-Newton
method.

Additionally, it is not necessary to perform inference up to the largest pyra-
mid level. In our experiments we stop at level 3, corresponding to 80×60 images
1 Available from http://ilab.usc.edu/siagian/Research/Gist/Gist.html

http://ilab.usc.edu/siagian/Research/Gist/Gist.html
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and basis flows scaled down from the original 640 × 480. Additionally, for op-
timization and inference (i.e. in all ranges over i in Section 4), we sample only
every other pixel, meaning that for the same image size, 1200 pixels are sampled
at the largest pyramid level. With these parameters our single-threaded research
implementation operates at approximately 15Hz on a 2.2GHz Intel Core i7 lap-
top.

Our method is highly parallelizable, in that the optimization and likelihood
computation described in Section 4 may be performed independently and in par-
allel for each template. Also the image filtering operations such as gradient com-
putations, resampling, and differencing may be threaded or even implemented
on DSP, FPGA, or GPU hardware [30].

6 Summary

In this paper we presented a method for classifying coarse environment shape
from image motion. To do this classification, the method performs approximate
model selection over a collection of linear optical flow templates. Each template
encodes a coarse environment shape, by means of a set of basis flows spanning
the subspace of optical flow fields that a moving platform may observe in that
environment, under the assumption of per-pixel depth constancy over time. The
input is a video stream, and the output is a set of likelihoods for each frame
that the image change from the previous frame is explained by each linear opti-
cal flow template. Inference takes place directly on spatial image gradients, not
requiring optical flow to be computed first. Our results show that our method
classifies between training and evaluation datasets whose corresponding environ-
ment types are similar in large-scale structure but different in appearance and
contain outliers like passing objects.
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