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Abstract

Controlling dynamical systems in uncertain environments is fundamental and essential
in several fields, ranging from robotics, healthcare to economics and finance. In these
applications, the required tasks can be modeled as continuous-time, continuous-space
stochastic optimal control problems. Moreover, risk management is an important
requirement of such problems to guarantee safety during the execution of control
policies. However, even in the simplest version, finding closed-form or exact algorith-
mic solutions for stochastic optimal control problems is computationally challenging.

The main contribution of this thesis is the development of theoretical foundations,
and provably-correct and efficient sampling-based algorithms to solve stochastic op-
timal control problems in the presence of complex risk constraints.

In the first part of the thesis, we consider the mentioned problems without risk
constraints. We propose a novel algorithm called the incremental Markov Decision
Process (iMDP) to compute incrementally any-time control policies that approximate
arbitrarily well an optimal policy in terms of the expected cost. The main idea
is to generate a sequence of finite discretizations of the original problem through
random sampling of the state space. At each iteration, the discretized problem is a
Markov Decision Process that serves as an incrementally refined model of the original
problem. We show that the iMDP algorithm guarantees asymptotic optimality while
maintaining low computational and space complexity.

In the second part of the thesis, we consider risk constraints that are expressed as
either bounded trajectory performance or bounded probabilities of failure. For the
former, we present the first extended iMDP algorithm to approximate arbitrarily well
an optimal feedback policy of the constrained problem. For the latter, we present
a martingale approach that diffuses a risk constraint into a martingale to construct
time-consistent control policies. The martingale stands for the level of risk tolerance
that is contingent on available information over time. By augmenting the system
dynamics with the martingale, the original risk-constrained problem is transformed
into a stochastic target problem. We present the second extended iMDP algorithm
to approximate arbitrarily well an optimal feedback policy of the original problem
by sampling in the augmented state space and computing proper boundary values
for the reformulated problem. In both cases, sequences of policies returned from the
extended algorithms are both probabilistically sound and asymptotically optimal.
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The effectiveness of these algorithms is demonstrated on robot motion planning
and control problems in cluttered environments in the presence of process noise.

Thesis Supervisor: Emilio Frazzoli
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Stochastic optimal control is a subfield of control theory that considers mathematical
models with uncertainty in the control process. The goal of stochastic optimal control
is to design feedback policies that perform desired tasks with minimum costs despite
the presence of noises. Historically, mathematical models used in stochastic optimal
control are often derived for engineering systems such as mechanical systems. Due to
their abstraction, these models are also applied for problems in other domains such
as mathematical economics [1,2] and mathematical finance [3]. Therefore, stochastic
optimal control has been studied extensively by several research communities, and
each community focuses on different theoretical and implementation aspects of the
field. Researchers also find applications of stochastic optimal control in diverse fields
ranging from robotics [4], biology [5], healthcare [6] to management science, economics
and finance [7, 8].

In this thesis, we primarily focus on applications of stochastic optimal control
in robotics, especially the problem of robot motion planning and control. In recent
years, several advanced autonomous systems have been built to operate in uncertain
environments such as Mars rovers for planetary missions [9], autonomous cars pro-
viding urban mobility on demand [10, 11], and small aerial vehicles operating in the
presence of stochastic wind [12]. In many of these applications, the systems oper-
ate in worlds that are inherently continuous in time and space under a continuous
control space. Moreover, we are often concerned with several aspects of the control
process. For example, in Mars exploration missions, we want that a Mars rover de-
parts from an origin to reach a destination with minimum energy and at the same
time minimizes the risk of failure. Therefore, in this thesis, we consider a broad class
of continuous-time, continuous-space stochastic optimal control problems that may
contain additional complex constraints. We aim to provide a generic sampling-based
approach to construct incremental solutions for the mentioned problems.

1.1 Stochastic Optimal Control

Informally speaking, given a system with dynamics specified by a controlled diffusion
process with a state space and a control space that describe an operating environment
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and available controls, a stochastic optimal control problem is to find an optimal
feedback policy to minimize the expected cost-to-go known as an objective function.
The resulting objective function evaluated at an optimal feedback policy is called an
optimal cost-to-go function or a value function. In certain applications of interest, we
can also have risk constraints that are expressed as bounded trajectory performance or
bounded probabilities of failure. A large body of literature is devoted to characterize
and provide numerical and algorithmic solutions to these problems and their related
versions from multiple perspectives, which will be briefly described in this section.

Optimal solution characterization

The control community has concentrated on characterizing optimal solutions to stochas-
tic control problems. Since 1950, a variety of different approaches to stochastic op-
timal control have been investigated. Arguably, dynamic programming proposed by
Bellman in 1957 [13] is one of the most well-known approaches. The dynamic pro-
gramming principle provides a proper way to relate time-t optimal value function to
any later time-τ optimal value function. Bellman’s principle of optimality leads to
nonlinear partial differential equations (PDEs) of second order, known as Hamilton-
Jacobi-Bellman (HJB) equations, whose solutions, if exist, are shown to be the value
functions of control problems.

Following Bellman, several works focus on finding conditions under which HJB
equations have solutions (see survey in [14–18]). Establishing such conditions of-
ten limits the class of problems that can be handled by the dynamic programming
approach [19]. In particular, these conditions allow value functions to be smooth
enough so that they satisfy HJB equations in the classical or usual sense. However,
in practice, value functions are often not smooth enough to be classical solutions. On
the other hand, there are many functions other than value functions satisfying HJB
equations almost everywhere.

Thus, intensive research efforts have focused on new solution concepts that allow
for non-smooth value functions. Since 1983, viscosity solutions have gained popularity
as an alternative and natural solution concept for HJB equations [17, 20]. Viscosity
solutions are a weak formulation of solutions to HJB equations that enables us to
continue the dynamic programming approach. For a large class of optimal control
problems, the value function is the unique viscosity solution of the associated HJB
equation. However, for several problems with complex constraints, deriving the asso-
ciated HJB equations from the dynamic programming principle encounters technical
difficulties related to the measurable selection argument. Recently, in 2011, an ap-
proach called weak dynamic programming was proposed by Bouchard and Touzi [21]
to derive HJB equations and find viscosity solutions that can avoid measurability
issues. As shown in the authors’ very recent works, the weak dynamic programming
approach enables us to establish the HJB equation for a broader class of interesting
problems with terminal state constraints [22–26].

Indeed, deriving HJB equations for different classes of problems is still an on-going
and active research topic. While deriving HJB equations is the utmost research goal
for characterizing classical or viscosity optimal solutions, computing a solution of a
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stochastic optimal control problem in an efficient way is a crucial research question
in practice. In the following, we discuss the computational complexity and methods
to solve stochastic control problems.

Computational complexity

Unfortunately, general continuous-time, continuous-space problems do not admit
closed-form or exact algorithmic solutions and are known to be computationally chal-
lenging (see, e.g., [27–31]). Problems with closed-form solutions such as the linear
quadratic gaussian (LQG) problem [17,32,33] or Merton’s portfolio problem [34] are
rare. These exceptions are due to special problem structures such as a quadratic value
function for the LQG problem or an optimal constant-fraction investment strategy
for Merton’s portfolio problem.

General continuous time and space problems can be solved approximately by dis-
cretizing time and space [27]. This discretization is used in numerical methods that
solve HJB equations or in the construction of approximating discrete-time finite-state
Markov Decision Processes (MDPs). Discrete-time finite-state MDP problems can be
solved, e.g., by linear programming, in time which increases polynomially in the num-
ber of states. However, to obtain a good approximation, we often need a large number
of states. This leads to the phenomenon called “curse of dimensionality” in which
both required storage space and running time increase exponentially in the dimen-
sion of the space [27]. In practice, discretization is only considered computationally
feasible up to five-dimensional state spaces.

The above result strongly suggests that the complexity of finding asymptotically-
optimal solutions of continuous-time continuous-space stochastic optimal control prob-
lems grows exponentially in the dimension of the state space.

Numerical and algorithmic methods

In the light of the above complexity result, several works have focused on computing
approximate solutions to stochastic optimal control problems. A popular approach
is to compute solutions to HJB equations numerically (see, e.g., [35–37]). However,
for new classes of problems with complex constraints, deriving the HJB equations is
often hard. In addition, for problems such as singular stochastic control and impulsive
control, the HJB equations are in fact a system of partial differential inequalities. The
existence, uniqueness of viscosity solutions and regularity theory for this class of PDEs
are not well understood [38].

Thus, other methods approximate a continuous problem with a single discrete-
time finite-state Markov Decision Process (MDP) [39, 40] without invoking the asso-
ciated HJB equation. When dealing with finite-state MDPs, we can use specialized
algorithms such as policy iteration, value iteration and their parallel versions to find
ε-optimal solutions. The thorough treatment of these algorithms can be found in
the work by Bertsekas and Tsitsiklis [41, 42]. However, having a single MDP to ap-
proximate the continuous problem often looses the fidelity of the original continuous
problem model. Furthermore, assigning ad-hoc transition probabilities on the MDP
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can lead to inconsistent approximation. The method described below, pioneered by
Kushner and Dupuis, addresses several drawbacks of the previous methods.

For the last three decades, Kushner, Dupuis, and their colleagues have devel-
oped a powerful method called Markov chain approximation (see, e.g., [43, 44] and
references therein) to compute numerically value functions of a wide spectrum of
stochastic optimal control problems. Conceptually, the Markov chain approximation
method constructs a sequence of MDPs to consistently approximate the underly-
ing continuous dynamics. This probabilistic approach, which relies on the theory
of weak convergence [45–47], offers several advantages. First, the method does not
require smooth value functions and does not derive the associated HJB equations.
This advantage is significant for problems where the PDE theory for the associated
HJB equations is difficult to tackle. Second, the method uses physical insights of the
systems to construct the approximation. Interesting, given an elliptic PDE, it is pos-
sible to construct reversely an artificial stochastic dynamics for the equation [24,44].
Hence, Markov chain approximation is a probabilistic method to compute solutions
of elliptic equations as well. Third, the method provides a mild sufficient condition,
called local consistency, to construct consistent approximations. As local consistency
can be constructed easily in most cases, it is also straightforward to implement the
method.

Thus far, the above methods can be classified as deterministic methods. As dis-
cussed above, due to discretization, the complexity these deterministic algorithms,
however, scales exponentially with the dimension of the state and control spaces.
Moreover, the above algorithms require global strategies to devise such a priori dis-
cretization, which becomes difficult to manage and automate for high dimensional
state spaces. For robotics applications where the state spaces are often unstructured
due to cluttered environments or even unknown and dynamic, such global strategies
are undesirable.

Remarkably, as noted in [27,48,49], algorithms based on random (or quasi-random)
sampling of the state space, also known as sampling-based algorithms, provide a possi-
bility to alleviate the curse of dimensionality when the control inputs take values from
a finite set. Nevertheless, designing sampling-based algorithms for stochastic optimal
control remains largely unexplored. At the same time, sampling-based algorithms can
also be traced back to research in (deterministic) motion planning [50–52] in robotics
and related disciplines such as computational biology, computer animation [53–58].
This field of research has been conducted in parallel with the stochastic optimal con-
trol research in the last three decades. In the following section, we will review the
development of the field, which will shed light on a better method for discretization.

1.2 Robot Motion Planning

As robots become an integral part of industry and daily life, the (deterministic) robot
motion planning problem has received much attention from the robotics and automa-
tion research community. Given a robot with continuous-time dynamics operating
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in a noise-free environment, an initial state in a continuous configuration space.1, a
set of goal states, the robot motion planning problem is to find a sequence of feasible
control inputs to drive the system from the initial state to one of the goal states and
at the same time avoid collision with obstacles (see, e.g., [52, 59, 60] and references
therein). The optimal version of the problem called optimal motion planning seeks
for a feasible solution that minimizes some performance measure. These problems,
which can be cast as (deterministic) (optimal) control problems, have mathematical
formulations that are closely related to the stochastic optimal control formulations
considered in this thesis.

The motion planning problem is known to be computationally hard, and the
basic version called the generalized piano movers is proven to be PSPACE–hard2 in
the dimension of the configuration space by Reif in 1979 [61]. In addition, in 1988,
Canny showed that computing the shortest path in a three-dimensional Euclidean
space populated with obstacles is NP–hard in the number of obstacles [62]. Therefore,
the optimal motion planning is computationally challenging even when the dimension
of the configuration space is fixed. As the optimal motion planning problem can be
thought as a“stochastic” optimal control problem with negligible noise magnitude,
these results further assert the computational challenges involved in solving stochastic
optimal control problems.

The PSPACE and NP complexity classes make complete and exact algorithms
for motion planning, which return a valid solution in finite time, if one exists, and
failure otherwise, unsuitable for practical usage [63–65]. The first practical approach
called cell decomposition methods [66] provides resolution completeness, which means
a valid solution, if one exists, is returned when the resolution parameters are set fine
enough. The second practical approach called potential fields [67] provides complete
solutions by using appropriate navigation functions. Although the two approaches
can be applied to problems with state spaces of up-to five dimensions, cell decom-
position methods suffer from the curse of dimensionality due to the large number
of cells and difficult cell management [68], and potential field methods suffer from
local minima [69]. More importantly, all previously mentioned methods require an
explicit representation of the obstacles in the configuration space for the construction
of solutions. Hence, these methods are not suitable for high dimensional state spaces
and environments with a large number of obstacles.

Sampling-based algorithms

Therefore, to overcome the above difficulties, a class of sampling-based algorithms
for the motion planing problem have been studied since the 1990s [50, 70–75]. The
main advantage of these algorithms is to avoid such an explicit representation of
obstacles in the configuration space by using feasibility tests of candidate trajectories.
This leads to significant computational savings for problems with high dimensional

1The configuration space of a robot is identical to the state space if the robot is purely kinematic.
2PSPACE complexity class includes decision problems for which answers can be found with

memory which are polynomial in the size of the input. The run time is not constrained. It is
believed that NP class is proper subset of PSPACE class.

17



state spaces in cluttered environments. Instead of providing completeness guarantees,
these algorithms provide probabilistic completeness in the sense that the probability
of failing to return a solution, if one exits, decays to zero as the number of samples
approaches infinity [76–83].

One of the first and most popular sampling-based algorithms is the Probabilistic
RoadMap (PRM) algorithm proposed by Kavraki et al. [50,77]. The PRM algorithm
first constructs an a priori graph, known as the roadmap, representing a rich set of
collision-free trajectories and then answers multiple online queries by computing the
shortest paths that connect initial states and final states through the roadmap.

While the PRM algorithm is suitable for environments such as factory floors where
the roadmap is needed to build once, most applications only require a single query as
the robot moves from one environment to another unknown environment. Moreover,
computing the roadmap a priori may be computationally demanding. Thus, an
incremental sampling-based algorithm called the Rapidly-Exploring Random Tree
(RRT) were proposed by LaValle and Kuffner to avoid the need to specify a priori
samples and tailored for single-query motion planning applications [51,84,85].

The RRT algorithm constructs a tree-based structure connecting an initial state
to a goal region, which efficiently searches non-convex high dimensional search spaces.
The algorithm is designed to determine (i) which node of the tree needs to be ex-
panded, and (ii) in which direction the tree should explores. To achieve this, the
algorithm picks a random configuration state and chooses a node in the tree to ex-
pand that is closest to the random state in terms of a Euclidean distance. Then,
from the closest expanding node, the algorithm simulates the robot dynamics under
some control inputs towards the random state so that the extended node is as close as
possible to the random state. If the resulting trajectory is collision-free, it is feasible
and added to the tree. As a result, the RRT algorithm chooses an expanding node
that is proportional to the size of its Voronoi region and tends to grow towards large
unsearched areas.

Several variants of the RRT algorithm have been studied extensively [78, 85–92]
and shown to work very well for systems with nonlinear differential dynamics [71,78].
The algorithm has also been implemented on several robotic platforms [10, 93–96].
We emphasize that besides avoiding an explicit representation of obstacles in the
configuration space, the RRT algorithm has a very simple scheme to manage its data
structure in a large search space.

Sampling-based RRT-like algorithms can be implemented efficiently using the
following primitive procedures of reduced complexity: random sampling, k-nearest
neighbors search, local steering, collion-checking, and local node processing. Although
the specific implementation of these primitive procedures in different RRT-like algo-
rithms may differ slightly, the overall structure of these algorithms remain the same.
Recent work by Bialkowski et at. [97–100] exploits the interconnection of these prim-
itive procedures to optimize and significantly reduce the running time of RRT-like
algorithms.

Despite practical successes of the RRT algorithm, the quality of the returned path
and insights into the structure of constructed trees received little attention before a
recent work by Karaman and Frazzoli in 2011 [52]. In this work, the authors have
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shown that the RRT algorithm fails to converge to optimal solutions with probabil-
ity one and have also proposed the RRT∗ algorithm which guarantees almost-sure
convergence to globally optimal solutions. The RRT∗ algorithm “rewires” the tree
as it discovers new lower-cost paths reaching the nodes that are already in the tree.
It is shown that the asymptotic computational complexity of the RRT∗ algorithm is
essentially the same as that of RRTs. The authors analyze the problem using tools in
the theory of random geometric graphs, which provides better understanding of the
structure of random trees.

The theory of random geometric graphs is rich (see, e.g., [101–106]). Random
geometric graphs are defined as stochastic collections of points in the metric space
connected by edges when certain conditions are met. Depending on the conditions to
connect edges, we have different random graph models. For instance, when an edge
is formed if the distance between the two points is bounded by a positive constant,
we have Gilbert’s disc model [101]. Another popular model called k-nearest neighbor
graph considers edges between k nearest neighbors [103]. A remarkable result in this
field certifies that when k = O(log n) where n is the number of points, the resulting
graph is connected asymptotically almost surely and thus has optimal shortest paths
in the limit as the number of points approaches infinity. This result is sharp in the
sense that fewer connections than this rate are almost surely sub-optimal.

It turns out that the above result plays a significant role in analyzing the RRT∗

algorithm. From the analysis in [52], it is clear that the success of RRT∗ algorithm
for online robotic optimal motion planning applications in cluttered environments are
due to two main features of the algorithm. First, the construction of random trees and
the processing of optimal cost can be handled locally for each newly added sample.
Second, despite that local processing, desirable global properties such as connectivity
and optimality are still guaranteed in a suitable probabilistic sense. From the above
discussion, we observe that constructing such random graphs and random trees in
RRT-like algorithms is a randomized method to perform incremental discretization
or cell decomposition of the configuration space. This observation suggests that ran-
domized methods would offer similar benefits in handling stochastic optimal control
problems.

Nevertheless, RRT-like algorithms are not suitable for the purpose of stochastic
optimal control. In particular, RRT-like algorithms compute open-loop plans in the
obstacle-free space, and during the execution phase, the robot must perform exact
point-to-point steering to traverse from an initial state to a goal region. Hence, these
algorithms are not aware of inherent uncertainty in system dynamics even when the
robot constantly re-plans after being out of its open-loop plans due to the underlying
process noise. Therefore, we need a new data structure to handle noise process
directly.

In this thesis, using the Markov chain approximation method [43] and the rapidly-
exploring sampling technique [51], we introduce a novel sampling-based algorithm
called the incremental Markov Decision Process (iMDP) to approximately solve a
wide class of stochastic optimal control problems. Unlike exploring trees in RRT-like
algorithms, the iMDP algorithm uses a sequence of Markov Decision Processes to
address the difficulty caused by process noise. The details of the iMDP algorithm
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will be presented in Chapter 3.

1.3 Risk Management

Risk management in stochastic optimal control has also received extensive attention
by researchers in several fields. Broadly speaking, risk can be defined as a situa-
tion involving exposure to danger. In practice, we are often concerned with several
additional requirements of control policies when minimizing an objective function.
For example, trajectory performance requirements such as fuel consumption require-
ments on autonomous cars, stealthiness requirements for aircraft, thermal control
requirements on spacecraft (e.g., to avoid long exposure of radiators to the Sun), and
bounded collision probability are critical and must be respected while minimizing the
time to execute a task. Controlled systems are considered to be in risky situations
when these requirements are not met. Thus, we refer to theserequirements as risk
constraints.

In this thesis, we consider risk constraints that are expressed as either bounded
trajectory performance, which has the same structure as the objective function, or
bounded probability of failure. The mathematical formulation of these constraints will
be presented in Chapters 4 and 5 respectively. In the following, we briefly review the
literature of constrained stochastic optimal control problems from multiple research
communities.

Bounded trajectory performance

The management science community has focused on bounded trajectory performance
constraints for discrete-time, finite-state MDP problems that arise from new technol-
ogy management and production management. The considered bounded trajectory
performance constraints also have the same structure as the objective function with
possibly different discount factors. In [107,108], Feinberg and Shwartz consider these
problems when constraints are applied for particular initial states. Thus, optimal
control policies depend on the initial state. For this class of problems, the authors
characterize optimal policies as a class of nonstationary randomized policies. In par-
ticular, if a feasible policy exists, then there exists an optimal policy which is station-
ary deterministic from some steps onward and randomized Markov before this step,
but the number of randomized decisions is bounded by the number of constraints.
The authors further argue that this class of nonstationary randomized policies is the
simplest optimal policies for constrained stochastic optimal control problems with
different discount factors.

A mixed linear-integer programming is also proposed to find this class of optimal
policies [107, 108]. Thus, a possible method to solve continuous-time continuous-
space stochastic optimal control in the presence of bounded trajectory performance
constraints is to discretize these problems in both time and space. However, due to a
large number of states and a large number of integer variables, this approach presents
enormous computational challenges.
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In this work, we enforce bounded trajectory performance constraints for all sub-
trajectories. This formulation imposes a stronger requirement for control policies
and allow us to extend the iMDP algorithm to find anytime stationary deterministic
policies, which are suitable for practical applications. The details of the extended
iMDP algorithm for this class of constrained stochastic control problems are presented
in Chapter 4.

Bounded probabilities of failure

In robotics, a common risk management problem is formulated as chance-constrained
optimization [75,109–113]. Historically, chance constraints specify that starting from
a given initial state, the time-0 probability of success must be above a given threshold
where success means reaching goal areas safely. Alternatively, we call these constraints
risk constraints (as done in this thesis) if we concern more about failure probabili-
ties. For critical applications such as self-driving cars and robotic surgery, regulatory
authorities can impose a threshold of failure probability during operation of these
systems. Thus, finding control policies that fully respect this type of constraint is
important in practice.

Despite intensive work done to solve this problem over the last 20 years, de-
signing computationally efficient algorithms that respect chance constraints for sys-
tems with continuous-time dynamics is still an open question. The Lagrangian ap-
proach [32,114,115] is a possible method for solving the mentioned constrained opti-
mization. However, this approach requires numerical procedures to compute Lagrange
multipliers before obtaining a policy, which is often computationally demanding for
high dimensional systems.

In another approach (see, e.g., [75, 112, 113, 116, 117]), most previous works use
discrete-time multi-stage formulations to model this problem. In these modified for-
mulations, failure is defined as collision with convex obstacles which can be repre-
sented as a set of linear inequalities. Probabilities of safety for states at different
time instants as well as for the entire path are pre-specified by users. The proposed
algorithms to solve these formulations often involve two main steps. In the first step,
these algorithms often use heuristic [116] or iterative [117] risk allocation procedures
to identify the tightness of different constraints. In the second step, the formulations
with identified active constraints can be solved using mixed integer-linear program-
ming with possible assistance of particle sampling [109] and linear programming re-
laxation [110]. Computing risk allocation fully is computationally intensive. Thus, in
more recent works [75, 112, 113], the authors make use of the RRT and RRT∗ algo-
rithms to build tree data structures that also store incremental approximate allocated
risks at tree nodes. Based on the RRT∗ algorithm, the authors have proposed the
Chance-Constrained-RRT∗ (CC-RRT∗) algorithm that would provide asymptotically-
optimal and probabilistically-feasible trajectories for linear Gaussian systems subject
to process noise, localization error, and uncertain environmental constraints. In ad-
dition, the authors have also proposed a new objective function that allows users to
trade-off between minimizing path duration and risk-averse behavior by adjusting the
weights of these additive components in the objective function.
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We note that the modified formulations in the above approach do not preserve
well the intended guarantees of the original chance constraint formulation that spec-
ifies the bounded probability of failure from time-0 for only a particular initial state.
In addition, although the recent developed algorithms can provide asymptotically-
optimal and probabilistically-feasible trajectories, the approach requires the direct
representation of convex obstacles into the formulations, which limits its use in prac-
tice. Solving the resulting mixed integer-linear programming when there is a large
number of obstacles is computationally demanding. The proposed algorithms are also
over-conservative due to loose union bounds when performing the risk allocation pro-
cedure. To counter these conservative bounds, CC-RRT∗ constructs more aggressive
trajectories by adjusting the weights of the path duration and risk-averse components
in the objective function. As a result, it is hard to automate the selection of trajectory
behaviors.

Moreover, specifying in advance probabilities of safety for states at different time
instants and for the entire path can lead to policies that have irrational behaviors
due inconsistent risk preference over time. This phenomenon is known as time-
inconsistency of control policies. For example, when we execute a control policy
returned by one of the proposed algorithms, due to noise, the system can be in an
area surrounded by obstacles at some later time t, it would be safer if the controller
takes into account this situation and increases the required probability of safety at
time t to encourage careful maneuvers. Similarly, if the system enters an obstacle-
free area, the controller can reduce the probability of safety at time t to encourage
more aggressive maneuvers. Therefore, to maintain time-consistency of control poli-
cies, the controller should adjust safety probabilities that are contingent on available
information along the controlled trajectory.

In other related works [118–120], several authors have proposed new formula-
tions in which the objective functions and constraints are evaluated using (differ-
ent) single-period risk metrics. However, these formulations again lead to potential
inconsistent behaviors as risk preferences change in an irrational manner between
periods [121]. Recently, in [111], the authors used Markov dynamic time-consistent
risk measures [122–124] to assess the risk of future cost stream in a consistent man-
ner and established a dynamic programming equation for this modified formulation.
The resulting dynamic programming equation has functionals over the state space as
control variables. When the state space is continuous, the control space has inifinite
dimensionality, and therefore, solving the dynamic programming equation in this case
is computational challenging.

In mathematical finance, closely-related problems have been studied in the context
of hedging with portfolio constraints where constraints on terminal states are enforced
almost surely (a.s), yielding so-called stochastic target problems [21–25]. Research
in this field focuses on deriving HJB equations for this class of problems. Recent
analytical tools such as weak dynamic programming [21] and geometric dynamic
programming [125, 126] have been developed to achieve this goal. These tools allow
us to derive HJB equations and find viscosity solutions for a larger class of problems
while avoiding measurability issues.

In this thesis, we consider the above stochastic optimal control problems with risk
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constraints that are expressed in terms of time-0 bounded probabilities of failure for
particular initial states. As we will show in Chapter 5, we present a martingale ap-
proach to solve these problems such that obtained control policies are time-consistent
with the initial threshold of failure probability. The martingale approach enables
us to transform a risk-constrained problem into a stochastic target problem. The
martingale represents the consistent variation of risk tolerance that is contingent on
available information over time. The iMDP algorithm is then extended to compute
anytime policies for the original constrained problem. It turns out that returned poli-
cies by the extended iMDP algorithm belong to a class of randomized policies in the
original control policy space.

1.4 Statement of Contributions

The main contribution of this thesis is the development of theoretical foundations, and
provably-correct and efficient sampling-based algorithms to solve continuous-time,
continuous-space stochastic optimal control problems in the presence of complex risk
constraints.

More specifically, the contributions of this thesis are listed as follows. In the first
part of the thesis, we consider the mentioned problems without risk constraints. We
propose a novel algorithm called the incremental Markov Decision Process (iMDP)
to compute incrementally any-time control policies that approximate arbitrarily well
an optimal policy in terms of the expected cost.

The main idea is to generate an approximating data structure which is a sequence
of finite discretizations of the original problem through random sampling of the state
space. At each iteration, the discretized problem is a Markov Decision Process that
serves as an incrementally refined model of the original problem. That is, the discrete
MDP is refined by adding new states sampled from the boundary as well as from the
interior of the state space. Subsequently, new stochastic transitions are constructed
to connect the new states to those already in the model. For the sake of efficiency,
stochastic transitions are computed only when needed. Then, an anytime policy
for the refined model is computed using an incremental value iteration algorithm,
based on the value function of the previous model. This process is iterated until
convergence. The policy for the discrete system is finally converted to a policy for
the original continuous problem.

With probability one, we show that:

• The sequence of the optimal value functions for each of the discretized problems
converges uniformly to the optimal value function of the original stochastic
optimal control problem, and

• The original optimal value function can be computed efficiently in an incremen-
tal manner using asynchronous value iterations.

Thus, the proposed algorithm provides an anytime approach to the computation
of optimal control policies of the continuous problem. In fact, the distributions of
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approximating trajectories and control processes returned by the iMDP algorithm
approximate arbitrarily well the distributions of optimal trajectories and optimal
control processes of the continuous problem.

Moreover, each iteration of the iMDP algorithm can be implemented with the time
complexity O(nθ(log n)2) per iteration where the parameter θ belongs to (0, 1], and
n is the number of states in an MDP model in the algorithm which increases linearly
due to our sampling strategy. Therefore, the iMDP algorithm guarantees asymptotic
optimality while maintaining low computational and space complexity. Compared
to the time complexity per iteration O(log n) of RRT and RRT∗, the complexity of
iMDP algorithm is slighly higher in order to handle uncertainty and provide closed-
loop control policies.

The iMDP algorithm provides several benefits for solving stochastic optimal con-
trol problems:

• The iMDP algorithm is an algorithmic method to construct approximate so-
lutions without the need to derive and characterize viscosity solutions of the
associated HJB equations. Hence, the algorithm is suitable for a very broad
class of stochastic control problems where HJB equations are not well under-
stood.

• The underlying probabilistic convergence proof of the Markov chain approxima-
tion method holds true even for complex stochastic dynamics with discontinuity
and jumps. Thus, the iMDP algorithm is capable of handling such complex sys-
tem dynamics.

• As the approximating MDP sequence is constructed incrementally using a collision-
checking test, the iMDP is particularly suitable for online robotics applications
without a priori discretization of the state space in cluttered environments.

• The iMDP algorithm also has an important anytime flavor in its computation.
The algorithm tends to provide a feasible solution quickly, and when additional
computation time is available, the algorithm continues refining the solution.

In the second part of the thesis, we consider risk constraints that are expressed
as either bounded trajectory performance or bounded probabilities of failure. For
bounded trajectory performance constraints, we enforce these constraints for all sub-
trajectories. We extend the iMDP algorithm to approximate arbitrarily well an op-
timal feedback policy of the constrained problem. We show that the sequence of
policies returned from the extended algorithm are both probabilistically sound and
asymptotically optimal.

For bounded failure probability constraints enforced for particular initial states,
we present a martingale approach that diffuses a risk constraint into a martingale to
construct time-consistent control policies. The martingale stands for the level of risk
tolerance over time. By augmenting the system dynamics with the martingale, the
original risk-constrained problem is transformed into a stochastic target problem. We
extend the iMDP algorithm to approximate arbitrarily well an optimal feedback policy
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of the original problem by sampling in the augmented state space and computing
proper boundary values for the reformulated problem. We also show that the sequence
of policies returned from the extended algorithms are both probabilistically sound and
asymptotically optimal in the original control policy space. Furthermore, anytime
control policies in this case are randomized policies.

The effectiveness of the iMDP algorithm and its extended versions is demonstrated
on robot motion planning and control problems in cluttered environments in the
presence of process noise.

Lastly, the final chapter of the thesis points out several important directions for
future research such as parallel and distributed implementation of iMDP algorithms,
stochastic control with logic constraints, novel sampling-based methods to handle
sensor information, and stochastic differential games. The ultimate goal of this re-
search direction is to achieve high degree of autonomy for systems to operate safely
in uncertain and highly dynamic environments with complex mission specifications.

1.5 Outline

This thesis is organized as follows:

• In Chapter 2, we will present preliminary concepts, mathematical definitions
and notations for our discussion in the following chapters. We will introduce
several models for continuous-time stochastic system dynamics and approxi-
mating discrete structures for the continuous dynamics. Well-known results for
these models will be presented for future reference in later chapters.

• In Chapter 3, we will formulate the standard continuous-time continuous-space
stochastic optimal control problem. The incremental Markov Decision Process
(iMDP) algorithm will be presented to provide asymptotically-optimal solutions
using efficient incremental computation. We will also provide detailed analysis
of the iMDP algorithm and present several experimental results to support the
analysis.

• In Chapter 4, we will present a class of stochastic optimal control in the pres-
ence of bounded trajectory performance constraints. This is the first type of
risk constraints that we consider in this thesis. We extend the iMDP algo-
rithm to provide probabilistically-sound and asymptotically-optimal policies in
an anytime manner for this class of constrained problems.

• In Chapter 5, we will consider stochastic optimal control problems subject to
the second type of risk constraints that are formulated as bounded probabilities
of failure. We will introduce a martingale approach to convert these probability
constraints into controlled martingales so that we would instead solve equivalent
stochastic target problems. As a result, we can extend the iMDP algorithm
to provide probabilistically-sound and asymptotically-optimal policies to the
transformed problems. We then convert these policies into anytime policies of
the original constrained problems.
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• Finally, in Chapter 6, we conclude the thesis and present future research direc-
tions.
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Chapter 2

Background and Preliminaries

In this chapter, we first present formal notations and definitions used in thesis. We
then overview important results that lay the foundations to analyze the algorithms
presented in the following chapters. In particular, we will review Brownian motion,
controlled diffusion processes, and random geometric graphs. During our discussion
in the next chapters, we will remind these notations, definitions, and results when
necessary. The details of these materials can be found in [43,104,127,128].

2.1 Basic Definitions and Notations

Convergence

We denote N as the set of natural numbers starting from 1, N0 = N ∪ {0}, and R as
the set of real numbers. Similarly, Rk is the set of k-dimensional real vectors. We also
denote R as the set of extended real numbers, i.e. R = R ∪ {−∞,+∞}. A sequence
on a set X is a mapping from N0 to X, denoted as {xn}∞n=0, where xn ∈ X for each
n ∈ N. Given a metric space X endowed with a metric d, a sequence {xn}∞n=0 ⊂ X is
said to converge if there is a point x ∈ X, denoted as limn→∞ xn, with the following
property: For every ε > 0, there is an integer N such that n ≥ N implies that
d(xn, x) < ε.

A sequence of functions {fn}∞n=1 in which each function fn is a mapping from X to
R converges pointwise to a function f onX if for every x ∈ X, the sequence of numbers
{fn(x)}∞n=0 converges to f(x). A sequence of functions {fn}∞n=1 converges uniformly
to a function f on X if the following sequence {Mn | Mn = supx∈X |fn(x)− f(x)|}∞n=0

converges to 0.

Measurable space

Let X be a set. A σ-algebra A on a set X is a collection of subsets of X that contains
the empty set, the set X itself, and is closed under complement and countable union
of its members. The tuple (X,A) is called a measurable space. Let (X,A) and
(Y,B) be measurable spaces. A function f : X → Y is an A-measurable function if
f−1(B) ∈ A for every B ∈ B. A σ-algebra generated by the function f is defined as
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σ(f) = {f−1(B) | B ∈ B}. Thus, f is A-measurable if σ(f) ⊂ A. When it is clear
from the context, we use A-measurable and measurable interchangeably.

A Borel set is any set in a topological space that can be formed from open sets
through the operations of countable union, countable intersection, and complement.
If S is a topological space, we denote by B(S) the σ-algebra of Borel subsets of S.

Probability space

Let us consider a random experiment E . The sample space Ω of E is a set of all possible
outcomes ω of E . Let F be a σ-algebra on Ω such that (Ω,F) is a measurable space,
then F is an event space of E . A subset A of F is called an event. The complement
of an event A is denoted as Ac. A probability measure P is a mapping from F
to R satisfying the following three axioms: (i) the probability P (A) of an event
A ∈ F occurring is a real number between 0 and 1, (ii) the probability P (Ω) of the
event Ω occurring is 1, and (iii) the probability of any of countably many pairwise
disjoint events ocurring is the sum of the probabilities of the occurrence of each of the
individual events. The tuple (Ω,F , P ) is called a probability space of the experiment
E .

Two events A,B are independent if P (A ∩ B) = P (A)P (B). Two σ-algebras
A,B ⊂ F are independent if for any A ∈ A and B ∈ B, A and B are independent.
A random variable is a measurable function mapping from Ω to R.

The construction of a probability space can be incremental in the following sense.
We say that a probability (Ω′,F ′, P ′) extends another probability space (Ω,F , P ) if
there exists a surjective map π : Ω′ → Ω which is measurable, i.e., π−1(A) ∈ F ′ for
every A ∈ F , and probability preserving, i.e., P ′(π−1(A)) = P (A) for every A ∈
F [129]. An event A in the original probability space is canonically identified with an
event π−1(A) in the extended probability space. Thus, insead of specifying in advance
a probability space having a rich enough structure so that all random variables of
interest can be defined, we can extend a probability space when necessary to define
new random variables. This is a useful probabilistic way of thinking, especially when
we study stochastic processes, so that the sample space Ω can be considered as an
ambient sample space.

Convergence of random variables

Let us consider a probability space (Ω,F , P ). Given a sequence of events {An}∞n=0, we
define lim supn→∞An as ∩∞n=0 ∪∞k=n Ak, i.e., the event that An occurs infinitely often.
In addition, the event lim infn→∞An is defined as ∪∞n=0 ∩∞k=n Ak. The expected value
of a random variable Y is defined as E[Y ] =

∫
Ω
Y dP using the Lebesgue integral.

A sequence of random variables {Yn}∞n=0 converges surely to a random variable
Y if limn→∞ Yn(ω) = Y (ω) for all ω ∈ Ω. A sequence of random variables {Yn}∞n=0

converges almost surely or with probability one (w.p.1) to a random variable Y if
P (ω ∈ Ω | limn→∞ Yn(ω) = Y (ω)) = 1. Almost sure convergence of {Yn}∞n=0 to Y is
denoted as Yn

a.s.→ Y .
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We say that a sequence of random variables {Yn}∞n=0 converges in probability to a

random variable Y , denoted as Yn
p→ Y or plimn→∞Yn = Y , if for every ε > 0, we have

limn→∞ P (|Xn−X| ≥ ε) = 0. For every continuous function f(·), if Yn
p→ Y , then we

also have f(Yn)
p→ f(Y ). Moreover, if Yn

p→ Y and Zn
p→ Z, then (Yn, Zn)

p→ (Y, Z).

We say that a sequence of random variables {Yn}∞n=0 converges in distribution to a
random variable Y if limn→∞ Fn(x) = F (x) for every x ∈ R at which F is continuous
where {Fn}∞n=0 and F are the associated CDFs of {Yn}∞n=0 and Y respectively. We

denote this convergence as Yn
d→ Y . Convergence in distribution is also called weak

convergence. If Yn
d→ Y , then limn→∞ E[f(Yn)] = E[f(Y )] for all bounded continuous

functions f . As a corollary, when {Yn}∞n=0 converges in distribution to 0, and Yn is
bounded for all n, we have limn→∞ E[Yn] = 0 and limn→∞ E[Y 2

n ] = 0, which together

imply limn→∞Var(Yn) = 0. We also have if |Zn − Yn|
p→ 0 and Yn

d→ Y , we have

Zn
d→ Y .

In addition, an event E(n), which depends on a parameter n, holds asymptotically

almost surely if limn→∞ P (E(n)) = 1. Thus, when Yn
p→ Y , then this implies that

the event Yn = Y happens asymptotically almost surely, i.e. limn→∞ P (Yn = Y ) = 1.

Finally, we say that a sequence of random variables {Yn}∞n=0 converges in rth

mean to a random variable Y , denoted as Yn
r→ Y , if E[|Xn|r] < ∞ for all n, and

limn→∞ E[|Xn −X|r] = 0.

We have the following implications: (i) almost sure convergence or rth mean con-
vergence (r ≥ 1) implies convergence in probability, and (ii) convergence in probability
implies convergence in distribution. The above results still hold for random vectors
in higher dimensional spaces.

Conditional expectation

On a probability space (Ω,F , P ), let A ∈ F be an event such that P (A) > 0.
The conditional probability of an event B given the event A, denoted as P (B | A),
is defined as P (B | A) = P (B ∩ A)/P (A). Let Q : F → R such that Q(B) =
P (B | A) then Q is a probability measure on (Ω,F). Conditional expectation of a
random variable X given the event A is defined as E[X | A] =

∫
Ω
XdQ whenever this

integration is well defined. Let 1A : ω → {0, 1} be an indicator function that takes
value 1 if ω ∈ A and 0 otherwise. When E[|X|1A] < ∞, then X is Q-integrable and
E[X | A] = E[X1A]/P (A).

Conditional expectation can also be defined with respect to a σ-algebra and a
random variable. Let G ⊂ F be a sub σ-algebra, the conditional expectation of a
random variable X given G, E[X | G], is the unique G-measurable random variable Z
such that E[X1G] = E[Z1G] for all G ∈ G. Furthermore, a conditional expectation of
a random variable X given a random variable Y is defined as E[X | Y ] = E[X | σ(Y )].

Conditional expectation has following properties. For any two random variable
X, Y , and α, β ∈ R, we have E[αX + βY | G] = αE[X | G] + βE[Y | G]. For
any random variable X, we have E[E[X | G]] = E[X]. When X is G-measurable,
E[X | G] = X. When X and G are independent, which means σ(X) and G are
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independent, then E[X | G] = E[X]. If G1 ⊂ G2 ⊂ F , then E[E[X | G1] | G2] =
E[E[X | G2] | G1] = E[X | G1]. When Y and XY are integrable, X is G-measurable,
then E[XY | G] = XE[Y | G] a.s. If X ≤ Y a.s., then E[X | G] ≤ E[Y | G] a.s.

Stochastic processes

A stochastic process is a collection of random variables indexed by time. That is,
consider any indexing set I ⊂ R, we call {X(t); t ∈ I} a stochastic process on
a probability space (Ω,F , P ) when each X(t) is a random variable for all t ∈ I.
When I = N, {X(t); t ∈ N} a discrete-time stochastic process. When I = [0,∞),
{X(t); t ≥ 0} is a continuous-time stochastic process. Thus, X is a mapping from
I×Ω to R, and X(t, ω) is the value of the process at time t for an outcome ω. Fixing
ω, X(·, ω) is called a sample path for ω. From this perspective, a stochastic process
is a collection of sample paths {X(·, ω) : ω ∈ Ω}. We can suppress ω and refer to the
stochastic process as X(·).

The following notations are handy to refer to several special classes of sample
paths. Let Ck[0, T ] denote the space of continuous sample path functions mapping
from [0, T ] to Rk, and Dk[0, T ] denote the space of those functions from [0, T ] to
Rk that are continuous from the right and have limits from the left. Let Ck[0,∞)
and Dk[0,∞) denote the analogous path spaces on the interval [0,∞) respectively.
Given an open set U on some Euclidean space, let Ck(U) be the set of all real-valued
functions on U that have continuous derivatives up to and including order k.

Filtrations and martingale

In probability theory, filtrations are used to model the sequence of refined information
available over time. Let us consider a probability space (Ω,F , P ). A family of σ-
algebra {Ft; t ≥ 0} is called a filtration on this probability space if Fs ⊂ Ft ⊂ F
for all 0 ≤ s ≤ t. Intuitively, Ft is the collection of events whose occurrence can be
determined up to time t. An Ft-measurable random variable is one whose value can
be determined by time t. If X is any random variable, E[X | Ft] is the “best” estimate
of X (in the sense of least mean square errors) based on information up to time t.

A process {X(t); t ≥ 0}, or simply M(·), is Ft-adapted to the filtration {Ft; t ≥ 0}
if the random variable X(t) is Ft-measurable (i.e. its value is known at time t). We
say that a process M(·) is an Ft-martingale if M(·) is an Ft-adapted process such
that E[|M(t)|] <∞ for all t ≥ 0 and E[M(t+ s) | Ft] = M(t) for all s, t > 0 (i.e. the
current value is the best estimate for future values).

A random variable τ : Ω → [0,∞] is called an Ft-stopping time if the event
{τ ≤ t} ∈ Ft for all t ∈ [0,∞]. If M(·) is an Ft-martingale and τ is a uniformly
bounded Ft-stopping time, the stopped process M(t ∧ τ) is also an Ft-martingale
where t ∧ τ is the minimum of t and τ . Again, when the particular filtration is
obvious, we will suppress the prefix and refer to M(·) and τ as a martingale and a
stopping time.
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Complexity

Let f(n) and g(n) be two functions with domain and range N or R. The function
f(n) is called O(g(n)) if there exists two constants M and n0 such that f(n) ≤Mg(n)
for all n ≥ n0. The function f(n) is called Ω(g(n)) if g(n) is O(f(n)). Finally, the
function f(n) is called Θ(g(n)) if f(n) is both O(g(n)) and Ω(g(n)).

2.2 Probabilistic Models

In this section, we introduce Brownian motion and review controlled diffusion pro-
cesses that are used to model system dynamics in this work. We then present classical
results on the existence and uniqueness of controlled processes in this model.

2.2.1 Brownian motion

Definition 2.2.1 (Brownian motion) Let (Ω,F , P ) be a probability space and {Ft; t ≥
0} be a filtration defined on it. A process {w(t); t ≥ 0} is called an Ft-Wiener process
or an Ft-Brownian motion if it satisfies the following conditions:

a. w(0) = 0 w.p.1.

b. w(t) is Ft-measurable, and σ(w(s)−w(t)) is independent of Ft for all s ≥ t ≥ 0.

c. w(t)− w(s) is a Normal random variable, N(0, ϕ2(s− t)), for all s > t ≥ 0.

d. The sample paths of w(·) are continuous real-valued functions in C[0,∞).

When ϕ = 1, the process is called a standard Brownian motion.

The constructions of an Ft-Brownian motion are described in the book of Karatzas
and Shreve [127]. When the filtration {Ft; t ≥ 0} is actually generated by w(·), i.e.
Ft = σ(w(s) : 0 ≤ s ≤ t), the prefix Ft can be suppressed. In such case, Ft is
the collection of events whose occurrence can be determined from observations of the
Brownian motion w(·) by time t.

Brownian motion defines a probability measure on the space C[0,∞) of continuous
sample paths, called Wiener measure. Formally, a Wiener measure is a mapping from
a σ-algebra F on C[0,∞) to [0, 1] and can be constructed using Carathéodory’s
theorem [127].

In the following discussion, if otherwise noted, we will always consider standard
Brownian motions. Although Brownian sample paths are not differentiable pointwise,
we can interpret their derivative in a distributional sense as follows.

Definition 2.2.2 (Differential of Brownian motion) The differential dw(t) of a
standard Brownian motion is the following limit:

dw(t) = lim
∆t→dt

(
w(t+ ∆t)− w(t)

)
(2.1)
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Since w(t+ ∆t)−w(t) is N(0,∆t), after passing the limit, we have dw(t) is N(0, dt).
For this reason, we have the following identity:(

dw(t)
)2

= dt. (2.2)

It also follows that dt.dw(t) = o(dt), and dt.dt = o(dt). We recognize that dw(t)/dt
is N(0, 1/dt) with infinite variance when dt → 0. In engineering, we refer to the
stochastic process v(t) = dw(t)/dt as white noise.

Finally, Brownian motion can also be defined in multi-dimensional spaces:

Definition 2.2.3 (Multi-dimensional Brownian motion) An m-dimensional Ft-
Brownian motion w(·) is a process

(
w1(·), ..., wm(·)

)
taking values in Rm in which

{wj(·)}mj=1 are m independent Ft-Brownian motions.

Thus, when w(t) is standard, w(t)− w(s) is a multivariate Normal random variable,
N
(
0, (s− t)Im×m

)
, for all s > t ≥ 0 where Im×m is an m by m identity matrix.

Stochastic integration

Let us consider a probability space (Ω,F , P ), and {Ft; t ≥ 0} is a filtration on this
space. A continuous-time stochastic process X(·) is called measurable if {(t, ω) :
X(t, ω) ∈ A} belongs to the product σ-algebra B([0,∞)) × F for any A ⊂ R where
B([0,∞)) is the σ-algebra of Borel subsets of [0,∞). Let Σb(T ) denote the set of
Ft-adapted, measurable, real-valued processes F (·) which are uniformly bounded in
t ∈ [0, T ] and ω ∈ Ω. Let Σb denote those processes defined on [0,∞) that are in
Σb(T ) for each T <∞.

Let w(·) be a standard Ft-Brownian motion and let F be a stochastic process in
Σb, the Itô integration of F (·) against w(·) up to time t is a stochastic process Y (·)
denoted as:

Y (t) =

∫ t

0

F (τ)dw(τ).

The above integral is formally defined via simple functions in Σb. The details of this
construction are in the book of Karatzas and Shreve [127].

Let f(·) be an Ft-adapted Lebesgue-integrable stochastic process, we call a process
x(·) an Itô process if its value evolves over time as follows:

x(t) = x(0) +

∫ t

0

f(τ)dτ +

∫ t

0

F (τ)dw(τ). (2.3)

The above equation can be written equivalently as:

dx(t) = f(t)dt+ F (t)dw(t). (2.4)

Since dw(t)/dt is interpreted as white noise, the above equation models the process
x(·) with a drift component specified by f(·) and an additive noise magnified by F (·).
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We often need to compute a stochastic process that is a function of an Itô process
using the following lemma:

Lemma 2.2.4 (Itô lemma) Let w(·) be a standard Brownian motion, and x(·) is
a process satisfying dx(t) = f(t)dt + F (t)dw(t) where f is adapted and Lebesgue-
integrable, and F ∈ Σb. For any function g ∈ C2(R), we have:

g(x(t)) = g(x(0)) +
∫ t

0
gx(x(s))f(s)ds+

∫ t
0
gx(x(s))F (s)dw(s) + 1

2

∫ t
0
gxx(x(s))F 2(s)ds, (2.5)

which can be symbolically written as:

dg(x(t)) =
[
gx(x(t))f(t) +

1

2
gxx(x(t))F 2(t)

]
dt+ gx(x(t))F (t)dw(t), (2.6)

where gx and gxx are the first and second derivatives of g.

The above lemma extends naturally to higher dimensions. Let us consider an
n-dimensional vector of adapted and Lebesgue-integrable process f(·), an n × m
matrix Itô-integrable process F (·), an m-dimensional Brownian motion w(·), then
dx(t) = f(t)dt+ F (t)dw(t) is an n-dimensional Itô process where:

dxj(t) = fj(t)dt+
m∑
k=1

Fj,k(t)dwk(t).

For g : Rn → Rp, the Itô lemma becomes:

dg(x(t)) =

[
∂gT (x(t))

∂x
f(t) +

1

2
Tr

(
F (t)F T (t)

∂2g(x(t))

(∂x)2

)]
dt+

∂gT (x(t))

∂x
F (t)dw(t),

where the gradient ∂g/∂x and Hessian ∂2g/(∂x)2 are evaluated at x(t).

Importantly, we have the following well-known martingale representation theorem
to relate a martingale and an Itô integral.

Theorem 2.2.5 (Martingale representation theorem) Suppose M(·) is an Ft-
martingale where {Ft; t ≥ 0} is the filtration generated by the m-dimensional standard
Brownian motion w(·). If E[M(t)2] < ∞ for all t, then there exists a unique m-
dimensional adapted stochastic process, φ(·) such that

M(t) = M(0) +

∫ t

0

φTs dw(t).

That is, every martingale is an initial condition plus an Itô integral with respect to
the driving Brownian motion.
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2.2.2 Controlled diffusion processes

When f(·) and F (·) are functions of the stochastic process x(·), we have a stochastic
differential equation (SDE):

dx(t) = f(x(t))dt+ F (x(t))dw(t).

In this work, we further consider those f(·) and F (·) functions that depend on external
control variables in stochastic optimal control problems. Such models are called
controlled diffusion processes.

Formally, let (Ω,F , P ) be a probability space. On this probability space, we
define a filtration {Ft; t ≥ 0} and an dw-dimensional Ft-Brownian motion. Let U be
a compact subset of Rdu , and let u(·) be a U -valued, measurable process also defined
on the same probability space. The control process u(·) is called non-anticipative
with respect to the Brownian process w(·) if u(·) is also Ft-adapted. In such case, we
say u(·) is admissible with respect to w(·) or the pair (u(·), w(·)) is admissible. Let
S be a bounded subset of Rn, and let f : S × U → Rdx and F : S × U → Rdx×dw

are bounded measurable and continuous functions. We consider a controlled diffusion
process x(·) of the form:

dx(t) = f(x(t), u(t))dt+ F (x(t), u(t))dw(t). (2.7)

Given a control process u(·), a solution x(·) that solves Eq. (2.7) satisfies:

x(t) = x(0) +

∫ t

0

f(x(τ), u(τ))dτ +

∫ t

0

F (x(τ), u(τ))dw(τ). (2.8)

In Eq. (2.7), f(·, ·) is called a drift vector, and F (·, ·)F T (·, ·) is called a diffusion
matrix. We refer to F (·, ·) as a dispersion matrix. Roughly speaking, given u(·), f(·, ·),
and F (·, ·), the process x(·) satisfies the following “local” properties for small time
∆t:

E[x(t+ ∆t)− x(t) | x(t)] ≈ f(x(t), u(t))∆t,

Cov[x(t+ ∆t)− x(t) | x(t)] ≈ F (x(t), u(t))F T (x(t), u(t))∆t.

It turns out that these local properties are important and useful to construct con-
sistent approximation of Eq. (2.7) as we will present in Chapter 3. In the following,
we discuss different solution concepts, the existence and uniqueness of solutions to
Eq. (2.7), and regularity conditions on f and F to have such solutions.

Definition 2.2.6 (Strong existence and uniqueness) We say that strong exis-
tence of a solution holds for Eq. (2.7) if given a probability space (Ω,F , P ), a filtration
{Ft; t ≥ 0}, an Ft-Brownian motion w(·), an Ft-adapted control process u(·), and an
F0-measurable initial condition x(0), then an Ft-adapted process x(t) exists satisfying
Eq. (2.8) for all t > 0.
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Let xi(·), i = 1, 2 that solve Eq. (2.7). We say that strong uniqueness holds if

P (x1(0) = x2(0)) = 1⇒ P (x1(t) = x2(t) ∀t > 0) = 1.

Definition 2.2.7 (Weak existence and uniqueness) Let Γ be the sample path
space of admissible pairs (u(·), w(·)). Suppose we are given probability distributions
Λ and P0 on Γ and on S respectively. We say that a solution of (2.7) exists in the
weak sense if there exists a probability space (Ω,F , P ), a filtration {Ft; t ≥ 0}, an
Ft-Brownian motion w(·), an Ft-adapted control process u(·), and an Ft-adapted pro-
cess x(·) satisfying Eq. (2.8), such that Λ and P0 are the distributions of (u(·), w(·))
and x(0) under P . We call such tuple {(Ω,F , P ),Ft, w(·), u(·), x(·)} a weak sense
solution of Eq. (2.7).

Assume that we are given weak sense solutions {(Ωi,Fi, Pi),Ft,i, wi(·), ui(·), xi(·)},
i = 1, 2 to Eq. (3.1). We say solutions are weakly unique if equality of the joint dis-
tributions of (wi(·), ui(·), xi(0)) under Pi, i = 1, 2, implies the equality of the distri-
butions (xi(·), wi(·), ui(·), xi(0)) under Pi, i = 1, 2.

Intuitively, strong existence requires that the probability space, filtration, and
Brownian motion are given a priori, and the solution then be found for the given data.
Weak existence, on the other hand, allows these objects to be constructed together
with the solution. Strong uniqueness is also called pathwise uniqueness, and weak
uniqueness is also called uniqueness in the sense of probability distribution. Thus,
strong existence and uniqueness imply weak existence and uniqueness. Moreover,
weak existence and strong uniqueness together imply strong existence [127].

Several works have investigated regularity conditions for drift vectors and disper-
sion matrices to guarantee the existence and uniqueness of strong and weak solu-
tions [127,128]. In particular, the following results are useful in this thesis.

Theorem 2.2.8 (Conditions for strong uniqueness, see Theorem 5.2.5 in
[127]) Let us consider functions f(·, ·) and F (·, ·) that are locally Lipschitz-continuous
in the space variable, i.e., for every integer n ≥ 1, there exists Kn ∈ (0,∞) such that

||f(x, u)− f(y, u)||+ ||F (x, u)− F (y, u)|| ≤ Kn||x− y||

for all ||x|| ≤ n, ||y|| ≤ n, and u ∈ U . Then strong uniqueness holds for Eq. (2.7).

We require a stronger condition so that strong existence holds.

Theorem 2.2.9 (Conditions for strong existence, see Theorem 3.1 in [43]
and Theorem 5.2.9 in [127]) Let us consider functions f(·, ·) and F (·, ·) that are
globally Lipschitz-continuous in the space variable, i.e. there exists K ∈ (0,∞) such
that

||f(x, u)− f(y, u)||+ ||F (x, u)− F (y, u)|| ≤ K||x− y||

for all x, y ∈ S, and u ∈ U . Then for every deterministic initial condition x(0),
Eq. (2.7) has a strong solution x(·).
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Furthermore, if f(·, ·) and F (·, ·) have linear growth in the space variable:

||f(x, u)||2 + ||F (x, u)||2 ≤ K2(1 + ||x||2), ∀ x, y ∈ Rdx , u ∈ U,

and the initial distribution of x(0) is such that E[||x(0)||2] ≤ ∞, then Eq. (2.7) has a
strong solution x(·) for this initial (random) initial condition x(0). In both cases, a
strong solution is also unique in the strong sense due to Theorem 2.2.8.

The weak existence and uniqueness concepts allow for a more general class of drift
vectors and dispersion matrices in controlled diffusion models.

Theorem 2.2.10 (Conditions for weak uniqueness and existence, see The-
orems 5.3.10 and 5.4.22 in [127]) When f(·, ·) and F (·, ·) are uniformly bounded,
measurable, continuous functions, and the initial distribution of x(0) is such that
E[||x(0)||2] ≤ ∞, then Eq. (2.7) has a weak solution that is unique in the weak sense.

The boundedness requirement is naturally satisfied in many applications and is also
needed for the implementation of the proposed Markov approximation method. These
conditions can be relaxed significantly to allow for drift with discontinuity in the work
of Kushner and Dupuis [43] when x(·) takes values in a bounded set. We will provide
the details of these conditions in Chapter 3.

Remarkably, Kushner and Dupuis have shown that weak solutions that are unique
in the weak sense and certain local properties are sufficient for the convergence of
approximating solutions when solving stochastic optimal control problems [43]. We
will present this important result in Section 3.2.

2.2.3 Geometric dynamic programming

We consider the controlled diffusion process in S ⊂ Rdx in the previous subsection:

dx(t) = f(x(t), u(t))dt+ F (x(t), u(t))dw(t).

In a stochastic target problem, we want to steer the process x(·) to a given stochastic
target set G ⊂ Rdx at time T by appropriately choosing a control process u(·). The
reachability set V (t) at time t is a set of all values of x(t) such that x(T ) ∈ G almost
surely for some admissible control process u(·):

V (t) = {z ∈ Rdx | x(t) = z ∧ x(T ) ∈ G a.s. for some admissible u(·)}. (2.9)

Historically, the evolution of reachability sets can be characterized by the geometric
flows of their boundaries (see [130] and references therein). The following theorem,
called geometric dynamic programming proposed and proven by Soner and Touzi,
provides a stochastic representation for the evolution.
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Theorem 2.2.11 (Geometric dynamic programming, see Theorem 3.1 in
[130]) Let τ ≥ t be a stopping time. Then, we can relate V (t) with V (τ) as follows:

V (t) = {z ∈ Rdx | x(t) = z ∧ x(τ) ∈ V (τ) a.s. for some admissible u(·)}. (2.10)

The relation in Eq. (2.10) resembles Bellman’s dynamic programming principle for
optimality, and hence the name. Intuitively, the principle asserts that a trajectory
starting from a state in a time-t reachability set V (t) will almost surely pass through
any later time-τ reachability set V (τ) to reach the target set G.

We further assume that reachability sets have the following monotonicity property:

Assumption 2.2.12 (Monotonicity property, see [24]) Let us consider a spe-
cial case when x(t) has two components x(t) = (y, q) where y ∈ Rdx−1 and q ∈ R.
We say a reachability set V (t) is monotonically increasing in q if x(t) = (y, q) ∈ V (t)
implies x′(t) = (y, q′) ∈ V (t) for all q′ > q.

Then, we define γ : [0,∞)× Rdx−1 → R as the infimum of the q component such
that x(t) belongs to the reachability set V (t):

γ(t, y) = inf{ q ∈ R | (y, q) ∈ V (t) }. (2.11)

Under the monotonicity property, the geometric dynamic programming principle leads
to the following results.

Theorem 2.2.13 (see [24]) When reachability sets V (t) are monotonically increas-
ing in q, let τ > t be a stopping time, we have:

• If q > γ(t, y), then there exists an admissible control u(·) that drives the process
x(·) from x(t) = (y, q) such that

q(τ) ≥ γ(τ, y(τ))

happens almost surely.

• If q < γ(t, y), then for all admissible control u(·), starting from x(t) = (y, q),
we have:

P
(
q(τ) > γ(τ, y(τ)

)
< 1.

In other words, there is no control process u(·) that will drive the process x(t) to
reach the reachability set V (τ), in full probability, when x(·) starts from a state x(t)
outside of the reachability set V (t) where t < τ .

2.2.4 Markov chains

A Markov chain is a discrete stochastic process {Xi; i ∈ N} with the property that
given the present, future values are independent of the past:

P (Xi+1 = xi+1 | Xi = xi, Xi−1 = xi−1, ..., X0 = x0) = P (Xi+1 = xi+1 | Xi = xi).
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We denote P (Xi+1 = xi+1 | Xi = xi) shortly as p(xi, xi+1). A Markov chain takes
value in a state space S, i.e. Xi ∈ S. A state x ∈ S is called an absorbing state if

p(x, y) =

{
1, if x = y.

0, otherwise.

Definition 2.2.14 (Absorbing Markov chain) An absorbing Markov chain {Xi; i ∈
N} is a Markov chain that has at least one absorbing state and every non-absorbing
state can reach an absorbing state in finitely many steps.

Starting from X0 = x0, a process {Xi; i ∈ N} is called absorbed if there is an index
i such that Xi hits an absorbing state.

Theorem 2.2.15 (Probability of Absorption, see [131]) In an absorbing Markov
chain {Xi; i ∈ N}, the probability that the processes will be absorbed is 1. That is,
for any two non-absorbing states x and y:

lim
i→∞

P (Xi = y | X0 = x) = 0.

Thus, regardless of initial states, an absorbing Markov chain will reach an absorbing
state eventually almost surely.

2.3 K-Nearest Neighbor Graphs

Random geometric graphs are defined as a collection of points in a metric space where
edges are connected pairwise when certain conditions satisfied [101–104, 132, 133]. A
useful random graph model, called k-nearest neighbor (kNN) graphs, considers edges
between k nearest neighbors as defined below.

Definition 2.3.1 (Random k-nearest neighbor graph) Let d, k, n ∈ N. A ran-
dom k-nearest neighbor graph Gnear(n, k) in a bounded set S ⊂ Rd is a graph with n
vertices {X1, X2, ..., Xn} that are independent and uniformly distributed random vari-
able in S such that (Xi, Xj), i 6= j, is an edge if Xj is among the k nearest neighbors
of Xi or vice versa.

We also have directed kNN graphs that are similarly defined:

Definition 2.3.2 (Random directed k-nearest neighbor graph) Let d, k, n ∈
N. A random k-nearest neighbor graph

−→
Gnear(n, k) in a bounded set S ⊂ Rd is a

graph with n vertices {X1, X2, ..., Xn} that are independent and uniformly distributed
random variable in S such that (Xi, Xj), i 6= j, is a directed edge from Xi to Xj if
Xj is among the k nearest neighbors of Xi.

Many works in the literature consider random kNN graphs with vertices generated
from a homogeneous Poisson point process. In particular, a Poisson random variable

Poisson(λ) with intensity λ takes value in N0 such that P (Poisson(λ) = k) =
e−λλk

k!
.
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The mean of Poisson(λ) is λ. A homogeneous Poisson point process of intensity λ
in Rd is a random countable set of points Pdλ ⊂ Rd such that, for any measurable set
S1, S2 ⊂ Rd and S1 ∩ S2 = ∅, the number of points of Pdλ in each set are independent
Poisson variables, i.e., |Pdλ ∩S1| = Poisson(λµ(S1)) and |Pdλ ∩S2| = Poisson(λµ(S2))
where µ is the Lebesgue measure on Rd. The main advantage of the Poisson point
process is independence among counting random variables of disjoint subsets, which
makes the proofs of claims on random kNN graphs much easier and more elegant. In
contrast, when the number of points is given a priori, such independence property
does not hold. The following Lemma relates the homogeneous Poisson point process
with a set of independently and uniformly sampled points in S.

Lemma 2.3.3 (Restricted homogeneous Poisson point process [134]) We con-
sider {Xi}i∈N as a sequence of points which are sampled independently and uniformly
from a set S ⊂ Rd. Let Poisson(n) with intensity n, then {X1, X2, ..., XPoisson(n)} is
the restriction to S of a homogeneous Poisson point process with intensity n/µ(S).

We thus denote by Gnear(Poisson(n), k) and
−→
Gnear(Poisson(n), k) as random kNN

graphs and random directed kNN graphs with vertices {X1, X2, ..., XPoisson(n)}.
A connected graph is a graph in which there is a path connecting any two vertices.

Connectivity is an important property of random kNN graphs. The following theorem
asserts a condition for connectivity in random kNN graphs.

Theorem 2.3.4 (Connectivity of random kNN graphs, see [133] and [103])

Let Gnear(Poisson(n), k) and
−→
Gnear(Poisson(n), k) be a random kNN graph and a

random directed kNN graph in S ⊂ R2 having vertices generated by a homogeneous
Poisson point process with intensity n/µ(S). Then, there exists a constant ac2 > 0
and a constant ~ac2 > 0 such that:

i. lim
n→∞

P ({Gnear(Poisson(n), ba log(n)c) is connected }) =

{
1, if a ≥ ac2.

0, otherwise.

ii. lim
n→∞

P ({
−→
Gnear(Poisson(n), ba log(n)c) is connected }) =

{
1, if a ≥ ~ac2.
0, otherwise.

That is, the connectivity property of random undirected and directed kNN graphs
exhibits a phase transition and holds almost surely in the limit when edges are formed
among Θ(log(n)) nearest neighbors in a graph with n vectices. The current estimates
for the constant threshold are 0.3043 ≤ ac2 ≤ 0.5139 and 0.7209 ≤ ~ac2 ≤ 0.9967. The
results in Theorem 2.3.4 are also known to hold when the set S is in high dimensional
space (see,e.g., [135]).

We remark that Gnear(Poisson(n), k) and
−→
Gnear(Poisson(n), k) are good approx-

imate models of Gnear(n, k) and
−→
Gnear(n, k) for large n. Thus, we say that in the

limit of n approaching ∞, random undirected and directed kNN graphs Gnear(n, k)

and
−→
Gnear(n, k) are connected asymptotically almost surely if k = Θ(log(n)).
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Chapter 3

Stochastic Optimal Control:
Formulation and Algorithm

In this chapter, we present the standard stochastic optimal control problem without
risk constraints. We describe how the incremental Markov Decision Process (iMDP)
algorithm constructs approximate solutions that are asymptotically-optimal in a suit-
able probabilistic sense. We then present the convergence analysis of the algorithm.
Subsequently, we show experimental results on the robot motion planning and con-
trol problem of reaching a goal region while avoiding collision with obstacles in an
uncertain environment.1

3.1 Problem Formulation

In this section, we first present a generic stochastic optimal control problem formu-
lation. Subsequently, we discuss how the formulation extends the standard motion
planning problem.

Stochastic dynamics

Let dx, du, and dw be positive integers. Let S be a compact subset of Rdx , which is
the closure of its interior So and has a smooth boundary ∂S. Let a compact subset
U of Rdu be a control set. The state of the system at time t is x(t) ∈ S, which is fully
observable at all times.

Suppose that a stochastic process {w(t); t ≥ 0} is a dw-dimensional Brownian
motion on some probability space {Ω,F , P}. We define {Ft; t ≥ 0} as the augmented
filtration generated by the Brownian motion w(·). Let a control process {u(t); t ≥ 0}
be a U -valued, measurable stochastic process also defined on the same probability
space such that the pair (u(·), w(·)) is admissible [136]. Let the set of all such control
processes be U . Let Rdx×dw denote the set of all dx by dw real matrices. We consider

1Part of the presented materials in this chapter have appeared in our previous papers [136,137].
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systems with dynamics described by a controlled diffusion process:

dx(t) = f(x(t), u(t)) dt+ F (x(t), u(t)) dw(t),∀t ≥ 0 (3.1)

where f : S × U → Rdx and F : S × U → Rdx×dw are bounded measurable and
continuous functions as long as x(t) ∈ So. The initial state x(0) is a random vector
in S. We also assume that the matrix F (·, ·) has full rank so that the convergence
properties of the proposed algorithm hold as we will see in Theorem 3.2.3.2 By The-
orem 2.2.10, Eq. (3.1) has a unique weak sense solution. The continuity requirement
of f and F can be relaxed with mild assumptions [43, 136] such that we still have a
unique weak solution of Eq. (3.1) [127]. We will present these relaxed conditions in
Section 3.2.

Policy and cost-to-go function

Markov controls are admissible controls that depend only on the current state, i.e.,
u(t) is a function only of x(t), for all t ≥ 0. It is well known that in control problems
with full state information, the best Markov control performs as well as the best
admissible control (see, e.g., [127, 128]). A Markov control policy defined on S is
represented by the function µ : S → U . The set of all policies is denoted by Π.
Define the first exit time Tµ : Π→ [0,+∞] under policy µ as

Tµ = inf
{
t : x(t) /∈ So and Eq. (3.1) and u(t) = µ(x(t))

}
.

Intuitively, Tµ is the first time that the trajectory of the dynamical system given by
Eq. (3.1) with u(t) = µ(x(t)) hits the boundary ∂S of S. By definition, Tµ = +∞ if
x(·) never exits So. Clearly, Tµ is a random variable. Then, the expected cost-to-go
function under policy µ is a mapping from S to R defined as

Jµ(z) = E
[∫ Tµ

0

αt g
(
x(t), µ(x(t))

)
dt+ αTµh(x(Tµ))

∣∣ x(0) = z

]
,

where g : S × U → R and h : S → R are bounded measurable and continuous
functions, called the cost rate function and the terminal cost function, respectively,
and α ∈ [0, 1) is the discount rate. We further assume that g(x, u) is uniformly Hölder
continuous in x with exponent 2ρ ∈ (0, 1] for all u ∈ U . That is, there exists some
constant C > 0 such that

|g(x, u)− g(x′, u)| ≤ C||x− x′||2ρ2 , ∀x, x′ ∈ S.

We will address the discontinuity of g and h in Section 3.2.

The optimal cost-to-go function J∗ : S → R is defined in the following optimization

2The full rank requirement of F can be relaxed as discussed on page 279 of [43].
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problem:

OPT 1 : J∗(z) = inf
µ∈Π

Jµ(z) for all z ∈ S. (3.2)

A policy µ∗ is called optimal if Jµ∗ = J∗. For any ε > 0, a policy µ is called an
ε-optimal policy if ||Jµ − J∗||∞ ≤ ε.

We call a sampling-based algorithm asymptotically optimal if the sequence of
solutions returned from the algorithm converges to an optimal solution in probability
as the number of samples approaches infinity. The sequence of solutions returned
from asymptotically-optimal algorithms are thus called asymptotically-optimal.

In this chapter, we consider the problem of computing the optimal cost-to-go func-
tion J∗ and an optimal policy µ∗ if obtainable. Our approach, outlined in Section 3.3,
constructs an approximating discrete data structure for the continuous problem using
an incremental sampling-based algorithm. The algorithm approximates the optimal
cost-to-go function and an optimal policy in an anytime fashion. This sequence of
approximations is guaranteed to converge uniformly in probability to the optimal cost-
to-go function and to find an ε-optimal policy for an arbitrarily small non-negative ε
as the number of samples approaches infinity.

Relationship with the standard motion planning problem

The standard robot motion planning problem of finding a collision-free trajectory that
reaches a goal region for a deterministic dynamical system can be defined as follows
(see, e.g., [52]). Let X ⊂ Rdx be a compact set. Let the open sets Xobs and Xgoal denote
the obstacle region and the goal region, respectively. Define the obstacle-free space
as Xfree := X \ Xobs. Let xinit ∈ Xfree. Consider the deterministic dynamical system
ẋ = f(x(t), u(t)) dt, where f : X × U → Rdx . The feasible motion planning problem
is to find a measurable control input u : [0, T ]→ U such that the resulting trajectory
x(t) is collision free , i.e., x(t) ∈ Xfree and reaches the goal region, i.e., x(T ) ∈ Xgoal.
The optimal motion planning problem is to find a measurable control input u such that
the resulting trajectory x solves the feasible motion planning problem with minium
trajectory cost.

The optimization problem OPT 1 extends the classical motion planning problem
with stochastic dynamics as described by Eq. (3.1). Given a goal set Xgoal and an
obstacle set Xobs, we define a state space S to be

S = X \ (Xgoal ∪ Xobs),

and thus ∂Xgoal ∪ ∂Xobs ∪ ∂X = ∂S. Due to the nature of Brownian motion, under
most policies, there is some non-zero probability that collision with an obstacle set
will occur. However, to penalize collision with obstacles in the control design process,
the cost of terminating by hitting the obstacle set, i.e., h(z) for z ∈ ∂Xobs, can be
made arbitrarily high. Clearly, the higher this number is, the more conservative the
resulting policy will be. Similarly, the terminal cost function on the goal set, i.e., h(z)
for z ∈ ∂Xgoal, can be set to a small value to encourage terminating by hitting the
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goal region.
Nevertheless, setting such cost values does not provide an automatic way to select

control policies that respect certain safety criteria. We thus enforce a constraint that
bounds the probability of collision from an initial state in Chapter 5 to address this
concern. This problem is known as chance-constrained optimization in robotics.

Hamilton-Jacobi-Bellman equation

The stochastic optimal control problem formulated inOPT 1 have been studied widely
in the literature. When the optimal cost-to-go function, or value function, J∗ is
differentiable at least twice, it is well-known that J∗ is a solution of the following
Hamilton-Jacobi-Bellman (HJB) equation:

ln(α)J(x) = inf
u∈U

[
g(x, u) +

∂JT (x)

∂x
f(x, u) +

1

2
Tr

(
F (x, u)F T (x, u)

∂2J(x)

(∂x)2

)]
, ∀x ∈ So, (3.3)

with the boundary condition J(x) = h(x) for x ∈ ∂S. Under the said smoothness
condition, the above HJB equation can be derived from the Bellman’s dynamic pro-
gramming principle and Itô lemma.

Deriving similar equations for a broader class of problems, e.g., those with terminal
state constraints and impulse control, is not always possible, and the optimal cost-
to-go functions are usually not smooth enough to be classical solutions of the HJB
equation. The Markov chain approximation method is a probabilistic approach that
does not rely on deriving and solving HJB equations. In the next section, we present
the main results from the Markov chain approximation method that will be used to
prove the convergence of anytime solutions in our proposed algorithm.

3.2 The Markov Chain Approximation Method

The main idea of the Markov chain approximation method is to approximate the
underlying system dynamics with a sequence of Markov chains such that it maintains
certain local properties that are similar to those of the original system dynamics.
Each Markov chain is defined on a Markov Decision Process (MDP) having an ap-
proximate cost function that is also analogous to the original cost function. Under
very mild conditions, the sequence of optimal cost functions of approximating prob-
lems converges to the original optimal cost function as the approximation parameter
goes to zero. In the following, we discuss this idea in detail.

Approximating Markov Decision Processes

A discrete-state Markov decision process (MDP) is a tuple M = (X,A, P,G,H)
where:

• X is a finite set of states,
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• A is a set of actions that is possibly a continuous space,

• P (· | ·, ·) : X ×X ×A→ R≥0 is a function that denotes the transition probabil-
ities satisfying

∑
ξ′∈X P (ξ′ | ξ, v) = 1 for all ξ ∈ X and all v ∈ A,

• G(·, ·) : X × A→ R is an immediate cost function, and

• H : X → R is a terminal cost function.

If we start at time 0 with a state ξ0 ∈ X, and at time i ≥ 0, we apply an action
vi ∈ A at a state ξi to arrive at a next state ξi+1 according to the transition probability
function P , we have a controlled Markov chain {ξi; i ∈ N}. The chain {ξi; i ∈ N}
due to the control sequence {vi; i ∈ N} and an initial state ξ0 will also be called the
trajectory of M under the said sequence of controls and initial state.

Given a continuous-time dynamical system as described in Eq. (3.1), the Markov
chain approximation method approximates the continuous stochastic dynamics using
a sequence of MDPs {Mn}∞n=0 in which Mn = (Sn, U, Pn, Gn, Hn) where Sn is a
discrete subset of S, and U is the original control set. We define the boundary ∂Sn
of the finite state Sn as:

∂Sn = ∂S ∩ Sn.

For each n ∈ N, let {ξni ; i ∈ N} be a controlled Markov chain on Mn until it hits
∂Sn. We associate with each state z in S a non-negative interpolation interval ∆tn(z),
known as a holding time. We define

tni =
i−1∑

0

∆tn(ξni ) for i ≥ 1 and tn0 = 0,

and
∆ξni = ξni+1 − ξni .

Let uni denote the control used at step i for the controlled Markov chain. In addition,
we define the approximating cost rate and terminal cost functions as:

Gn(z, v) = g(z, v)∆tn(z) and Hn(z) = h(z) for each z ∈ Sn and v ∈ U . (3.4)

A control problem for the MDP Mn is analogous to that defined in Section 3.1.
Similar to previous section, a policy µn is a function that maps each state z ∈ Sn
to a control µn(z) ∈ U . The set of all such policies is Πn. Given a policy µn, the
(discounted) cost-to-go due to µn is:

Jn,µn(z) = EPn

[
In−1∑
i=0

αt
n
i Gn(ξni , µn(ξni )) + αt

n
InHn(ξnIn)

∣∣∣ ξn0 = z

]
, (3.5)

where EPn denotes the conditional expectation under Pn, the sequence {ξni ; i ∈ N}
is the controlled Markov chain under the policy µn, and In is the termination time
defined as In = min{i : ξni ∈ ∂Sn}.
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The optimal cost function, denoted by J∗n : Sn → R, is computed in the following
optimization problem:

M OPT 1 : J∗n(z) = inf
µn∈Πn

Jn,µn(z), ∀z ∈ Sn. (3.6)

An optimal policy, denoted by µ∗n, satisfies Jn,µ∗n(z) = J∗n(z) for all z ∈ Sn. For any
ε > 0, µn is an ε-optimal policy if ||Jn,µn − J∗n||∞ ≤ ε. We call {uni ; i ∈ N} a sequence
of minimizing controls if each control is an output of an ε-optimal policy for some
ε > 0.

We have presented a sequence of MDP problems M OPT 1 that approximates
the dynamics and objective function of the optimization problem OPT 1. Let us
remark that the controlled Markov chains differ from the stochastic dynamical system
described in Section 3.1 in that the former possesses a discrete state structure and
evolves in a discrete time manner while the latter is a continuous model both in terms
of its state space and the evolution of time. Yet, both models possess a continuous
control space. We now relate the optimal cost-to-go J∗n in approximating problems
M OPT 1 to the optimal cost-to-go J∗ of OPT 1.

Previous convergence results

Intuitively, to have an approximating MDP sequence {Mn}∞n=0 that is consistent with
the original continuous-time system dynamics, the MDPs should have similar local
properties to the system dynamics. It turns out that only the mean and covariance
of displacement per step along a Markov chain under any control are required to be
close enough to those of the original dynamics so that desired convergence properties
hold. These conditions are called local consistency conditions as below.

Definition 3.2.1 (Local consistency conditions) Let Ωn be the sample space of
Mn. Holding times ∆tn and transition probabilities Pn are said to be locally consistent
with the dynamics in Eq. (3.1) if they satisfy the following conditions:

1. For all z ∈ S,

lim
n→∞

∆tn(z) = 0, (3.7)

2. For all z ∈ S and all v ∈ U :

lim
n→∞

EPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= f(z, v), (3.8)

lim
n→∞

CovPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= F (z, v)F (z, v)T , (3.9)

lim
n→∞

sup
i∈N,ω∈Ωn

||∆ξni ||2 = 0. (3.10)
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Figure 3-1: An illustration of a continuous-time interpolation of a discrete process
{ξni ; i ∈ N}.

The chain {ξni ; i ∈ N} is a discrete-time process. To show formal convergence
to the continuous-time process x(·) in Eq. (3.1), we use an approximate continuous-
time interpolation of the chain {ξni ; i ∈ N}. In particular, we define the (stochastic)
continuous-time interpolation ξn(·) of the chain {ξni ; i ∈ N} under the holding times
function ∆tn as follows:

ξn(τ) = ξni for all τ ∈ [tni , t
n
i+1).

Let Ddx [0,+∞) denote the set of all Rdx-valued functions that are continuous from
the left and has limits from the right. The process ξn(·) can be thought of as a
random mapping from Ωn to the function space Ddx [0,+∞), and each realization of
ξn(·) is a piece-wise constant function. This interpolation is described in Fig. 3-1.
The continuous-time interpolation un(·) of the control sequence {uni ; i ∈ N} under
the holding times function ∆tn is defined in a similar way:

un(τ) = uni for all τ ∈ [tni , t
n
i+1).

As stated in the following theorem, under mild technical assumptions, local con-
sistency and the existence of a weakly unique solution of Eq. (3.1) together imply the
convergence in distribution of the continuous-time interpolations of the trajectories of
the controlled Markov chains to the trajectories of the stochastic dynamical system
described by Eq. (3.1).

Theorem 3.2.2 (see Theorem 10.4.1 in [43]) Let us assume that f(·, ·) and F (·, ·)
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are measurable, bounded and continuous. Thus, Eq. (3.1) has a weakly unique solu-
tion. Let {Mn}∞n=0 be a sequence of MDPs, and {∆tn}∞n=0 be a sequence of holding
times that are locally consistent with the stochastic dynamical system described by
Eq. (3.1).

Let {uni ; i ∈ N} be a sequence of controls defined for each n ∈ N. For all n ∈ N,
let {ξn(t); t ∈ R≥0} denote the continuous-time interpolation to the chain {ξni ; i ∈
N} under the control sequence {uni ; i ∈ N} starting from an initial state zinit, and
{un(t); t ∈ R≥0} denote the continuous-time interpolation of {uni ; i ∈ N}, according
to the holding time ∆tn.

Then, any subsequence of {(ξn(·), un(·))}∞n=0 has a further subsequence that con-
verges in distribution to some limiting processes (x(·), u(·)) satisfying

x(t) = zinit +

∫ t

0

f(x(τ), u(τ))dτ +

∫ t

0

F (x(τ), u(τ))dw(τ).

Under the weak uniqueness condition for solutions of Eq. (3.1), the approximating
sequence {(ξn(·), un(·))}∞n=0 also converges in distribution to the limiting processes
(x(·), u(·)).

Effectively, Theorem 3.2.2 asserts a powerful result on the quality of approxima-
tion using the discrete-time discrete-state MDP data structure for the continuous-time
continuous-space problem. Since the convergence is in distribution, simpler computa-
tion on discrete-state MDPs would allow us to approximate arbitrarily well the values
of several variables in the continuous-time model. Indeed, a sequence of minimizing
controls of approximating problems M OPT 1 guarantees pointwise convergence of
the cost function to the original optimal cost function of OPT 1 in the following sense.

Theorem 3.2.3 (see Theorem 10.5.2 in [43]) Assume that f(·, ·), F (·, ·), g(·, ·)
and h(·) are measurable, bounded and continuous. Let {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0

and {∆tn}∞n=0 be locally consistent with the system described by Eq. (3.1). For any
trajectory x(·) of the system described by Eq. (3.1), we define the first exit time on
Mn as

τ̂(x) := inf{t : x(t) /∈ So}.

We suppose that the function τ̂(·) is continuous (as a mapping from Ddx [0,+∞) to
the compactified interval [0,+∞]) with probability one relative to the measure induced
by any solution of Eq. (3.1) for an initial state z. This assumption is satisfied when
the matrix F (·, ·)F (·, ·)T is nondegenerate.3

Then, for any z ∈ Sn, the following equation holds:

lim
n→∞

|J∗n(z)− J∗(z)| = 0. (3.11)

In particular, for any z ∈ Sn, for any sequence {εn > 0}∞n=0 such that limn→∞ εn = 0,
and for any sequence of policies {µn}∞n=0 such that µn is an εn-optimal policy of Mn,

3Other conditions on f and F that satisfy this assumption are discussed on page 279 of [43].
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we have:

lim
n→∞

|Jn,µn(z)− J∗(z)| = 0. (3.12)

Moreover, the sequence {tnIn ;n ∈ N} converges in distribution to the termination time
of the optimal control problem for the system in Eq. (3.1) when the system is under
optimal control processes.

Under the assumption that the cost rate g is Hölder continuous [138] with expo-
nent 2ρ, the sequence of optimal value functions J∗n for approximating chains indeed
converges uniformly to J∗ with a proven rate. Let us denote ||b||Sn = supz∈Sn b(x) as
the sup-norm over Sn of a function b with domain containing Sn. Let

ζn = max
z∈Sn

min
z′∈Sn

||z′ − z||2 (3.13)

be the dispersion of Sn. The following theorem asserts the uniform convergence of
the sequence {J∗n}∞n=0 to J∗.

Theorem 3.2.4 (see Theorem 2.3 in [139] and Theorem 2.1 in [140]) Consider
an MDP sequence {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and holding times {∆tn}∞n=0 that
are locally consistent with the system described by Eq. (3.1). Let J∗n be the optimal cost
of Mn. Given the assumptions on the dynamics and cost rate functions in Section
3.1, as n approaches ∞, we have

||J∗n − J∗||Sn = O(ζρn). (3.14)

The details of the proofs for Theorems 3.2.2-3.2.3 can be found in the book of
Kushner and Dupuis [43]. We remark that the proofs are purely probabilistic without
appealing to regularity conditions for the optimal cost-to-go function. Similarly, the
proof of Theorem 3.2.4 also relies on a probabilistic representation of value functions
in terms of controlled Markov chains [140]. These proofs also provide insights into how
to relax conditions on dynamics and cost functions. In particular, the above results
still hold for functions f, F, g, h with discontinuity under mild technical conditions as
below.

Discontinuity of dynamics and objective functions

When the functions f, F, g, and h are discontinuous, the following conditions are
sufficient to use Theorems 3.2.2-3.2.4:

(i) For r to be f, F, g, or h, r(x, u) takes either the form r0(x)+r1(u) or r0(x)r1(u)
where the control dependent terms are continuous and the x-dependent terms are
measurable, and

(ii) f(x, ·), F (x, ·), g(x, ·), and h(x) are nondegenerate for each x, and the set of
discontinuity in x of each function is a uniformly smooth surface of lower dimension.
Furthermore, instead of uniform Hölder continuity, the cost rate g can be relaxed to
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be locally Hölder continuous with exponent 2ρ on S (see, e.g., page 275 in [43] and
page 720 in [140]).

Theorems 3.2.2-3.2.4 assert the asymptotic optimality given a sequence of a priori
discretizations of the state space and the availability of ε-optimal policies. Thus,
we need to solve the optimization problem M OPT 1 for each n ∈ N to obtain
an ε-optimal policy for the MDP Mn. This can be done using the value iteration
or policy iteration algorithms on successive grid discretization of the state space S.
However, solving M OPT 1 repeatedly is computationally challenging due to the
curse of dimensionality, especially when the number of states grows rapidly over
iterations.

In what follows, we describe an algorithm that incrementally computes the optimal
cost-to-go function J∗ and an optimal control policy µ∗ of the continuous problem
without directly computing the optimal cost-to-go function J∗n and optimal policies
µ∗n for each approximating problem.

3.3 Incremental Markov Decision Process (iMDP)

Algorithm

Based on the Markov chain approximation results, the iMDP algorithm incrementally
builds a sequence of discrete MDPs with probability transitions and cost-to-go func-
tions that consistently approximate the original continuous counterparts. Using the
rapidly-exploring sampling technique [51] to sample in the state space, iMDP forms
the structures of finite-state MDPs randomly over iterations. Control sets for states
in these MDPs are constructed or sampled properly in the control space. The algo-
rithm refines the discrete models by using a number of primitive procedures to add
new states into the current approximating model. Finally, the algorithm improves
the quality of discrete-model policies in an iterative manner by effectively using the
computations inherited from the previous iterations.

3.3.1 Primitive procedures

Before presenting the algorithm, some primitive procedures which the algorithm relies
on are presented in this subsection.

Sampling

The procedures Sample() and SampleBoundary() sample states independently and
uniformly from the interior So and the boundary ∂S, respectively. We assume in
this thesis that samples are drawn from a uniform distribution. However, different
distributions, e.g. those with density bounded away from zero on S, can be used.
When the geometric shapes of S and ∂S are complex, we can use rejection sampling
with the help of a feasibility testing procedure.
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Nearest Neighbors

Given z ∈ S and a set Y ⊆ S of states. For any k ∈ N, the procedure Nearest(z, Y, k)
returns the k nearest states z′ ∈ Y that are closest to z in terms of a given distance
function. Many choice of distance functions have been discussed in the work by
LaValle and Kuffner [71]. In this work, we use the Euclidean norm as a distance
function for simplicity.

Time Intervals

Given a state z ∈ S and a number k ∈ N, the procedure ComputeHoldingTime(z, k)
returns a holding time computed as follows:

ComputeHoldingTime(z, k) = γt

(
log k

k

)θςρ/dx
,

where γt > 0 is a constant, and ς, θ are constants in (0, 1) and (0, 1] respectively.4 The
parameter ρ ∈ (0, 0.5] defines the Hölder continuity of the cost rate function g(·, ·) as
in Section 3.1.

Transition Probabilities

Given a state z ∈ S, a subset Y ∈ S, a control v ∈ U , and a positive number τ
describing a holding time, the procedure ComputeTranProb(z, v, τ, Y ) returns

• A finite set Znear ⊂ S of states such that the state z + f(z, v)τ belongs to the
convex hull of Znear and ||z′ − z||2 = O(τ) for all z′ 6= z ∈ Znear, and

• A function p that maps Znear to a non-negative real numbers such that p(·) is a
probability distribution over the support Znear.

It is crucial to ensure that these transition probabilities result in a sequence of
locally consistent chains in the algorithm. There are several ways to construct such
transition probabilities. One possible construction by solving a system of linear equa-
tions can be found in [43]. In particular, we choose

Znear = Nearest(z + f(z, v)τ, Y, s),

where s = Θ(log(|Y |)) so that Znear has about log(|Y |) states. We define the transition
probabilities p : Znear → R≥0 that satisfies:

(i)
∑

z′∈Znear
p(z′)(z′ − z) = f(z, v)τ + o(τ),

(ii)
∑

z′∈Znear
p(z′)(z′ − z)(z′ − z)T = F (z, v)F (z, v)T τ + f(z, v)f(z, v)T τ 2 + o(τ).

(iii)
∑

z′∈Znear
p(z′) = 1.

4Typical values of ς is [0.999,1). The role of this value will be clear in our convergence proofs.
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Figure 3-2: An illustration of transition probability construction. From a state z
(red), we simulate the nominal dynamics (blue arrow) to get a new state z+f(z, v)τ .
The support Znear that contains nodes around z + f(z, v)τ is shaded. Possible tran-
sitions from z to nodes in the support are represented by black arrows. Probabilities
associated with these transitions are computed to satisfy the local consistency condi-
tions.

An alternate way to compute the transition probabilities is to approximate using
local Gaussian distributions. We also choose Znear = Nearest(z + f(z, v)τ, Y, s)
where s = Θ(log(|Y |)). Let Nm,σ(·) denote the density of the (possibly multivariate)
Gaussian distribution with mean m and variance σ. Define the transition probabilities
as follows:

p(z′) =
Nm,σ(z′)∑

y∈Znear
Nm,σ(y)

,

where m = z + f(z, v)τ and σ = F (z, v)F (z, v)T τ . This expression can be evaluated
easily for any fixed v ∈ U . As |Znear| approaches infinity, the above construction
satisfies the local consistency almost surely.

We note that solving a system of linear equations requires computing and han-
dling a matrix of size (d2

x + dx + 1) × |Znear|. In contrast, computing local Gaussian
approximation requires only |Znear| evaluations. Thus, local Gaussian approximation
provides lower time complexity and is the main method to construct locally consistent
transition probabilities in this work.

Figure 3-2 shows an illustration of how the procedure ComputeTranProb constructs
transition probabilities. As we can see, from a state z (red), we simulate the nominal
dynamics (dash blue arrow) to get a new state z+ f(z, v)τ (blue). The support Znear
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that contains nodes around z + f(z, v)τ is shaded, and possible transitions from z to
the support nodes are represented by black arrows. Probabilities associated with these
transitions are computed to satisfy the local consistency conditions as we discussed
above.

Backward Extension

Given T > 0 and two states z, z′ ∈ S, the procedure ExtendBackwards(z, z′, T )
returns a triple (x, v, τ) consisting of a trajectory, a control input, and a final time
such that

• dx(t) = f(x(t), u(t))dt and u(t) = v ∈ U for all t ∈ [0, τ ],

• Final time τ ≤ T , and x(t) ∈ S for all t ∈ [0, τ ],

• x(τ) = z, and x(0) is close to z′,

• {x(t); t ∈ [0, τ)} ⊂ So.

The last condition requires that except the terminal state z, the trajectory x(·) must
remain in the interior of S. If no such trajectory exists, then the procedure returns
failure. We can solve for the triple (x, v, τ) by sampling several controls v and using
a feasibility test to choose the control resulting in a feasible trajectory x(·) with x(0)
that is closest to z′.5

Sampling and Discovering Controls

The procedure ConstructControls(k, z, Y, T ) returns a set of k controls in U . We can
uniformly sample k controls in U . Alternatively, for each state z′ ∈ Nearest(z, Y, k),
we solve for a control v ∈ U such that

• dx(t) = f(x(t), u(t))dt and u(t) = v ∈ U for all t ∈ [0, T ],

• x(t) ∈ So for all t ∈ [0, T ],

• x(0) = z and x(T ) = z′.

Using these primitive procedures, we now describe the iMDP algorithm in detail.

3.3.2 iMDP algorithm description

The iMDP algorithm is given in Algorithm 1. The algorithm incrementally refines a
sequence of (finite-state) MDPsMn = (Sn, U, Pn, Gn, Hn) and the associated holding

5This procedure is used in the algorithm solely for the purpose of inheriting the “rapid explo-
ration” property of the RRT algorithm [51,52]. The feasibility test is similar to the collision-checking
procedure of the RRT algorithm.
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time function ∆tn that consistently approximates the system in Eq. (3.1). In partic-
ular, given a state z ∈ Sn and a holding time ∆tn(z), we can implicitly define the
stage cost function

Gn(z, v) = ∆tn(z)g(z, v)

for all v ∈ U , and the terminal cost function

Hn(z) = h(z).

We also associate with z ∈ Sn a cost value Jn(z), and a control µn(z). We refer to
Jn as a cost value function over Sn. In the following discussion, we describe how to
construct Sn, Pn, Jn, µn over iterations. We note that, in most cases, we only need to
construct and access Pn on demand.

In every iteration of the main loop (Lines 4-12), we sample an additional state
from the boundary of the state space S. We set Jn, µn,∆tn for those states at Line 5.
Subsequently, we also sample a state from the interior of S (Line 6) denoted as zs.
We compute the nearest state znearest, which is already in the current MDP, to the
sampled state (Line 7). The algorithm computes a trajectory that reaches znearest

starting at some state near zs (Line 8) using a control signal unew(0..τ). The new
trajectory is denoted by xnew : [0, τ ] → S and the starting state of the trajectory,
i.e., xnew(0), is denoted by znew. The new state znew is added to the state set, and
the cost value Jn(znew), control µn(znew), and holding time ∆tn(znew) are initialized
at Line 11.

Update of cost value and control

The algorithm updates the cost values and controls of the finer MDP in Lines 13-15.
We perform Ln ≥ 1 value iterations in which we update the new state znew and other
Kn = Θ

(
|Sn|θ

)
states in the state set where Kn < |Sn|. When all states in the MDP

are updated, i.e. Kn+1 = |Sn|, Ln value iterations are implemented in a synchronous
manner. Otherwise, Ln value iterations are implemented in an asynchronous manner.

The set of states to be updated is denoted as Zupdate (Line 13). To update a state
z ∈ Zupdate that is not on the boundary, in the call to the procedure Update (Line 15),
we solve the following Bellman equation:6

Jn(z) = min
v∈U
{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]}, (3.15)

and set µn(z) = v∗(z), where v∗(z) is the minimizing control of the above optimization
problem.

There are several ways to solve Eq. (3.15) over the the continuous control space
U efficiently. If Pn(· | z, v) and g(z, v) are affine functions of v, and U is convex, the
above optimization has a linear objective function and a convex set of constraints.

6Although the argument of Update at Line 15 is Jn, we actually process the previous cost values
Jn−1 due to Line 3. We can implement Line 3 by simply sharing memory for (Sn, Jn, µn,∆tn) and
(Sn−1, Jn−1, µn−1,∆tn−1).
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Algorithm 1: iMDP()

1 (n, S0, J0, µ0,∆t0)← (1, ∅, ∅, ∅, ∅);
2 for n = 1→ N do
3 (Sn, Jn, µn,∆tn)← (Sn−1, Jn−1, µn−1,∆tn−1);

// Add a new state to the boundary

4 zs ← SampleBoundary();
5 (Sn, Jn(zs), µn(zs),∆tn(zs))← (Sn ∪ {zs}, h(zs), null, 0) ;

// Add a new state to the interior

6 zs ← Sample();
7 znearest ← Nearest(zs, Sn, 1);
8 if (xnew, unew, τ)← ExtendBackwards(znearest, zs, T0) then
9 znew ← xnew(0);

10 cost = τg(znew, unew) + ατJn(znearest);
11 (Sn, Jn(znew), µn(znew),∆tn(znew))← (Sn ∪ {znew}, cost, unew, τ) ;

// Perform Ln ≥ 1 (asynchronous) value iterations

12 for i = 1→ Ln do

// Kn = Θ
(
|Sn|θ

)
where

(
0 < θ ≤ 1, Kn < |Sn|

)
13 Zupdate ← Nearest(znew, Sn\∂Sn, Kn) ∪ {znew};
14 for z ∈ Zupdate do
15 Update(z, Sn, Jn, µn,∆tn);

Such problems are widely studied in the literature [141].

More generally, we can uniformly sample the set of controls, called Un, in the
control space U . Hence, we can evaluate the right hand side (RHS) of Eq. (3.15) for
each v ∈ Un to find the best v∗ in Un with the smallest RHS value and thus to update
Jn(z) and µn(z). When limn→∞ |Un| = ∞, we can solve Eq. (3.15) arbitrarily well
(see Theorem 3.4.6).

Thus, it is sufficient to construct the set Un with Θ(log(|Sn|)) controls using the
procedure ConstructControls as described in Algorithm 2 (Line 2). The set Znear

and the transition probability Pn(· | z, v) constructed consistently over the set Znear

are returned from the procedure ComputeTranProb for each v ∈ Un (Line 4). Sub-
sequently, the procedure chooses the best control among the constructed controls to
update Jn(z) and µn(z) (Line 7). We note that in Algorithm 2, before making im-
provement for the cost value at z by comparing new controls, we can re-evaluate the
cost value with the current control µn(z) over the holding time ∆tn(z) by adding the
current control µn(z) to Un. The reason is that the current control may be still the
best control compared to other controls in Un.

The steps of the iMDP algorithms are illustrated in Fig. 3-3 using a motion plan-
ning problem in a two-dimensional state space as an example. We note that in this
example, the state space S includes boundaries of obstacle regions and a goal region.
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Figure 3-3: Steps of the iMDP algorithm.
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Figure 3-4: An illustration of Markov chains over iterations. States on boundary
connect to themselves.

In Fig. 3-4, we show an example of how Markov chains, which are formed by following
best control µn(z) to transit to states in Sn, look like over iterations. States on the
boundary connect to themselves, and these links are not depicted. In the following
analysis, we will characterize the connectivity of these Markov chains.

3.3.3 Complexity of iMDP

The time complexity per iteration of the Algorithms 1-2 is O
(
|Sn|θ(log |Sn|)2

)
where

θ is a parameter in (0, 1]. This is due to Θ(|Sn|θ) states that are updated in each
iteration using Θ(log(|Sn|)) controls and transition probability functions with support
size Θ(log(|Sn|)).

Since we only need to access locally consistent transition probability on demand,
the space complexity of the iMDP algorithm is O(|Sn|). Finally, the size of state
space Sn is |Sn| = Θ(n) due to our sampling strategy.
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Algorithm 2: Update(z ∈ Sn, Sn, Jn, µn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|);
// Sample or discover Cn = Θ(log(|Sn|)) controls

2 Un ← ConstructControls(Cn, z, Sn, τ);
3 for v ∈ Un do
4 (Znear, pn)← ComputeTranProb(z, v, τ, Sn);
5 J ← τg(z, v) + ατ

∑
y∈Znear

pn(y)Jn(y);

6 if J < Jn(z) then
7 (Jn(z), µn(z),∆tn(z))← (J, v, τ, |Sn|);

Algorithm 3: Policy(z ∈ S, n)

1 znearest ← Nearest(z, Sn, 1);

2 return
(
µ(z) = µn(znearest),∆tn(znearest))

The comparison of iMDP with other sampling-based algorithms such as RRT and
RRT∗ is shown in Table 3.1. As we can see, iMDP has the same space complexity as
other algorithms. While iMDP spends a little more time per iteration, the algorithm
can properly handle process noise and provide closed loop control policies.

3.3.4 Feedback control

As we will see in Theorems 3.4.5-3.4.6, the sequence of cost value functions Jn arbi-
trarily approximates the original optimal cost-to-go J∗. Therefore, we can perform
a Bellman update based on the approximated cost-to-go Jn (using the stochastic
continuous-time dynamics) to obtain a policy control for any n. However, we will
discuss in Theorem 3.4.7 that the sequence of µn also approximates arbitrarily well
an optimal control policy. In other words, in the iMDP algorithm, we also incre-
mentally construct an optimal control policy. In the following paragraph, we present

Table 3.1: Comparison of sampling-based algorithms: RRT, RRT∗, iMDP

RRT RRT* iMDP

Iteration Time Complexity
O
(

log n
)

O
(

log n
)

O
(
nθ(log n)2

)
Space Complexity

O(n) O(n) O(n)

Asymptotic Optimality
X X

Handling Process Noise
X

Closed Loop Control
X
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an algorithm that converts a policy of a discrete system to a policy of the original
continuous problem.

Given a level of approximation n ∈ N, the control policy µn generated by the
iMDP algorithm is used for controlling the original system described by Eq. (3.1)
using the procedure given in Algorithm 3. This procedure computes the state in
Mn that is closest to the current state of the original system and applies the control
attached to this closest state over the associated holding time.

3.4 Analysis

In this section, we carry out the detailed convergence analysis of the iMDP algorithm.
The proofs of the presented lemmas and theorems in this section can be found in Sec-
tion 3.6. Throughout our analysis, let us denote

(
Mn = (Sn, U, Pn, Gn, Hn),∆tn, Jn, µn

)
as the MDP, holding times, cost value function, and policy returned by Algorithm 1
at the end n iterations.

First, we claim that Markov chains defined on Mn are absorbing Markov chains.

Theorem 3.4.1 Let {ξni ; i ∈ N} be a Markov chain on Mn formed by following the
transition probabilities Pn using the best control µn(z) for each state z ∈ Sn. Then,
{ξni ; i ∈ N} is an absorbing Markov chain asymptotically almost surely.

The proof follows from Theorem 2.3.4 on connectivity of random directed kNN graphs.
Therefore, asymptotically almost surely, a controlled Markov chain onMn will reach
an absorbing state in the boundary set ∂Sn (see Theorem 2.2.15). In other words,
the iMDP algorithm constructs approximating MDPs that induce random graphs for
the effective exploration of the continuous search space S. We now show that this
approximation is also consistent.

For large n, states in Sn are sampled uniformly in the state space S as proven
in [52]. Moreover, the dispersion of Sn shrinks with the rate O((log |Sn|/|Sn|)1/dx) as
described in the next lemma.

Lemma 3.4.2 Recall that ζn measures of the dispersion of Sn (Eq. (3.13)). We have
the following event happens with probability one:

ζn = O((log |Sn|/|Sn|)1/dx).

The proof is based on the fact that, if we partition Rdx into cells of volumeO(log(|Sn|)/
|Sn|), then, almost surely, every cell contains at least an element of Sn, as |Sn| ap-
proaches infinity. The above lemma leads to the following results.

Lemma 3.4.3 The MDP sequence {Mn}∞n=0 and holding times {∆tn}∞n=0 returned
by Algorithm 1 are locally consistent with the system described by Eq. (3.1) for large
n with probability one.

Theorem 3.2.2 and Lemma 3.4.3 together imply that the trajectories of the con-
trolled Markov chains on {Mn}∞n=0 approximate, in the distribution sense, those of
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the original stochastic dynamical system in Eq. (3.1) arbitrarily well as n approaches
to infinity.

Moreover, recall that || · ||Sn is the sup-norm over Sn, the following theorem shows
that J∗n converges uniformly, with probability one, to the original optimal value func-
tion J∗.

Theorem 3.4.4 Given n ∈ N, for all z ∈ Sn, J∗n(z) denotes the optimal value func-
tion evaluated at state z for the finite-state MDPMn returned by Algorithm 1. Then,
the following event holds with probability one:

lim
n→∞

||J∗n − J∗||Sn = 0.

In other words, J∗n converges to J∗ uniformly almost surely. In particular,

||J∗n − J∗||Sn = O((log |Sn|/|Sn|)ρ/dx) a.s.

The proof of Theorem 3.4.4 follows immediately from Lemmas 3.4.2-3.4.3 and The-
orems 3.2.3-3.2.4. The theorem suggests that we can compute J∗n for each discrete
MDP Mn before sampling more states to construct Mn+1. Indeed, in Algorithm 1,
when updated states are chosen randomly as subsets of Sn, and Ln is large enough,
we compute J∗n using asynchronous value iterations [33, 41]. Subsequent theorems
present stronger results on incremental computation of J∗.

We will prove the asymptotic optimality of the cost value Jn returned by the
iMDP algorithm when n approaches infinity without directly approximating J∗n for
each n. We first consider the case when we can solve the Bellman update (Eq. (3.15))
exactly and 1 ≤ Ln, Kn = Θ(|Sn|θ) < |Sn|.

Theorem 3.4.5 For all z ∈ Sn, Jn(z) is the cost value of the state z computed by
Algorithm 1 and Algorithm 2 after n iterations with 1 ≤ Ln, and Kn = Θ(|Sn|θ) <
|Sn|. Let Jn,µn be the cost-to-go function of the returned policy µn on the discrete
MDPMn. If the Bellman update at Eq. (3.15) is solved exactly , then, the following
events hold with probability one:

i. limn→∞ ||Jn − J∗n||Sn = 0, and limn→∞ ||Jn − J∗||Sn = 0,

ii. limn→∞ |Jn,µn(z)− J∗(z)| = 0, ∀z ∈ Sn.

Theorem 3.4.5 enables an incremental computation of the optimal cost J∗ without
the need to compute J∗n exactly before sampling more samples. Moreover, cost-to-go
functions Jn,µn induced by approximating policies µn also converges pointwise to the
optimal cost-to-go J∗ with probability one.

When we solve the Bellman update (Eq. (3.15)) via sampling, the next result
holds.

Theorem 3.4.6 For all z ∈ Sn, Jn(z) is the cost value of the state z computed by
Algorithm 1 and Algorithm 2 after n iterations with 1 ≤ Ln, and Kn = Θ(|Sn|θ) <
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|Sn|. Let Jn,µn be the cost-to-go function of the returned policy µn on the discrete
MDP Mn. If the Bellman update at Eq. (3.15) is solved via sampling such that
limn→∞ |Un| =∞, then

i. ||Jn − J∗n||Sn converges to 0 in probability. Thus, Jn converges uniformly to J∗

in probability,

ii. limn→∞ |Jn,µn(z)− J∗(z)| = 0 for all z ∈ Sn with probability one.

We emphasize that while the convergence of Jn to J∗ is weaker than the conver-
gence in Theorem 3.4.5, the convergence of Jn,µn to J∗ remains intact. Importantly,
Theorem 3.2.2 and Theorems 3.4.5-3.4.6 together assert that starting from any initial
state, trajectories and control processes provided by the iMDP algorithm approxi-
mate arbitrarily well optimal trajectories and optimal control processes of the original
continuous problem. More precisely, with probability one, the induced random prob-
ability measures of approximating trajectories and approximating control processes
converge weakly (in distribution) to the probability measures of optimal trajectories
and optimal control processes of the continuous problem. In addition, Theorem 3.4.4
provides a proven convergence rate of J∗n to J∗, which suggests that Jn is likely to
converge to J∗ with the same convergence rate O((log |Sn|/|Sn|)ρ/dx).

Finally, the next theorem evaluates the quality of any-time control policies re-
turned by Algorithm 3.

Theorem 3.4.7 Let µn : S → U be the interpolated policy on S of µn : Sn → U as
described in Algorithm 3:

∀z ∈ S : µn(z) = µn(yn) where yn = argminz′∈Sn||z
′ − z||2.

Then there exists an optimal control policy µ∗ of the original problem7 so that for all
z ∈ S:

lim
n→∞

µn(z) = µ∗(z) w.p.1,

if µ∗ is continuous at z.

3.5 Experiments

We used a computer with a 2.0-GHz Intel Core 2 Duo T6400 processor and 4 GB of
RAM to run experiments. In the first experiment, we investigated the convergence
of the iMDP algorithm on a stochastic LQR problem:

inf
u(·)

E
[ ∫ τ

0

0.95t{3.5x(t)2 + 200u(t)2}dt+ 0.95τh(x(τ))
]

such that
dx(t) = (3x(t) + 11u(t))dt+

√
0.2dw(t)

7Otherwise, an optimal relaxed control policy m∗ exists [43], and µn approximates m∗ arbitrarily
well.
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(b) After 200 iterations (0.39s).
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(c) After 600 iterations (2.16s).
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Figure 3-5: Results of iMDP on a stochastic LQR problem. Figure 3-5(a) shows
the convergence of approximated cost-to-go to the optimal analytical cost-to-go over
iterations. Anytime solutions are compared to the analytical optimal solution after
200 and 600 iterations in Figs. 3-5(b)-3-5(c). Mean and 1-σ interval of the error
||Jn−J∗||Sn are shown in 3-5(d) using 50 trials. The corresponding mean and standard
deviation of the error ||Jn − J∗||Sn are depicted on a log-log plot in Fig. 3-5(e).
In Fig. 3-5(f), we plot the ratio of ||Jn − J∗||Sn to (log(|Sn|)/|Sn|)0.5 to show the
convergence rate of Jn to J∗. Figure 3-5(g) shows the ratio of running time per
iteration Tn to |Sn|0.5 log2(|Sn|). Ratios in Figs. 3-5(f)-3-5(g) are averaged over 50
trials.
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Figure 3-6: An operating environment for the second experiment. The system starts
at (-8,8) to reach a goal at (8,8).

on the state space S = [−6, 6] where τ is the first hitting time to the boundary
∂S = {−6, 6}, and h(z) = 414.55 for z ∈ ∂S and 0 otherwise.

Solving the associate HJB equation, we have that the optimal cost-to-go from
x(0) = z is 10.39z2 + 40.51, and the optimal control policy is u(t) = −0.5714x(t).
Since the cost-rate function is bounded on S and Hölder continuous with exponent
1.0, we use ρ = 0.5. In addition, we choose θ = 0.5, and ς = 0.99 in the procedure
ComputeHoldingTime.

Figures 3-5(a)-3-5(c) show the convergence of approximated cost-to-go, anytime
controls and trajectory to the optimal analytical counterparts over iterations. We
observe that in Fig. 3-5(d), both the mean and variance of cost-to-go error decreases
quickly to zero. The log-log plot in Fig. 3-5(e) clearly indicates that both mean and
standard deviation of the error ||Jn − J∗||Sn continue to decrease. This observation
is consistent with Theorems 3.4.5-3.4.6. Moreover, Fig. 3-5(f) shows the ratio of
||Jn − J∗||Sn to (log(|Sn|)/|Sn|)0.5 indicating the convergence rate of Jn to J∗, which
agrees with Theorem 3.4.4. Finally, Fig. 3-5(g) plots the ratio of running time per
iteration Tn to |Sn|0.5 log(|Sn|) asserting that the time complexity per iteration is
O
(
|Sn|0.5 log2(|Sn|)

)
.

In the second experiment, we controlled a system with two-dimensional stochastic
single integrator dynamics to a goal region with free ending time in a cluttered en-
vironment. The dynamics is given by dx(t) = u(t)dt + Fdw(t) where x(t) ∈ R2,

u(t) ∈ R2, and F =

[
0.26 0

0 0.26

]
. The objective function is discounted with

α = 0.95. The system pays zero cost for each action it takes and pays a cost of
-1 when reaching the goal region Xgoal (see Fig. 3-6). The maximum velocity in each
direction of the system is one. The system stops when it collides with obstacles. We
show how the system reaches the goal in the upper right corner and avoids obstacles
with different anytime controls. Anytime control policies after up-to 2,000 iterations
in Figs. 3-7(a)-3-7(c), which were obtained within 2.1 seconds, indicate that iMDP
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(a) Policy: N=500 (0.5s).
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(b) Policy: N=1,000 (1.2s).
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(c) Policy: N=2,000 (2.1s).
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(e) Contour of J1,000
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(f) Contour of J2,000
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(g) Policy: N= 4,000 (7.6s).
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(h) Policy: N= 10,000 (28s).
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(i) Policy: N= 20,000 (80s).
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(j) Contour of J4,000
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(k) Contour of J10,000
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(l) Contour of J20,000

Figure 3-7: A system with stochastic single integrator dynamics in a cluttered envi-
ronment. With appropriate cost structure assigned to the goal and obstacle regions,
the system reaches the goal in the upper right corner and avoids obstacles. The stan-
dard deviation of noise in x and y directions is 0.26. The maximum velocity is one.
Anytime control policies and corresponding contours of approximated cost-to-go as
shown in Figs. 3-7(a)-3-7(l) indicate that iMDP quickly explores the state space and
refines control policies over time.
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(a) Markov chain implied by M100
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(b) Markov chain implied by M200.
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(c) Markov chain implied by M300.
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(d) Markov chain implied by M400.
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(e) Markov chain implied by M500.
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(f) Markov chain implied by M1000.

Figure 3-8: Markov chains over iterations. The structures of these Markov chains are
indeed random graphs that are asymptotically almost-surely connected to cover the
state space S.
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(a) Noise-free: N= 1,000 (1.2s).
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(b) Stochastic: N= 300(0.4s).
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(c) Stochastic: N= 1,000 (1.1s).

Figure 3-9: Performance against different process noise magnitude. The system starts
from (0,-5) to reach the goal. In Fig. 3-9(a), the environment is noise-free. In Figs.
3-9(b)-3-9(c), standard deviation of noise in x and y directions is 0.37. In the latter,
the system first discovers an unsafe route that is prone to collisions and discovers
a safer route after a few seconds. (In Fig. 3-9(b), we temporarily let the system
continue even after collision to observe the entire trajectory.)

quickly explores the state space and refines control policies over time. Corresponding
contours of cost value functions are shown in Figs. 3-7(d)-3-7(f) further illustrate the
refinement and convergence of cost value functions to the original optimal cost-to-go
over time. We observe that the performance is suitable for real-time control. Further-
more, anytime control policies and cost value functions after up-to 20,000 iterations
are shown in Figs. 3-7(g)-3-7(i) and Figs. 3-7(j)-3-7(l) respectively. We note that
the control policies seem to converge faster than cost value functions over iterations.
The phenomenon is due to the fact that cost value functions Jn are the estimates
of the optimal cost-to-go J∗. Thus, when Jn(z) − J∗(z) is constant for all z ∈ Sn,
updated controls after a Bellman update are close to their optimal values. Thus, the
phenomenon favors the use of the iMDP algorithm in real-time applications where
only a small number of iterations are executed. In addition, in Fig. 3-8, we show
the Markov chains that are induced by the stored controls over iterations. As we
can see, the structures of these Markov chains are indeed random graphs that are
asymptotically almost-surely connected to cover the state space S. This observation
agrees with the claim provided in Theorem 3.4.1.

In the third experiment, we tested the effect of process noise magnitude on the
solution trajectories. In Figs. 3-9(a)-3-9(c), the system wants to arrive at a goal area
either by passing through a narrow corridor or detouring around the two blocks. In
Fig. 3-9(a), when the dynamics is noise-free (by setting a small dispersion matrix),
the iMDP algorithm quickly determines to follow a narrow corridor. In contrast, when
the environment affects the dynamics of the system (Figs. 3-9(b)-3-9(c)), the iMDP
algorithm decides to detour to have a safer route. This experiment demonstrates the
benefit of iMDP in handling process noise compared to RRT-like algorithms [51,52].
We emphasize that although iMDP spends slightly more time on computation per
iteration, iMDP provides feedback policies rather than open-loop policies; thus, re-
planning is not crucial in iMDP.
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(a) Trajectory snapshots after 3000 iterations
(15.8s).
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(b) Mean and standard deviation of cost values
Jn(x0).

Figure 3-10: Results of a 6D manipulator example. The system is modeled as a single
integrator with states representing angles between segments and the horizontal line.
Control magnitude is bounded by 0.3. The standard deviation of noise at each joint is
0.032 rad. In Fig. 3-10(a), the manipulator is controlled to reach a goal with the final
upright position. In Fig. 3-10(b), the mean and standard deviation of the computed
cost values for the initial position are plotted using 50 trials.

In the forth experiment, we examined the performance of the iMDP algorithm
for high dimensional systems such as a manipulator with six degrees of freedom.
The manipulator is modeled as a single integrator where states represents angles
between segments and the horizontal line. Formally, the dynamics is given by dx(t) =
u(t)dt+ Fdw(t) where x(t) ∈ R6 with each component in [0, 2π] and u(t) ∈ R6. The
maximum control magnitude for all joints is 0.3. The dispersion matrix F is such
that the standard deviation of noise at each joint is 0.032 rad. The manipulator
is controlled to reach a goal with the final upright position in minimum time. In
Fig. 3-10(a), we show a resulting trajectory after 3000 iterations computed in 15.8
seconds. In addition, we show the mean and standard deviation of the computed cost
values for the initial position using 50 trials in Fig. 3-10(b). As shown in the plots,
the solution converges quickly after about 1000 iterations. These results highlight
the suitability of the iMDP algorithm to compute feedback policies for complex high
dimensional systems in stochastic environments.

3.6 Proofs

In this section, we provide the detailed proofs of theorems presented in Section 3.4.

67



super vertex

(log(|S   |) nearest verticesn

z

Z        :near

z'

f

Figure 3-11: An illustration for Lemma 3.6.1. We continue the example in Fig. 3-2.

We enlarge each vertex z of
−→
Gn to become a “super vertex”

(
z, z + f(z, µn(z))∆tn

)
so that the Euclidean distance between two super vertices

(
z, z+f(z, µn(z))∆tn

)
and(

z′, z′ + f(z′, µn(z′))∆tn
)

is defined as the Euclidean distance of z + f(z, µn(z))∆tn
and z′. The super vertex is connected to Θ(log(|Sn|))-nearest vertices using this new
distance definition.

3.6.1 Proof of Theorem 3.4.1

GivenMn and the best stored controls µn returned by the iMDP algorithm, we define

a directed graph
−→
Gn having Sn as its vertex set, and its edges represent transition

probabilities under the best stored controls. In particular, for each vertex z ∈ Sn\∂Sn,
we form a directed edge from z to each vertex in the support of Pn(· | z, µn(z)) that
is returned from the procedure ComputeTranProb. Vertices from ∂Sn connect to
themselves.

We enlarge each vertex z of
−→
Gn to become a “super vertex”

(
z, z+f(z, µn(z))∆tn

)
so that the Euclidean distance between two super vertices

(
z, z+f(z, µn(z))∆tn

)
and(

z′, z′+f(z′, µn(z′))∆tn
)

is defined as the Euclidean distance of z+f(z, µn(z))∆tn and

z′. Since the support size of Pn(· | z, µn(z)) is Θ(log(|Sn|)),
−→
Gn is a random directed

kNN graph where k = Θ(log(|Sn|). Figure 3.6.1 shows an illustration of a super

vertex and its nearest neighbors. By Theorem 2.3.4,
−→
Gn is connected asymptotically

almost surely.

The Markov chain {ξni ; i ∈ N}, which is formed by following the transition prob-
abilities Pn using the best control µn(z) for each state z ∈ Sn, has states that move

along edges of
−→
Gn. When

−→
Gn is connected, starting from any non-absorbing vertex
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in Sn\∂Sn, we can reach an absorbing state in ∂Sn. Therefore, {ξni ; i ∈ N} is an
absorbing Markov chain asymptotically almost surely as n approaches ∞.

3.6.2 Proof of Lemma 3.4.2

For each n ∈ N, divide the state space S into grid cells with side length
1

2
γr

log |Sn|
|Sn|1/dx

as follows. Let Z denote the set of integers. Define the grid cell i ∈ Zdx as

Wn(i) := i

(
γr
2

log |Sn|
|Sn|

)1/dx

+

[
−1

4
γr

(
log |Sn|
|Sn|

)1/dx

,
1

4
γr

(
log |Sn|
|Sn|

)1/dx
]dx

,

where [−a, a]dx denotes the dx-dimensional cube with side length 2 a centered at the
origin. Hence, the expression above translates the dx-dimensional cube with side
length (1/2) γr(log |Sn|/|Sn|)1/dx to the point with coordinates i γr

2
(log n/n)1/dx .

Let Qn denote the indices of set of all cells that lie completely inside the state
space S, i.e., Qn = {i ∈ Zd : Wn(i) ⊆ S}. Clearly, Qn is finite since S is bounded.
Let ∂Qn denote the set of all grid cells that intersect the boundary of S, i.e.,

∂Qn = {i ∈ Zd : Wn(i) ∩ ∂S 6= ∅}.

We claim for all large n, all grid cells in Qn contain one vertex of Sn, and all grid
cells in ∂Qn contain one vertex from ∂Sn. First, let us show that each cell in Qn

contains at least one vertex. Given an event A, let Ac denote its complement. Let
An,k denote the event that the cell Wn(k), where k ∈ Qn contains a vertex from Sn,
and let An denote the event that all grid cells in Qn contain a vertex in Sn. Then,
for all k ∈ Qn,

P
(
Acn,k

)
=

(
1− (γr/2)dx

m(S)

log |Sn|
|Sn|

)|Sn|
≤ exp

(
−
(
(γr/2)dx/m(S)

)
log |Sn|

)
= |Sn|−(γr/2)dx/m(S),

where m(S) denotes the Lebesgue measure assigned to S. Then,

P(Acn) = P
((⋂

k∈Qn
An,k

)c)
= P

(⋃
k∈Qn

Acn,k

)
≤
∑

k∈Qn
P
(
Acn,k

)
= |Qn| |Sn|−(γr/2)dx/m(S),

where the first inequality follows from the union bound and |Qn| denotes the cardi-
nality of the set Qn. By calculating the maximum number of cubes that can fit into
S, we can bound |Qn|:

|Qn| ≤
m(S)

(γr/2)dx log |Sn|
|Sn|

=
m(S)

(γr/2)dx
|Sn|

log |Sn|
.
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Note that by construction, we have |Sn| = Θ(n). Thus,

P (Acn) ≤ m(S)

(γr/2)dx
|Sn|

log |Sn|
|Sn|−(γr/2)dx/m(S) =

m(S)

(γr/2)dx
1

log |Sn|
|Sn|1−(γr/2)dx/m(S)

≤ m(S)

(γr/2)dx
|Sn|1−(γr/2)dx/m(S),

which is summable for all γr > 2 (2m(S))1/dx . Hence, by the Borel-Cantelli lemma,
the probability that Acn occurs infinitely often is zero, which implies that the proba-
bility that An occurs for all large n is one, i.e., P(lim infn→∞An) = 1.

Similarly, each grid cell in ∂Qn can be shown to contain at least one vertex from
∂Sn for all large n, with probability one. This implies each grid cell in both sets
Qn and ∂Qn contain one vertex of Sn and ∂Sn, respectively, for all large n, with
probability one. Hence the following event happens with probability one:

ζn = max
z∈Sn

min
z′∈Sn

||z′ − z||2 = O((log |Sn|/|Sn|)1/dx).

3.6.3 Proof of Lemma 3.4.3

We show that each state that is added to the approximating MDPs is updated in-
finitely often. That is, for any z ∈ Sn, the set of all iterations in which the procedure
Update is applied on z is unbounded. Indeed, let us denote ζn(z) = minz′∈Sn ||z′−z||2.
From Lemma 3.4.2, limn→∞ ζn(z) = 0 happens almost surely. Therefore, with prob-
ability one, there are infinitely many n such that ζn(z) < ζn−1(z) . In other words,
with probability one, we can find infinitely many znew at Line 13 of Algorithm 1 such
that z is updated. For those n, the holding time at z is recomputed as ∆tn(z) =

γt

(
log |Sn|
|Sn|

)θςρ/dx
at Line 1 of Algorithm 2. Thus, the following event happens with

probability one:
lim
n→∞

∆tn(z) = 0,

which satisfies the first condition of local consistency in Eq. (3.7).
The other conditions of local consistency in Eqs. (3.8)-(3.10) are satisfied imme-

diately by the way that the transition probabilities are computed (see the description
of the procedure ComputeTranProb given in Section 3.3). Hence, the MDP sequence
{Mn}∞n=0 and holding times {∆tn}∞n=0 are locally consistent for large n with proba-
bility one.

3.6.4 Proof of Theorem 3.4.5

To highlight the idea of the entire proof, we first prove the convergence under syn-
chronous value iterations before presenting the convergence under asynchronous value
iterations. As we will see, the shrinking rate of holding times plays a crucial role in
the convergence proof. The outline of the proof is as follows.
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S1: Convergence under synchronous value iterations: In Algorithm 1, we take Ln ≥
1 and Kn = |Sn|−1. In other words, in each iteration, we perform synchronous
value iterations. Moreover, we assume that we are able to solve the Bellman
equation (Eq. (3.15)) exactly. We show that Jn converges uniformly to J∗

almost surely in this setting.

S2: Convergence under asynchronous value iterations: When Kn = Θ(|Sn|θ) < |Sn|,
we only update a subset of Sn in each of Ln passes. We show that Jn still
converges uniformly to J∗ almost surely in this new setting.

In the following discussion and next sections, we need to compare functions on
different domains Sn. To ease the discussion and simplify the notation, we adopt the
following interpolation convention. Given X ⊂ Y and J : X → R, we interpolate J
to J on the entire domain Y via nearest neighbor value:

∀y ∈ Y : J(y) = J(z) where z = argminz′∈X ||z′ − y||.

To compare J : X → R and J ′ : Y → R where X, Y ⊂ S, we define the sup-norm:

||J − J ′||∞ = ||J − J ′||∞,

where J and J ′ are interpolations of J and J ′ from the domains X and Y to the
entire domain S respectively. In particular, given Jn : Sn → R, and J : S → R, then
||Jn − J ||Sn ≤ ||Jn − J ||∞. Thus, if ||Jn − J ||∞ approaches 0 when n approaches ∞,
so does ||Jn − J ||Sn . Hence, we will work with the (new) sup-norm || · ||∞ instead of
|| · ||Sn in the proofs of Theorems 3.4.5-3.4.6. The triangle inequality also holds for
any functions J, J ′, J ′′ defined on subsets of S with respect to the above sup-norm:

||J − J ′||∞ ≤ ||J − J ′′||∞ + ||J ′′ − J ′||∞.

Let B(X) denote a set of all real-valued bounded functions over a domain X. For
Sn ⊂ Sn′ when n < n′, a function J in B(Sn) also belongs to B(Sn′), meaning that
we can interpolate J on Sn to a function J ′ on Sn′ . In particular, we say that J in
B(Sn) also belongs to B(S).

Lastly, due to random sampling, Sn is a random set, and therefore functions Jn and
J∗n defined on Sn are random variables. In the following discussion, inequalities hold
surely without further explanation when it is clear from the context, and inequalities
hold almost surely if they are followed by “w.p.1”.

S1: Convergence under synchronous value iterations

In this step, we first set Ln ≥ 1 and Kn = |Sn| − 1 in Algorithm 1. Thus, for all

z ∈ Sn, the holding time ∆tn(z) equals γt

(
log |Sn|
|Sn|

)θςρ/dx
and is denoted as ∆tn. We

consider the MDPMn = (Sn, U, Pn, Gn, Hn) at nth iteration and define the following
operator Tn : B(Sn) → B(Sn) that transforms every J ∈ B(Sn) after a Bellman

71



update as:

TnJ(z) = min
v∈U
{Gn(z, v) + α∆tnEPn [J(y)|z, v]}, ∀z ∈ Sn, (3.16)

assuming that we can solve the minimization on the RHS of Eq. (3.16) exactly. For
each k ≥ 2, operators T kn are defined recursively as T kn = TnT

k−1
n and T 1

n = Tn. When
we apply Tn on J ∈ B(Sk) where k < n, J is interpolated to Sn before applying Tn.
Thus, in Algorithms 1-2, we implement the next update

Jn = TLnn Jn−1.

Lemma 3.6.1 (Contraction mapping, see [33]) Given Tn as defined above, Tn
is a contraction mapping, i.e. for any J and J ′ in B(Sn), the following inequality
happens surely:

||TnJ − TnJ ′||∞ ≤ α∆tn ||J − J ′||∞.

Moreover, J∗n = TnJ
∗
n.

Using Lemma 3.6.1:

||J∗n − Jn||∞ = ||TLnn J∗n − TLnn Jn−1||∞ ≤ αLn∆tn||J∗n − Jn−1||∞
≤ α∆tn(||J∗n − J∗n−1||∞ + ||J∗n−1 − Jn−1||∞),

where the second inequality follows from the triangle inequality, and Ln ≥ 1, α ∈
(0, 1).

Thus, by iterating over n, for any N ≥ 1 and n > N , we have:

||J∗n − Jn||∞ ≤ An + α∆tn+∆tn−1...+∆tN+1||J∗N − JN ||∞, (3.17)

where An are defined recursively:

An = α∆tn(||J∗n − J∗n−1||∞ + An−1), ∀n > N + 1, (3.18)

AN+1 = α∆tN+1||J∗N+1 − J∗N ||∞. (3.19)

Note that for any N ≥ 1:

lim
n→∞

∆tn + ∆tn−1...+ ∆tN+1 =∞,

as holding times ∆tn = γt

(
log |Sn|
|Sn|

)θςρ/dx
in the procedure ComputeHoldingTime.

Therefore,
lim
n→∞

α∆tn+...+∆tN+1 ||J∗N − JN ||∞ = 0.

By Theorem 3.4.4, the following event happens with probability 1 (w.p.1):

lim
n→∞

||J∗n − J∗||∞ = 0,
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hence,
lim
n→∞

||J∗n − J∗n−1||∞ = 0 w.p.1.

Thus, for any fixed ε > 0, we can choose N large enough such that:

||J∗n − J∗n−1||1−ς∞ < ε w.p.1 for all n > N, and (3.20)

α∆tn+...+∆tN+1 ||J∗N − JN ||∞ < ε surely, (3.21)

where ς ∈ (0, 1) is the constant defined in the procedure ComputeHoldingTime.

Now, for all n > N , we rearrange Eqs. (3.18)-(3.19) to have

An ≤ εBn w.p.1,

where

Bn = α∆tn(||J∗n − J∗n−1||ς∞ +Bn−1), ∀n > N + 1,

BN+1 = α∆tN+1||J∗N+1 − J∗N ||ς∞.

We can see that for n > N + 1:

Bn = α∆tn(||J∗n − J∗n−1||ς∞ +Bn−1) < ες/(1−ς) +Bn−1 w.p.1, (3.22)

BN+1 = α∆tN+1||J∗N+1 − J∗N ||ς∞ < ες/(1−ς) w.p.1. (3.23)

We now prove that almost surely, Bn is bounded for all n ≥ N w.p.1:

Lemma 3.6.2 Bn is bounded for all n ≥ N w.p.1.

Proof Indeed, we derive the conditions so that Bn−1 < Bn as follows:

Bn−1 < Bn

⇔ Bn−1 < α∆tn(||J∗n − J∗n−1||ς∞ +Bn−1)

⇔ Bn−1 <
α∆tn||J∗n − J∗n−1||ς∞

1− α∆tn

⇒ Bn−1 < K
αγt(

log |Sn|
|Sn| )

θςρ/dx (
log |Sn|
|Sn|

)ςρ/dx
1− αγt(

log |Sn|
|Sn| )

θςρ/dx
w.p.1.

The last inequality is due to Theorem 3.4.4 and |Sn| = Θ(n), |Sn−1| = Θ(n− 1):

||J∗n − J∗n−1||∞ = O((log |Sn−1|/|Sn−1|)ρ/dx) < K
(

log |Sn|
|Sn|

)ρ/dx
w.p.1,

for large n where K is some finite constant. Let β = αγt ∈ (0, 1). For large n, log |Sn|
|Sn|
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N+1N+2N+3 N+k

Figure 3-12: A realization of the random sequence Bn. We have BN+1 less than
ες/(1−ς) w.p.1. For n larger than N + 1, when Bn−1 ≥ − K

γt log(α)
w.p.1, the sequence

is non-increasing w.p.1, i.e. Bn−1 ≥ Bn w.p.1. Conversely, when the sequence is
increasing, i.e. Bn−1 < Bn, we have Bn−1 < − K

γt log(α)
w.p.1, and the increment is less

than ες/(1−ς). Hence, the random sequence Bn is bounded by ες/(1−ς) − K
γt log(α)

w.p.1.

are in (0, 1) and θ ∈ (0, 1]. Let us define

xn =

(
log |Sn|
|Sn|

)θςρ/dx
, and yn =

(
log |Sn|
|Sn|

)ςρ/dx
.

Then, xn ≥ yn > 0. The above condition is simplified to

Bn−1 < K
βxnyn

1− βxn
≤ K βxnxn

1− βxn
, w.p.1.

Consider the function r : [0,∞)→ R such that r(x) = βxx
1−βx , we can verify that r(x)

is non-increasing and is bounded by r(0) = −1/ log(β). Therefore:

Bn−1 < Bn ⇒ Bn−1 < −
K

log(β)
= − K

γt log(α)
w.p.1. (3.24)

Or conversely,

Bn−1 ≥ −
K

γt log(α)
w.p.1 ⇒ Bn−1 ≥ Bn w.p.1. (3.25)

The above discussion characterizes the random sequence Bn. In particular, Fig. 3-12
shows a possible realization of the random sequence Bn for n > N . As shown visually
in this plot, BN+1 is less than ες/(1−ς) w.p.1 and thus is less than ες/(1−ς) − K

γt log(α)

w.p.1. For n > N + 1, assume that we have already shown that Bn−1 is bounded
from above by ες/(1−ς) − K

γt log(α)
w.p.1. When Bn−1 ≥ − K

γt log(α)
w.p.1, the sequence is
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non-increasing w.p.1. Conversely, when the sequence is increasing, i.e. Bn−1 < Bn,
we assert that Bn−1 < − K

γt log(α)
w.p.1 due to Eq. (3.24), and the increment is less

than ες/(1−ς) due to Eq. (3.22). In both cases, we conclude that Bn is also bounded by
ες/(1−ς) − K

γt log(α)
w.p.1. Hence, from Eqs. (3.22)-(3.25), we infer that Bn is bounded

w.p.1 for all n > N :

Bn < ες/(1−ς) − K
γt log(α)

w.p.1.

Thus, from Lemma 3.6.2, for all n > N :

An ≤ εBn < ε
(
ες/(1−ς) − K

γt log(α)

)
w.p.1. (3.26)

Combining Eqs. (3.17),(3.21), and (3.26), we conclude that for any ε > 0, there
exists N ≥ 1 such that for all n > N , we have

||J∗n − Jn||∞ < ε
(
ες/(1−ς) − K

γt log(α)
+ 1
)

w.p.1.

Therefore,
lim
n→∞

||J∗n − Jn||∞ = 0 w.p.1.

Combining with Theorem 3.4.4:

lim
n→∞

||J∗n − J∗||∞ = 0 w.p.1,

we obtain
lim
n→∞

||Jn − J∗||∞ = 0 w.p.1.

In the above analysis, the shrinking rate
(

log |Sn|
|Sn|

)θςρ/dx
of holding times plays an

important role to construct an upper bound of the sequence Bn. This rate must be

slower than the convergence rate
(

log |Sn|
|Sn|

)ρ/dx
of J∗n to J∗ so that the function r(x) is

bounded, enabling the convergence of cost value functions Jn to the optimal cost-to-
go J∗. Remarkably, we have accomplished this convergence by carefully selecting the
range (0, 1) of the parameter ς. The role of the parameter θ in this convergence will
be clear in Step S2. Lastly, we note that if we are able to obtain a faster convergence
rate of J∗n to J∗, we can have faster shrinking rate for holding times.

S2: Convergence under asynchronous value iterations

When 1 ≤ Ln and Kn = Θ(|Sn|θ) < |Sn|, we first claim the following result:

Lemma 3.6.3 Consider any increasing sequence {nk}∞k=0 as a subset of N such that
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n0 = 0 and k ≤ |Snk | ≤ k1/θ. For J ∈ B(S), we define:

A
(
{nj}kj=0

)
= α∆tnk+∆tnk−1

+...+∆tn1 ||J∗n1
− J ||∞ + α∆tnk+∆tnk−1

+...+∆tn2 ||J∗n2
− J∗n1

||∞
+ ...+ α∆tnk ||J∗nk − J

∗
nk−1
||∞.

The following event happens with probability one:

lim
k→∞

A
(
{nj}kj=0

)
= 0.

Proof We rewrite A
(
{nj}kj=0

)
= Ank where Ank are defined recursively:

Ank = α∆tnk (||J∗nk − J
∗
nk−1
||∞ + Ank−1

), ∀k > K, (3.27)

AnK = A
(
{nj}Kj=0

)
, ∀K ≥ 1. (3.28)

We note that

∆tnk + ∆tnk−1
+ ...+ ∆tnK

= γt

(
log |Snk |
|Snk |

)θςρ/dx
+ γt

(
log |Snk−1

|
|Snk−1

|

)θςρ/dx
+ ...+ γt

(
log |SnK |
|SnK |

)θςρ/dx
≥ γt

(
1

|Snk |

)θςρ/dx
+ γt

(
1

|Snk−1
|

)θςρ/dx
+ ...+ γt

(
1

|SnK |

)θςρ/dx
≥ γt

1

kςρ/dx
+ γt

1

(k − 1)ςρ/dx
+ ...+ γt

1

(K)ςρ/dx
≥ γt(

1

k
+

1

k − 1
+ ...+

1

K
),

where the second inequality uses the given fact that |Snk | ≤ k1/θ. Therefore, for any
K ≥ 1:

lim
k→∞

α∆tnk+∆tnk−1
...+∆tnK = 0.

We choose a constant % > 1 such that %ς < 1. For any fixed ε > 0, we can choose K
large enough such that:

||J∗nk − J
∗
nk−1
||1−%ς∞ < ε w.p.1 for all k > K. (3.29)

For all k > K, we can write

Ank ≤ εBnk + α∆tnk+...+∆tnK+1A
(
{nj}Kj=0

)
.

where

Bnk = α∆tnk (||J∗nk − J
∗
nk−1
||%ς∞ +Bnk−1

), ∀k > K,

BnK = 0.

Furthermore, we can choose K ′ sufficiently large such that K ′ ≥ K and for all k > K ′:

α∆tnk+...+∆tnK+1A
(
{nj}Kj=0

)
≤ ε.
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We obtain:
Ank ≤ εBnk + ε, ∀k > K ′ ≥ K ≥ 1.

We can also see that for k > K:

Bnk = α∆tnk (||J∗nk − J
∗
nk−1
||%ς∞ +Bnk−1

) < ε%ς/(1−%ς) +Bnk−1
w.p.1. (3.30)

Similar to Step S1, we characterize the random sequence Bnk as follows:

Bnk−1
< Bnk

⇔ Bnk−1
<
α∆tnk ||J∗nk − J

∗
nk−1
||%ς∞

1− α∆tnk

⇒ Bnk−1
< K

α
γt

(
log |Snk |
|Snk |

)θςρ/dx (
log |Snk−1

|
|Snk−1

|

)%ςρ/dx
1− α

γt

(
log |Snk |
|Snk |

)θςρ/dx w.p.1.

Let β = αγt ∈ (0, 1). We define:

xk =

(
log |Snk |
|Snk |

)θςρ/dx
, and yk =

(
log |Snk−1

|
|Snk−1

|

)%ςρ/dx
.

We note that log x
x

is a decreasing function for positive x. Since |Snk−1
| ≥ k − 1 and

|Snk | ≤ k1/θ, we have the following inequalities:

xk ≥

(
( log k

θ
)θ

k

)ςρ/dx

, yk ≤
(

(log(k − 1))%

(k − 1)%

)ςρ/dx
.

Since θ ∈ (0, 1] and % > 1, we can find a finite constant K1 such that yk < K1xk for
large k. Thus, the above condition leads to

Bnk−1
< K βxkyk

1− βxk
< KK1

βxkxk
1− βxk

, w.p.1.

Therefore:

Bnk−1
< Bnk ⇒ Bnk−1

< − KK1

log(β)
= − KK1

γt log(α)
w.p.1.

Or conversely,

Bnk−1
≥ − KK1

γt log(α)
w.p.1 ⇒ Bn−1 ≥ Bn w.p.1.
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Arguing similarly to Step S1, we infer that for all k > K ′ ≥ K ≥ 1:

Bnk < ε%ς/(1−%ς) − KK1

γt log(α)
w.p.1.

Thus, for any ε > 0, we can find K ′ ≥ 1 such that for all k > K ′:

Ank ≤ εBnk + ε < ε
(
ε%ς/(1−%ς) − KK1

γt log(α)
+ 1
)

w.p.1.

We conclude that
lim
k→∞

A
(
{nj}kj=0

)
= 0. w.p.1.

Returning to the main proof, we use the tilde notation to indicate asynchronous
operations to differentiate with our synchronous operations in Step S1. We will
also assume that Ln = 1 for all n to simplify the following notations. The proof for
general Ln ≥ 1 is exactly the same. We define the following (asynchronous) mappings

T̃n : B(Sn) → B(Sn) as the restricted mappings of Tn on Dn, a non-empty random
subset of Sn, such that for all J ∈ B(Sn):

T̃nJ(z) = min
v∈U

{
Gn(z, v) + α∆tnEPn

[
J(y)|z, v

]}
, ∀z ∈ Dn ⊂ Sn, (3.31)

T̃nJ(z) = J(z), ∀z ∈ Sn\Dn. (3.32)

We require that

∩∞n=1 ∪∞k=n Dk = S. (3.33)

In other words, every state in S are sampled infinitely often. We can see that in
Algorithm 1, if the set Zupdate is assigned to Dn in every iteration (Line 13), the
sequence {Dn}∞n=1 has the above property, and |Dn| = Θ(|Sn|θ) < |Sn|.

Starting from any J̃0 ∈ B(S0), we perform the following asynchronous iteration

J̃n+1 = T̃n+1J̃n, ∀n ≥ 0. (3.34)

Consider the following sequence {mk}∞k=0 such that m0 = 0 and for all k ≥ 0,
from mk to mk+1 − 1, all states in Smk+1−1 are chosen to be updated at least once,
and a subset of states in Smk+1−1 is chosen to be updated exactly once. We observe
that as the size of Sn increases linearly with n, if we schedule states in Dn ⊂ Sn to
be updated in a round-robin manner, we have k ≤ Smk ≤ k1/θ. When Dn is chosen
as shown in Algorithm 1, with high probability, k ≤ Smk ≤ k1/θ. However, we will
assume that the event k ≤ Smk ≤ k1/θ happens surely because we can always schedule
a fraction of Dn to be updated in a round-robin manner.
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We define Wn as the set of increasing sub-sequences of the sequence {0, 1, ..., n}
such that each sub-sequence contains {mj}kj=0 where mk ≤ n < mk+1:

Wn =
{
{ij}Tj=0

∣∣ {mj}kj=0 ⊂ {ij}Tj=0 ⊂ {0, 1, ..., n} ∧ T ≥ 2 ∧mk ≤ n < mk+1

}
.

Clearly, if {ij}Tj=0 ∈ Wn, we have i0 = 0. For each {ij}Tj=0 ∈ Wn, we define

A
(
{ij}Tj=0

)
= α∆tiT +∆tiT−1

+...+∆ti1 ||J∗i1 − J̃0||∞ + α∆tiT +∆tiT−1
+...+∆ti2 ||J∗i2 − J

∗
i1
||∞

+ ...+ α∆tiT ||J∗iT − J
∗
iT−1
||∞.

We will prove by induction that

∀z ∈ Dn ⇒ |J̃n(z)− J∗n(z)| ≤ max
{ij}Tj=0∈Wn

A
(
{ij}Tj=0

)
. (3.35)

When n = 1, the only sub-sequence is {ij}Tj=0 = {0, 1} ∈ W1. It is clear that for
z ∈ D1, due to the contraction property of T1:

|J∗1 (z)− J̃1(z)| ≤ max
{ij}Tj=0∈W1

A
(
{ij}Tj=0

)
= α∆t1||J∗1 − J̃0||∞.

Assuming that Eq. (3.35) holds up-to n = mk, we need to prove that the equation also
holds for those n ∈ (mk,mk+1) and n = mk+1. Indeed, let us assume that Eq. (3.35)
holds for some n ∈ [mk,mk+1 − 1). Denote nz ≤ n as the index of the most recent

update of z. For z ∈ Dn, we compute new values for z in J̃n+1, and by the contraction
property of Tn+1, it follows that

|J̃n+1(z)− J∗n+1(z)| ≤ α∆tn+1||J∗n+1 − J̃n||∞
= α∆tn+1 max

z∈Sn+1

|J∗n+1(z)− J̃n(z)|

= α∆tn+1 max
z∈Sn+1

|J∗n+1(z)− J̃nz(z)|

≤ α∆tn+1 max
z∈Sn+1

(
|J∗nz(z)− J̃nz(z)|+ ||J∗n+1 − J∗nz ||∞

)
≤ max

z∈Sn+1

(
α∆tn+1 max

{ij}Tj=0∈Wnz

A
(
{ij}Tj=0

)
+ α∆tn+1||J∗n+1 − J∗nz ||∞

)
= max
{ij}Tj=0∈Wn+1

A
(
{ij}Tj=0

)
.

The last equality is due to n + 1 ≤ mk+1 − 1, and {mj}kj=0 ⊂ {{ij}Tj=0, n + 1} ⊂
{0, 1, ..., n + 1} for any {ij}Tj=0 ∈ Wnz . Therefore, Eq. (3.35) holds for all n ∈
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(mk,mk+1−1]. When n = mk+1−1, we also have the above relation for all z ∈ Dn+1:

|J̃n+1(z)− J∗n+1(z)| ≤ max
z∈Sn+1

(
α∆tn+1 max

{ij}Tj=0∈Wnz

A
(
{ij}Tj=0

)
+ α∆tn+1||J∗n+1 − J∗nz ||∞

)
= max
{ij}Tj=0∈Wn+1

A
(
{ij}Tj=0

)
.

The last equality is due to n + 1 = mk+1 and thus {mj}k+1
j=0 ⊂ {{ij}Tj=0, n + 1} ⊂

{0, 1, ..., n+ 1} for any {ij}Tj=0 ∈ Wnz . Therefore, Eq. (3.35) also holds for n = mk+1

and this completes the induction.

We see that all {ij}Tj=0 ∈ Wn, we have j ≤ ij ≤ mj, and thus j ≤ Sij ≤ j1/θ. By
Lemma 3.6.3,

lim
n→∞

A
(
{ij}Tj=0 ∈ Wn

)
= 0 w.p.1.

Therefore,
lim
n→∞

sup
z∈Dn

|J̃n(z)− J∗n(z)| = 0 w.p.1.

Since all states are updated infinitely often, and J∗n converges uniformly to J∗ with
probability one, we conclude that:

lim
n→∞

||J̃n − J∗n||∞ = 0 w.p.1.

and
lim
n→∞

||J̃n − J∗||∞ = 0 w.p.1.

In both Steps S1 and S2, we have limn→∞ ||Jn − J∗n||∞ = 0 w.p.1 8, therefore
µn converges to µ∗n pointwise w.p.1 as µn and µ∗n are induced from Bellman updates
based on Jn and J∗n respectively. Hence, the sequence of policies {µn}∞n=0 has each
policy µn as an εn-optimal policy for the MDP Mn such that limn→∞ εn = 0. By
Theorem 3.2.3, we conclude that

lim
n→∞

|Jn,µn(z)− J∗(z)| = 0, ∀z ∈ Sn w.p.1.

3.6.5 Proof of Theorem 3.4.6

We fix an initial starting state x(0) = z. In Theorem 3.4.5, starting from an initial
state x(0) = z, we construct a sequence of Markov chains {ξni ; i ∈ N}∞n=1 under
minimizing control sequences {uni ; i ∈ N}∞n=1. By convention, we denote the associated
interpolated continuous time trajectories and control processes as {ξn(t); t ∈ R}∞n=1

and {un(t); t ∈ R}∞n=1 respectively. By Theorem 3.2.2, {ξn(t); t ∈ R}∞n=1 converges in
distribution to an optimal trajectory {x∗(t); t ∈ R} under an optimal control process

{u∗(t); t ∈ R} with probability one. In other words, (ξn(·), un(·)) d→ (x∗(·), u∗(·))

8The tilde notion is dropped at this point.
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w.p.1. We will show that this result can hold even when the Bellman equation is not
solved exactly at each iteration.

In this theorem, we solve the Bellman equation (Eq. (3.15)) by sampling uniformly
in U to form a control set Un such that limn→∞ |Un| =∞. Let us denote the resulting
Markov chains and control sequences due to this modification as {ξni ; i ∈ N}∞n=1 and
{uni ; i ∈ N}∞n=1 with associated continuous time interpolations {ξn(t); t ∈ R}∞n=1 and
{un(t); t ∈ R}∞n=1. In this case, randomness is due to both state and control sampling.
We will prove that there exists minimizing control sequences {uni ; i ∈ N}∞n=1 and the
induced sequence of Markov chains {ξni ; i ∈ N}∞n=1 in Theorem 3.4.5 such that

(ξ
n
(·)− ξn(·), un(·)− un(·)) p→ (0, 0), (3.36)

where (0, 0) denotes a pair of zero processes. To prove Eq. (3.36), we first prove
the following lemmas. In the following analysis, we assume that the Bellman update
(Eq. (3.15)) has minima in a neighborhood of the positive Lebesgue measure. We
also assume additional continuity of cost functions for discrete MDPs.

Lemma 3.6.4 Let us consider the sequence of approximating MDPs {Mn}∞n=0. For
each n and a state z ∈ Sn, let v∗n be an optimal control minimizing the Bellman
update, which is referred to as an optimal control from z:

v∗n ∈ V ∗n = argminv∈U{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]},
Jn(z, v∗n) = J∗n(z) = Gn(z, v∗n) + α∆tn(z)EPn [Jn−1(y)|z, v∗n] , ∀v∗n ∈ V ∗n .

Let vn be the best control in a sampled control set Un from z:

vn = argminv∈Un{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]},
Jn(z, vn) = Gn(z, vn) + α∆tn(z)EPn [Jn−1(y)|z, vn] .

Then, when limn→∞ |Un| = ∞, we have |Jn(z, vn) − J∗n(z)| p→ 0 as n approaches ∞,

and there exists a sequence {v∗n | v∗n ∈ V ∗n }∞n=0 such that ||vn − v∗n||2
p→ 0.

Proof We assume that for any ε > 0, the set Anε = {v ∈ U | |Jn(z, v) − J∗n(z)| ≤ ε}
has the positive Lebesgue measure. That is, m(Anε ) > 0 for all ε > 0 where m is the
Lebesgue measure assigned to U . For any ε > 0, we have:

P
(
{|Jn(z, vn)− J∗n(z)| ≥ ε}

)
=
(
1−m(Anε )/m(U)

)|Un|
.

Since 1−m(Anε )/m(U) ∈ [0, 1) and limn→∞ |Un| =∞, we infer that:

lim
n→∞

P
(
{|Jn(z, vn)− J∗n(z)| ≥ ε}

)
= 0.

Hence, we conclude that |Jn(z, vn) − J∗n(z)| p→ 0 as n → ∞. Under the mild as-
sumption that Jn(z, v) is continuous on U for all z ∈ Sn, there exists a sequence

{v∗n | v∗n ∈ V ∗n }∞n=0 such that ||vn − v∗n||2
p→ 0 as n approaches ∞.
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Figure 3-13: An illustration for Lemma 3.6.5. We have ξ
n

0 converges in probability to
ξn0 . From ξn0 , the optimal control is v∗n that results in the next random state ξn1 . From
ξ
n

0 , the optimal control and the best sampled control are vn and vn respectively. The
next random state from ξ

n

0 due to the control vn is ξ
n

1 .

By Lemma 3.6.4, we conclude that ||Jn−J∗n||∞ converges to 0 in probability. Thus, Jn
returned from the iMDP algorithm when the Bellman update is solved via sampling
converges uniformly to J∗ in probability. We, however, claim that Jn,µn still converges
pointwise to J∗ almost surely in the next discussion.

Lemma 3.6.5 With the notations in Lemma 3.6.4, consider two states ξn0 and ξ
n

0

such that ||ξn0 − ξn0 ||2
p→ 0 as n approaches ∞. Let ξ

n

1 be the next random state of ξ
n

0

under the best sampled control vn from ξ
n

0 . Then, there exists a sequence of optimal

controls v∗n from ξn0 such that ||vn − v∗n||2
p→ 0 and ||ξn1 − ξn1 ||2

p→ 0 as n approaches
∞, where ξn1 is the next random state of ξn0 under the optimal control v∗n from ξn0 .

Proof We have vn as the best sampled control from ξ
n

0 . By Lemma 3.6.4, there exists

a sequence of optimal controls vn from ξ
n

0 such that ||vn− vn||2
p→ 0. We assume that

the mapping from state space Sn, which is endowed with the usual Euclidean metric,
to optimal controls in U is continuous. As ||ξn0 − ξn0 ||2

p→ 0, there exists a sequence

of optimal controls v∗n from ξn0 such that ||vn − v∗n||2
p→ 0. Now, ||vn − vn||2

p→ 0 and

||vn− v∗n||2
p→ 0 lead to ||vn− v∗n||2

p→ 0 as n→∞. Figure 3-13 illustrates how vn, vn,
and v∗n relate ξ

n

1 and ξn1 .
Using the probability transition Pn of the MDPMn that is locally consistent with

the original continuous system, we have:

E[ξn1 | ξn0 , un0 = v∗n] = ξn0 + f(ξn0 , v
∗
n)∆tn(ξn0 ) + o(∆tn(ξn0 )),

E[ξ
n

1 | ξ
n

0 , u
n
0 = vn] = ξ

n

0 + f(ξ
n

0 , vn)∆tn(ξ
n

0 ) + o(∆tn(ξ
n

0 )),

Cov[ξn1 | ξn0 , un0 = v∗n] = F (ξn0 , v
∗
n)F (ξn0 , v

∗
n)T∆tn(ξn0 ) + o(∆tn(ξn0 )),

Cov[ξ
n

1 | ξ
n

0 , u
n
0 = vn] = F (ξ

n

0 ), vn)F (ξ
n

0 ), vn)T∆tn(ξ
n

0 )) + o(∆tn(ξ
n

0 ))),

where f(·, ·) is the nominal dynamics, and F (·, ·)F (·, ·)T is the diffusion of the original
system that are assumed to be continuous almost everywhere. We note that ∆tn(ξ

n

0 ) =

∆tn(ξn0 ) = γt
(

log(|Sn|)/|Sn|
)θςρ/dx

as ξ
n

0 and ξn0 are updated at the nth iteration in
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this context, and the holding times converge to 0 as n approaches infinity. Therefore,
when ||ξn0 − ξn0 ||2

p→ 0, ||vn − v∗n||2
p→ 0, we have:

E[ξ
n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn]

p→ 0, (3.37)

Cov(ξ
n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn)

p→ 0. (3.38)

Since ξ
n

1 and ξn1 are bounded, the random vector E[ξ
n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn]

and random matrix Cov(ξ
n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn) are bounded. We recall

that if Yn
p→ 0, and hence Yn

d→ 0, when Yn is bounded for all n, limn→∞ E[Yn] = 0
and limn→∞Cov(Yn) = 0. Therefore, Eqs. (3.37)-3.38 imply:

lim
n→∞

E
[
E[ξ

n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn]

]
= 0, (3.39)

lim
n→∞

Cov
(
E[ξ

n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn]

)
= 0, (3.40)

lim
n→∞

E
[
Cov(ξ

n

1 − ξn1 | ξn0 , ξ
n

0 , u
n
0 = v∗n, u

n
0 = vn)

]
= 0. (3.41)

The above outer expectations and covariance are with respect to the randomness
of states ξn0 , ξ

n

0 and sampled controls Un. Using the iterated expectation law for
Eq. (3.39), we obtain:

lim
n→∞

E[ξ
n

1 − ξn1 ] = 0.

Using the law of total covariance for Eqs. (3.40)-(3.41), we have:

lim
n→∞

Cov[ξ
n

1 − ξn1 ] = 0.

Since

E[||ξn1 − ξn1 ||22] = E[(ξ
n

1 − ξn1 )T (ξ
n

1 − ξn1 )] = ||E[ξ
n

1 − ξn1 )]||22 + tr(Cov[ξ
n

1 − ξn1 ]),

the above limits together imply:

lim
n→∞

E[||ξn1 − ξn1 ||22] = 0.

In other words, ξ
n

1 converges in 2th-mean to ξn1 , which leads to ||ξn1 − ξn1 ||2
p→ 0 as n

approaches ∞.

Returning to the proof of Eq. (3.36), we know that ξn0 = ξ
n

0 = z as the starting state.
From any y ∈ Sn, an optimal control from y is denoted as v∗(y), and the best sampled
control from the same state y is denoted as v(y).

By Lemma 3.6.5, as un0 = v(ξ
n

0 ), there exists un0 = v∗(ξn0 ) such that ||un0−un0 ||2
p→ 0

and ||ξn1 − ξn1 ||2
p→ 0. Let us assume that (||unk−1 − unk−1||2, ||ξ

n

k − ξnk ||2) converges

in probability to (0, 0) up-to index k. We have unk = v(ξ
n

k). Using Lemma 3.6.5,

there exists unk = v∗(ξnk ) such that (||unk − unk ||2, ||ξ
n

k+1 − ξnk+1||2)
p→ (0, 0). Thus, for

any i ≥ 1, we can construct a minimizing control uni in Theorem 3.4.5 such that
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(||ξni − ξni ||2, ||uni − uni ||2)
p→ (0, 0) as n→∞. Hence, Eq. (3.36) follows immediately:

(ξ
n
(·)− ξn(·), un(·)− un(·)) p→ (0, 0).

We have (ξn(·), un(·)) d→ (x∗(·), u∗(·)) w.p.1. Thus, by hierarchical convergence of
random variables [142], we achieve

(ξ
n
(·), un(·)) d→ (x∗(·), u∗(·)) w.p.1.

Therefore, for all z ∈ Sn:

lim
n→∞

|Jn,µn(z)− J∗(z)| = 0 w.p.1.

3.6.6 Proof of Theorem 3.4.7

Fix n ∈ N, for all z ∈ S, and yn = argminz′∈Sn||z′ − z||2, we have

µn(z) = µn(yn).

We assume that optimal policies of the original continuous problem are obtainable.
By Theorems 3.4.5-3.4.6, we have:

lim
n→∞

|Jn,µn(yn)− J∗(yn))| = 0 w.p.1.

Thus, µn(yn) converges to µ∗(yn) almost surely where µ∗ is an optimal policy of the
original continuous problem. Thus, for all ε > 0, there exists N such that for all
n > N :

||µn(yn)− µ∗(yn)||2 ≤
ε

2
w.p.1.

Under the assumption that µ∗ is continuous at z, and due to limn→∞ yn = z almost
surely, we can choose N large enough such that for all n > N :

||µ∗(yn)− µ∗(z)||2 ≤
ε

2
w.p.1.

From the above inequalities:

||µn(yn)− µ∗(z)||2 ≤ ||µn(yn)− µ∗(yn)||2 + ||µ∗(yn)− µ∗(z)||2 ≤ ε, ∀n > N w.p.1.

Therefore,

lim
n→∞

||µn(z)− µ∗(z)||2 = lim
n→∞

||µn(yn)− µ∗(z)||2 = 0 w.p.1.
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Chapter 4

Stochastic Control with trajectory
Performance Constraints

We now consider a class of stochastic optimal control problems with bounded trajec-
tory performance constraints. The constraints have the same integration structure as
the objective functions with different cost rate, terminal cost functions and possibly
different discount factors.

Examples of these constraints are trajectory performance requirements such as
fuel consumption requirements on autonomous cars, stealthiness requirements for
aircraft, and thermal control requirements on spacecraft. The formulation in this
chapter enforces these constraints for all sub-trajectories. As a special case, we can
approximately enforce the probability that a system enters undesirable regions to
remain below a certain threshold. We will handle exact probability constraints that
are enforced for only initial states in Chapter 5.

In the following, we discuss an extended iMDP algorithm that approximates arbi-
trarily well an optimal feedback policy of the constrained problem. We show that in
the presence of the considered constraints, the sequence of policies returned from the
algorithm is both probabilistically sound and asymptotically optimal. Subsequently,
we demonstrate the proposed algorithm on motion planning and control problems in
the presence of process noise.1

4.1 Problem Formulation

We consider a system with the same dynamics (Eq. (3.1)) in Chapter 3 in a bounded
state space S:

dx(t) = f(x(t), u(t)) dt+ F (x(t), u(t)) dw(t),∀t ≥ 0.

1Results in this chapter have been presented in [143].
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We want to find a control policy µ to minimize the same objective function:

Jµ(z) = E
[∫ Tµ,z

0

αt g
(
x(t), µ(x(t))

)
dt+ αTµ,zh(x(Tµ,z)) | x(0) = z

]
,

where an extra subscript component z in the first exit time Tµ,z emphasizes the
dependence of the first exit time on an initial state z.

In addition, we consider trajectory constraints under a policy µ of the form

Cµ(z′) ∈ Γ for all z′ ∈ S, (4.1)

where

Cµ(z′) = E
[∫ Tµ,z′

0

βt r
(
x(t), µ(x(t))

)
dt+ βTµ,z′k(x(Tµ,z′)) | x(0) = z′

]
, (4.2)

and Γ ⊂ R is some pre-specified accepted range. In the above definition, r : S×U → R
and k : S × U → R are bounded measurable, continuous functions, and the discount
rate β is also in [0, 1). In other words, the constraints evaluate the distribution of
trajectories starting from z′ based on criteria encoded by r(·, ·) and k(·) until the
system first hits the boundary of S. As we specify the constraint for all z′ ∈ S,
intuitively, the constraints of the form in Eq. (4.1) enforce the value Cµ(·) for every
sub-trajectory under the policy µ to be within Γ.

For simplicity, we consider one trajectory constraint in this paper, and handling
multiple trajectory constraints is exactly the same. The resulting optimal cost-to-go
function J∗ : S → R is defined for all z ∈ S in the next optimization problem:

OPT 2 : J∗(z) = inf
µ∈Π

Jµ(z) (4.3)

s/t Cµ(z′) ∈ Γ, ∀z′ ∈ S. (4.4)

As in the previous chapter, we call a sampling-based algorithm asymptotically-
optimal if the sequence of solutions returned from the algorithm converges to an
optimal solution in probability as the number of samples approaches infinity. In
addition, we call a sampling-based algorithm probabilistically-sound if the probability
that the solution returned by the algorithm is feasible approaches one as the number
of samples increases. Solutions returned from algorithms with the above properties
are thus called probabilistically-sound and asymptotically-optimal.

In the next section, we extend the iMDP algorithm to approximate the optimal
cost-to-go function and an optimal policy of OPT 2 in an anytime fashion so that the
returned solutions are both probabilistically-sound and asymptotically-optimal.

4.2 Extended iMDP Algorithm

We approximate the dynamics and cost function on discrete-state MDPs as described
in Section 3.2. In particular, the cost-to-go function on an MDP Mn under a policy
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µn ∈ Πn has the following form:

Jn,µn(z) = EPn

[
In−1∑
i=0

αt
n
i Gn(ξni , µn(ξni )) + αt

n
InHn(ξnIn)

∣∣∣ ξn0 = z

]
.

The continuous trajectory constraint is similarly approximated as Cn,µn(z′) ∈ Γ for
all z′ ∈ Sn:

Cn,µn(z′) = EPn

[
In−1∑
i=0

βt
n
i Rn(ξni , µn(ξni )) + βt

n
InKn(ξnIn)

∣∣∣ ξn0 = z′

]
, (4.5)

where Rn(z, v) = r(z, v)∆tn(z), Kn(z) = k(z) for z ∈ Sn and v ∈ U .

Thus, the optimal cost function onMn, denoted by J∗n, is defined in the following
approximating optimization problem:

M OPT 2 : J∗n(z) = inf
µn∈Πn

Jn,µn(z) (4.6)

s/t Cn,µn(z′) ∈ Γ, ∀z′ ∈ Sn. (4.7)

An optimal policy, denoted by µ∗n, satisfies Jn,µ∗n(z) = J∗n(z) for all z ∈ Sn. For
any ε > 0, µn is an ε-optimal policy if ||Jn,µn − J∗n||∞ ≤ ε.

An extension of iMDP outlined below is designed to compute the sequence of
optimal cost-to-go functions {J∗n}∞n=0, the sequence of anytime control policies {µn}∞n=0

as well as the induced trajectory-constraint values {Cn,µn}∞n=0 in an efficient iterative
procedure.

The iMDP algorithm is presented in Algorithms 4-6 in which we use the same
primitive procedures in Chapter 3. The algorithm incrementally refines a sequence of
finite-state MDPsMn = (Sn, U, Pn, Gn, Hn) and the associated holding time function
∆tn that consistently approximates the system in Eq. (3.1). Given a state z ∈ Sn
and a holding time ∆tn(z), we define the stage-cost function Gn(z, v) = ∆tn(z)g(z, v)
for all v ∈ U and terminal-cost function Hn(z) = h(z). Similarly, we define the
trajectory-constraint stage-cost Rn(z, v) = ∆tn(z)r(z, v), and trajectory-constraint
terminal-cost Kn(z) = k(z). We also associate with z ∈ Sn a cost value Jn(z), a
control µn(z), and trajectory-constraint value Cn(z). The functions Jn and Cn are
referred to as cost value function and constraint value function over Sn respectively.

Initially, an empty MDP model is created. In every main iteration of Algorithm 4,
we construct a finer model based on the previous model. In particular, a state is
sampled from the boundary of the state space (Lines 4-5). Subsequently, another
state, zs, is sampled from the interior of the state space S (Line 6). The nearest
state znearest to zs (Line 7) in the previous model is used to construct a new state znew

by using the procedure ExtendBackwards at Line 8. Unlike the original version of
iMDP in Chapter 3, we only accept znew if an estimate of the associated constraint
value belongs to the feasible set Γ (Line 13). This modification enables the sampling
process to focus more on the state space region from which trajectories are likely
to be feasible. Accepted new states are added to the state set, and their associated
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Algorithm 4: trajectory constrained iMDP()

1 (n, S0, J0, µ0,∆t0)← (1, ∅, ∅, ∅, ∅);
2 for n = 1→ N do
3 (Sn, Jn, Cn, µn,∆tn)← (Sn−1, Jn−1, Cn−1, µn−1,∆tn−1);

// Add a new state to the boundary

4 zs ← SampleBoundary();
5 (Sn, Jn(zs), Cn(zs), µn(zs),∆tn(zs))← (Sn ∪ {zs}, h(zs), k(zs), ∅, 0) ;

// Add a new state to the interior

6 zs ← Sample();
7 znearest ← Nearest(zs, Sn, 1);
8 if (xnew, unew, τ)← ExtendBackwards(znearest, zs, T0) then
9 znew ← xnew(0);

10 cost = τg(znew, unew) + ατJn(znearest);
11 consV alue = τr(znew, unew) + βτCn(znearest);

// Discard if constraint value not in Γ
12 if consV alue 6∈ Γ then
13 continue ;

14 (Sn, Jn(znew), Cn(znew), µn(znew),∆tn(znew))←
(Sn ∪ {znew}, cost, consV alue, unew, τ) ;

// Perform Ln ≥ 1 updates

15 for i = 1→ Ln do

// Choose Kn = Θ
(
|Sn|θ

)
< |Sn| states

16 Zupdate ← Nearest(znew, Sn\∂Sn, Kn) ∪ {znew};
17 for z ∈ Zupdate do
18 Update(z, Sn, Jn, µn,∆tn);

cost value Jn(znew), constraint value Cn(znew), and control µn(znew) are initialized at
Line 14.

We then perform Ln ≥ 1 updating rounds in each iteration (Lines 16-18). In
particular, we construct the update-set Zupdate consisting of Kn = Θ(|Sn|θ) states
and znew where |Kn| < |Sn|. For each of state z in Zupdate, the procedure Update as
shown in Algorithm 5 implements the following Bellman update:

Jn(z) = min
v∈U(z)

{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]},

where
U(z) = {v ∈ U |Rn(z, v) + β∆tn(z)EPn [Cn−1(y)|z, v] ∈ Γ}.

The details of the implementation are as follows. A set of Un controls is constructed
using the procedure ConstructControls where |Un| = Θ(log(|Sn|)) at Line 2. For
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Algorithm 5: Update(z ∈ Sn, Sn, Jn, µn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|);
// Sample or discover Mn = Θ(log(|Sn|)) controls

2 Un ← ConstructControls(Mn, z, Sn, τ);
3 for v ∈ Un do
4 (Znear, pn)← ComputeTranProb(z, v, τ, Sn);
5 J ← τg(z, v) + ατ

∑
y∈Znear

pn(y)Jn(y);

6 C ← τr(z, v) + βτ
∑

y∈Znear
pn(y)Cn(y);

// Improved cost and feasible constraint

7 if J < Jn(z) and C ∈ Γ then
8 (Jn(z), Cn(z), µn(z),∆tn(z))← (J,C, v, τ);

Algorithm 6: Policy(z ∈ S, n)

1 znearest ← Nearest(z, Sn, 1);

2 return
(
µ(z) = µn(znearest),∆tn(znearest))

each v ∈ Un, we construct the support Znear and compute the transition probability
Pn(· | z, v) consistently over Znear from the procedure ComputeTranProb (Line 4). The
cost values and induced constraint values for the state z and controls in Un are
computed at Lines 5-6. We finally choose the best control in Un that yields the
smallest updated cost value and feasible constraint value (Line 8). Again, as the
current control may be still the best control compared to other controls in Un, in
Algorithm 5, we can re-evaluate the cost value and the constraint value with the
current control µn(z) over the holding time ∆tn(z) by adding the current control
µn(z) to Un.

Finally, for each n ∈ N, the control policy µn is described in Algorithm 6, which
is the same as presented in the original version of the iMDP algorithm.

4.3 Analysis

Now, in the presence of additional trajectory constraints, let (Mn = (Sn, U, Pn, Gn,
Hn), ∆tn, Jn, Cn, µn) denote the MDP, holding times, cost value function, constraint
value function, and policy returned by Algorithm 4 at the end n iterations. As shown
in Section 3.4, the sequence of MDPs {Mn}∞n=0 and holding times {∆tn}∞n=0 returned
from the iMDP algorithm are locally consistent with the stochastic differential dynam-
ics in Eq. (3.1) almost surely. The next theorem asserts the probabilistic soundness
of the computed policies {µn}∞n=0 and the almost sure pointwise convergence of Jn,µn
to J∗.

Theorem 4.3.1 Let Jn,µn be the cost-to-go function of the returned policy µn on the
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discrete MDP Mn. Similarly, let Cn,µn be the expected constraint value by executing
the returned policy µn on the discrete MDP Mn. Then, for all z ∈ Sn, we have

lim
n→∞

|Jn,µn − J∗(z)| = 0 w.p.1.

Thus, for any n ∈ N and for any z ∈ Sn, {µn(z)}∞n=0 converges almost surely to µ∗(z)
where µ∗ is an optimal policy of the original continuous problem. Furthermore, for
all z ∈ Sn:

lim
n→∞

|Cn(z)− Cµ∗(z)| = 0 w.p.1,

lim
n→∞

|Cn,µn(z)− Cµ∗(z)| = 0 w.p.1.

As a corollary, Cµ∗(z) ∈ Γ w.p.1 for all z ∈ ∪∞n=0Sn. That is, the sequence {µn}∞n=0

is probabilistically sound.

The proof of this algorithm follows directly from our analysis in Section 3.4. The
almost sure pointwise convergence of Jn,µn to J∗ have been proven in Theorem 3.4.6.
The idea is that from any state z ∈ Sn, it is possible to construct a sequence of controls
out of constructed controls from the procedure ConstructControls that converges
in distribution to the optimal control process of the original continuous problem. The
almost sure pointwise convergence of Cn and Cn,µn to Cµ∗ can be seen as a special
case of the above discussion where the control set at each z ∈ Sn contains only one
control µn(z).

4.4 Experiments

We controlled a system with stochastic single integrator dynamics to a goal region
with free ending time in a cluttered environment. We consider again the dynamics

dx(t) = u(t)dt+ Fdw(t) where x(t) ∈ R2, u(t) ∈ R2, and F =

[
0.2 0
0 0.2

]
. The sys-

tem stops when it collides with obstacles. The cost function is the total energy spent
to reach the goal, which is measured as the integral of square of control magnitude
with a discount rate α = 0.95. The system pays the cost of −106 when reaching the
goal region Xgoal. The maximum velocity of the system is one. The system stops when
it collides with obstacles. At the same time, we considered the trajectory constraint
that approximately expresses the collision probability under the control policy using
a large discount factor (i.e. β = 0.9999, r(x, u) = 0 for all x ∈ S, u ∈ U , k(x) = 1 for
x ∈ Xobs and k(x) = 0 otherwise). In this context, we often refer to constraint values
as collision probabilities.

We first set the upper value of the collision probability to 1.0, i.e. Γ = (0, 1.0].
Figures 4-1(a)-4-1(c) depict the policy, cost value function, constraint value function
(in log scale) after 4, 000 iterations for this case. As we can see, the computed
collision probability from the initial position is about 0.1, and the computed cost
value for the initial position is about 4 × 10−5. Since there is actually no constraint
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(a) Policy: 1.0, 4000 (95s).
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(b) Cost: 1.0, 4000 (95s).
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(c) Col. Prob: 1.0, 4000 (95s).
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(d) Policy: 0.001, 600 (2.8s).
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(e) Cost: 0.001, 600 (2.8s).
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(f) Col. Prob: 0.001, 600 (2.8s).
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(g) Policy: 0.001, 4000 (98s).
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(h) Cost: 0.001, 4000 (98s).
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(i) Col. Prob: 0.001, 4000 (98s).

Figure 4-1: An example of bounded trajectory performance. A system with stochastic
single integrator dynamics in a cluttered environment. The cost function is the total
energy spent to reach the goal, which is measured as the integral of square of control
magnitude. The trajectory constraint approximately expresses the probability of col-
lision (with a discount rate β = 0.9999). Figures 4-1(a)-4-1(c) depict the policy, cost
value function, constraint value function (in log scale) after 4, 000 iterations when the
upper bound of collision probability is 1.0(100%). The first number in the title is the
constraint upper bound, and the second number is the number of iterations. Sim-
ilarly, Figures 4-1(d)-4-1(f) and Figures 4-1(g)-4-1(i) show the corresponding plots
for the constraint upper bound 0.001(0.1%) after 600 iterations and 4, 000 iterations
respectively.
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(a) Empirical trajectories for
Fig. 4-1(a) (8.2%).

(b) Empirical trajectories for
Fig. 4-1(g) (0.07%).
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Figure 4-2: Bounded trajectory performance results. Figure 4-2(a) shows 10,000
empirical trajectories for the returned policy in Fig. 4-1(a). Collision-free trajectories
are plotted in green, and colliding trajectories are plotted in red. The empirical
collision probability is 8.2%. Figure 4-2(b) shows 10,000 empirical trajectories for the
returned policy in Fig. 3-7(c) with the resulting empirical collision probability 0.07%.
When Γ = (0, 0.001], in Fig. 4-2(c), constraint value function, constraint threshold,
and empirical collision probability over iterations are plotted on a semi-log graph
where values are averaged from 50 trials. In each trial, empirical collision probability
is obtained using 10,000 tested trajectories and is plotted for every 100 iterations.

on the probability of collision with Γ = (0, 1], the system takes risks going through
the small gap between two obstacles to reach the goal as fast as possible.

In practice, we are interested in very small collision probability. Thus, we then
set Γ = (0, 0.001], which allows for the maximum tolerated collision probability 0.1%.
As above, Figs. 4-1(d)-4-1(f) show the policy, cost value function, constraint value
function after 600 iterations iterations respectively after about 2.8 seconds. From
the plots, under the policy returned by the algorithm, at the initial position, the
computed cost value is about 1 × 10−6, and the computed collision probability is
0.0003. To achieve this low risk, the system takes a longer route that stays away from
the obstacles. Similarly, Figs. 4-1(g)-4-1(i) present the corresponding plots after 4000
iterations. As we can see, the computed collision probability (0.000938) for the initial
position increases to allow for the smaller cost value (−2.8× 10−5) from the starting
location.

Finally, we tested the empirical collision probability of the returned policies com-
pared to the computed probability value. Figure 4-2(a) shows 10, 000 empirical tra-
jectories for the returned policy in Fig. 4-1(a) when Γ = (0, 1.0] where the empirical
collision probability is 0.082. Similarly, Fig. 4-2(b) shows 10, 000 empirical trajec-
tories for the returned policy in Fig. 4-1(g) when Γ = (0, 0.001] with the resulting
empirical collision probability 0.0007. Furthermore, when Γ = (0, 0.001], we compare
empirical collision probabilities and computed collision probability from the initial
position over iterations on a semi-log graph in Fig. 4-2(c). In this plot, values are
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averaged from 50 trials, and in each trial, empirical collision probability is obtained
using 10, 000 tested trajectories. As we can see, the computed collision probability
approximates very well the actual collision probability when we execute the returned
policies. This observation agrees with the probabilistic soundness property of the
algorithm.
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Chapter 5

Martingale Approach for Risk
Management

In this chapter, we consider a class of continuous-time stochastic optimal control
problems with risk constraints that are expressed as bounded probabilities of failure
for particular initial states. For critical applications such as self-driving cars and
robotic surgery, regulatory authorities can impose a threshold of failure probability
during operation of these systems. Finding control policies that fully respect this
type of constraint is important in practice. As opposed to the problem formulation in
Chapter 4, the problem formulation in this chapter does not enforce the probability
constraints for states along the controlled trajectories. Thus, solutions in this chapter
would allow for more aggressive controls. The problem formulation is equivalent to the
chance-constrained optimization problem studied in robotics where the probability of
safely arriving at a goal from an initial state is required to be above a certain threshold.
However, as we discussed in Chapter 1, most previous works in robotics [75, 109–
113, 116–120] do not solve the continuous-time problems directly and often modify
the problem formulation. As a result, available methods are either computationally
intractable or only able to provide approximate but time-inconsistent solutions.

We present here a martingale approach to solve these problems such that ob-
tained control policies are time-consistent with the initial failure-probability thresh-
old. The martingale approach enables us to transform a risk-constrained problem
into a stochastic target problem. The martingale represents the consistent variation
of risk tolerance that is contingent on available information over time. By sampling
in the augmented state space and computing proper boundary values of the reformu-
lated problem, we extend the iMDP algorithm to compute anytime solutions after
a small number of iterations. When more computing time is allowed, the proposed
algorithm refines the solution quality in an efficient manner. The returned solutions
are both probabilistically-sound and asymptotically-optimal.

Compared to available approaches in robotics, the martingale approach fully re-
spects the considered risk constraints for systems with continuous-time dynamics in
a time-consistent manner. In addition, the presented algorithm in this chapter con-
structs incremental solutions without directly deriving the associated HJB equations.

In the following, we provide a formal problem definition and discuss the martingale
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approach that enables the key transformation. Subsequently, the extended iMDP
algorithm, the analysis of the algorithm, and examples on motion planning and control
problems are presented.1

5.1 Problem Formulation

The notations used to describe the system dynamics and the resulting optimization
problem in this chapter follow closely to their counterparts in Chapters 3 and 4. How-
ever, as we will see that optimal policies are randomized policies depending on extra
random variables, we need to consider a broader class of admissible policies compared
to the previous chapters. Thus, we modify our notations slightly to accommodate
this purpose. In the following presentation, we will highlight these modifications when
necessary.

We consider a system with the same dynamics in Eq. (3.1):

dx(t) = f(x(t), u(t)) dt+ F (x(t), u(t)) dw(t),∀t ≥ 0. (5.1)

We recall that w(·) is an Rdw Brownian motion on a probability space (Ω,F , P ), and
the control process u(·) is admissible with respect to w(·). Let U be the set of all
such control processes.

We define the first exit time Tu,z : U × S → [0,+∞] under a control process
u(·) ∈ U starting from x(0) = z ∈ S as

Tu,z = inf
{
t : x(0) = z, x(t) /∈ So, and Eq.(3.1)

}
. (5.2)

The expected cost-to-go function under a control process u(·) is a mapping from S
to R defined as

Ju(z) = E
[∫ Tu,z

0

αt g
(
x(t), u(t)

)
dt+ αTu,zh(x(Tu,z)) | x(0) = z

]
, (5.3)

where the cost rate function g : S×U → R and the terminal cost function h : S → R
satisfy the same regularity conditions as presented in previous chapters. We remark
that the notations Tu,z and Ju(z) signify the dependence on a control process u(·) in
U rather than a Markov policy as used in the previous chapters.

Let Γ ⊂ ∂S be a set of failure states, and η ∈ [0, 1] be a threshold for risk tolerance
given as a parameter. We consider a risk constraint that is specified for an initial
state x(0) = z under a control process u(·) as follows:

P z
0 (x(Tu,z) ∈ Γ) ≤ η,

where P z
t denotes the conditional probability at time t given x(t) = z. That is,

controls that drive the system from time 0 until the first exit time must be consistent
with the choice of η and the initial state z at time 0. Intuitively, the constraint

1Results in this chapter have been partially published in [144].
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enforces that starting from a given state z at time t = 0, if we execute a control
process u(·) for N times, when N is very large, there are at most Nη executions
resulting in failure. Control processes u(·) that satisfy this constraint are called
time-consistent. To have time-consistent control processes, the risk tolerance along
controlled trajectories must vary consistently with the initial choice of risk tolerance
η based on available information over time.

Let R be the extended real number set. The optimal cost-to-go function J∗ : S →
R is defined as follows:

OPT 3 : J∗(z; η) = inf
u∈U

Ju(z) (5.4)

s/t P z
0 (x(Tu,z) ∈ Γ) ≤ η and Eq. (5.1). (5.5)

In the above notations, the semicolon in J∗(z; η) indicates that η is a parameter. A
control process u∗(·) is called optimal if Ju∗(z) = J∗(z; η). For any ε > 0, a control
process u(·) is called an ε-optimal policy if |Ju(z) − J∗(z; η)| ≤ ε. We note that
compared to the previous chapters, we consider a larger set of control processes than
the set of Markov control processes here. We will restrict again to Markov control
processes in the reformulated problem in Section 5.2.

In this chapter, we consider the problem of computing the optimal cost-to-go
function J∗ and an optimal control process u∗ if obtainable for the problem OPT 3.
We present here a martingale approach to handle the probability constraint and
an extended iMDP algorithm that constructs approximate cost-to-go functions and
policies that are both probabilistically-sound and asymptotically-optimal.

5.2 Martingale approach

We now discuss the martingale approach that transforms the risk-constrained problem
into an equivalent stochastic target problem. The following lemma to diffuse risk
constraints is a key tool for our transformation.

5.2.1 Diffusing risk constraints

Lemma 5.2.1 (see [24,25]) From x(0) = z, a control process u(·) is feasible if
and only if there exists an adapted square-integrable (but possibly unbounded) process
c(·) ∈ Rdw and a martingale q(·) satisfying:

1. q(0) = η, and dq(t) = cT (t)dw(t),

2. For all t, q(t) ∈ [0, 1] a.s.,

3. 1Γ(x(Tu,z)) ≤ q(Tu,z) a.s,

where 1Γ(x) = 1 if and only if x ∈ Γ and 0 otherwise. The martingale q(t) stands for
the level of risk tolerance at time t. We call c(·) a martingale control process.

97



Proof Assuming that there exists c(·) and q(·) as above, due to the martingale prop-
erty of q(·), we have:

P z
0 (x(Tu,z) ∈ Γ) = E [1Γ(x(Tu,z))|F0]

≤ E [q(Tu,z)|F0] = q(0) = η.

Thus, u(·) is feasible.

Now, let u(·) be a feasible control policy. Set η0 = P z
0 (x(Tu,z) ∈ Γ). We note that

η0 ≤ η. We define the martingale

q(t) = E[1Γ(x(Tu,z))|Ft].

Since q(Tu,z) ∈ [0, 1], we infer that q(t) ∈ [0, 1] almost surely. We now set

q̂(t) = q(t) + (η − η0),

then q̂(t) is a martingale with q̂(0) = q(0) + (η− η0) = η0 + (η− η0) = η and q̂(t) ≥ 0
almost surely.

Now, we define τ = inf{t ∈ [0, Tu,z] | q̂(t) ≥ 1}, which is a stopping time. Thus,

q(t) = q̂(t)1t≤τ + 1t>τ ,

as a stopped process of the martingale q̂(t) at τ , is again a martingale with values in
[0,1] a.s.

If τ < Tu,z, we have
1Γ(x(Tu,z)) ≤ 1 = q(Tu,z),

and if τ = Tu,z, we have

q(Tu,z) = E[1Γ(x(Tu,z))|FTu,z ] + (η − η0)

= 1Γ(x(Tu,z)) + (η − η0) ≥ 1Γ(x(Tu,z)).

Hence, q(·) also satisfies that 1Γ(x(Tu,z)) ≤ q(Tu,z).

The control process c(·) exists due to the martingale representation theorem (see
Theorem 2.2.5), which yields dq(t) = cT (t)dw(t). We however note that c(t) is possi-
bly unbounded. We also emphasize that the risk tolerance η becomes the initial value
of the martingale q(·).

5.2.2 Stochastic target problem

Using the above lemma, we augment the original system dynamics with the martingale
q(t) into the following form:

d

[
x(t)
q(t)

]
=

[
f(x(t), u(t))

0

]
dt+

[
F (x(t), u(t))

cT (t)

]
dw(t), (5.6)
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where (u(·), c(·)) is the control process of the above dynamics. The initial value of
the new state is (x(0), q(0)) = (z, η). We will refer to the augmented state space
S × [0, 1] as S and the augmented control space U × Rdw as U . We also refer to the
nominal dynamics and dispersion matrix of Eq. (5.6) as f(x, q, u, c) and F (x, q, u, c)
respectively.

It is well-known that in the following reformulated problem, optimal control pro-
cesses are Markov controls [24, 25, 128]. Thus, let us now focus on the set of Markov
controls that depend only on the current state, i.e., (u(t), c(t)) is a function only of
(x(t), q(t)), for all t ≥ 0. A function ϕ : S → U represents a Markov or feedback
control policy from states in the augmented state space S, which is known to be ad-
missible with respect to the process noise w(·). Let Ψ be the set of all such policies
ϕ. Let µ : S → U and κ : S → Rdw so that ϕ = (µ, κ). We rename Tu,z to Tϕ,z for
the sake of notation clarity. Using these notations, µ(·, 1) is thus a Markov control
policy for the unconstrained problem, i.e. the problem without the risk constraint,
that maps from S to U . Henceforth, we will use µ(·) to refer to µ(·, 1) when it is clear
from the context. Let Π be the set of all such Markov control policies µ(·) on S.

Now, let us rewrite the cost-to-go function Ju(z) in Eq. (5.3) for the threshold η
at time 0 in a new form:

Jϕ(z, η) = E

[ ∫ Tϕ,z
0

αt g
(
x(t), µ(x(t), q(t))

)
dt+ αTϕ,zh(x(Tϕ,z))

∣∣∣(x, q)(0) = (z, η)

]
. (5.7)

We therefore transform the risk-constrained problem in Eqs. (5.4)-(5.5) into a stochas-
tic target problem as follows:

OPT 4 : J∗(z, η) = inf
ϕ∈Ψ

Jϕ(z, η) (5.8)

s/t 1Γ(x(Tϕ,z)) ≤ q(Tϕ,z) a.s. and Eq. (5.6). (5.9)

We note that the comma in J∗(z, η) signifies that η is now a state component rather
than a parameter, and we can recognize that J∗(z, η) is equal to J∗(z; η) in OPT 3.
The constraint in the above formulation specifies the relationship of random variables
at the terminal time as a target set, and hence the name of this formulation [24,25]2.
In this formulation, we solve for feedback control policies ϕ for all (z, η) ∈ S instead
of a particular choice of η for x(0) = z at time t = 0.

We note that in this formulation, boundary conditions are not fully specified
a priori. In the following subsection, we discuss how to remove the constraint in
Eq. (5.9) by constructing its boundary and computing the boundary values.

2In [24,25], the authors use the name “stochastic target problems” to refer to feasibility problems
without objective functions. With slight abuse of terminology, we use the same name for problems
with objective functions.
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5.2.3 Characterization and boundary conditions

The domain of OPT 4 is:

D = {(z, η) ∈ S | ∃ϕ ∈ Ψ s/t 1Γ(x(Tϕ,z)) ≤ q(Tϕ,z) a.s.}.

By the definition of the risk-constrained problem OPT 3, we can see that if (z, η) ∈ D
then (z, η′) ∈ D for any η < η′ ≤ 1. Thus, for each z ∈ S, we define

γ(z) = inf {η ∈ [0, 1] | (z, η) ∈ D}, (5.10)

as the infimum of risk tolerance at z. Therefore, we also have:

γ(z) = inf
u∈U

P z
0

(
x(Tu,z) ∈ Γ) = inf

u∈U
E
[
1Γ(x(Tu,z))

∣∣ x(0) = z
]
. (5.11)

Thus, the boundary of D is

∂D = S × {1} ∪ {(z, γ(z)) | z ∈ S} ∪ {(z, η) | z ∈ ∂S, η ∈ [γ(z), 1]}. (5.12)

For states in {(z, η) | z ∈ ∂S, η ∈ [γ(z), 1]}, the system stops on ∂S and takes terminal
values according to h(·).

The domain D is illustrated in Fig. 5-1. In this example, the state space S is a
bounded two-dimensional area with boundary ∂S containing a goal region G and an
obstacle region Γ = Obs. The augmented state space S augments S with an extra
dimension for the martingale state q. The infimum probability of reaching into Γ
from states in S is depicted as γ. As we can see, γ takes value 1 in Γ. The volume
between γ and the hyper-plane q = 1 is the domain D of OPT 4.

Now, let η = 1, we notice that J∗(z, 1) is the optimal cost-to-go from z for the
stochastic optimal problem without the risk constraint:

J∗(z, 1) = inf
u∈U

Ju(z). (5.13)

As seen in Chapter 3, an optimal control process that solves the optimization problem
in Eq. (5.13) is given by a Markov policy µ∗(·, 1) ∈ Π. We now define the failure
probability function Υ : S → [0, 1] under such an optimal policy µ∗(·, 1) as follows:

Υ(z) = 1Γ(x(Tµ∗,z)), ∀z ∈ S, (5.14)

where Tµ∗,z is the first exit time when the system follows the control policy µ∗(·, 1)
from the initial state z. By the definitions of γ and Υ, we can recognize that Υ(z) ≥
γ(z) for all z ∈ S. Figure 5-2 shows an illustration of Υ for the same example in
Fig. 5-1.

Since following the policy µ∗(·, 1) from an initial state z yields a failure probability
Υ(z), we infer that:

J∗(z, 1) = J∗(z,Υ(z)). (5.15)
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Figure 5-1: A domain of OPT 4. The state space S is a bounded two-dimensional
area with boundary ∂S containing a goal region G and an obstacle region Γ = Obs.
The augmented state space S augments S with an extra dimension for the martingale
state q. The infimum probability of reaching into Γ from states in S is depicted as γ.
γ takes value 1 in Γ. The volume between γ and the hyper-plane q = 1 is the domain
D of OPT 4.

From the definition of the problem OPT 3, we also have:

0 ≤ η < η′ ≤ 1⇒ J∗(z, η) ≥ J∗(z, η′). (5.16)

Thus, for any Υ(z) < η < 1, we have:

J∗(z, 1) ≤ J∗(z, η) ≤ J∗(z,Υ(z)). (5.17)

Combining Eq. (5.15) and Eq. (5.17), we have:

∀ η ∈ [Υ(z), 1]⇒ J∗(z, η) = J∗(z, 1). (5.18)

As a consequence, when we start from an initial state z with a risk threshold η that is
at least Υ(z), it is optimal to execute an optimal control policy of the corresponding
unconstrained problem from the initial state z.

It also follows from Eq. (5.16) that reducing the risk tolerance from 1.0 along
the controlled process can not reduce the optimal cost-to-go function evaluated at
(x(t), q(t) = 1.0). Thus, we infer that for augmented states (x(t), q(t)) where q(t) =
1.0, the optimal martingale control c∗(t) is 0.
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Figure 5-2: Illustration of the failure probability function Υ due to an optimal control
policy µ∗(·, 1) of the unconstrained problem. Continuing from the example in Fig. 5-
1, we plot Υ for the same two-dimensional example. By the definitions of γ and Υ,
we have Υ ≥ γ.

Now, under all admissible policies ϕ, we can not obtain a failure probability for
an initial state z that are lower than γ(z). Thus, it is clear that J∗(z, η) = +∞ for
all 0 ≤ η < γ(z). The following lemma characterizes the optimal martingale control
c∗(t) for augmented states (x(t), q(t) = γ(x(t))).

Lemma 5.2.2 Given the problem definition as in Eqs. (5.4)-(5.5). We assume that
γ(x) is a smooth function3. When q(t) = γ(x(t)) and u(t) is chosen, we must have:

c(t)T =
∂γ

∂x(t)

T

F (x(t), u(t)). (5.19)

Proof Using the geometric dynamic programming principle (Theorem 2.2.13), we
have the following result: starting from q(t) = γ(x(t)), for all stopping time τ ≥ t, a
feasible control policy ϕ ∈ Ψ satisfies

q(τ) ≥ γ(x(τ))

almost surely.

3When γ(x) is not smooth, we need the concept of viscosity solutions and weak dynamic pro-
gramming principle. See [24,25] for details.
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Take τ = t+, under a feasible control policy ϕ, we have q(t+) ≥ γ(x(t+)) a.s. for
all t, and hence dq(t) ≥ dγ(x(t)) a.s. By Itô lemma (see Section 2.2.1), we derive the
following relationship:

cT (t)dw(t) ≥ ∂γ

∂x

T(
f(x(t), u(t))dt+ F (x(t), u(t))dw(t)

)
+

1

2
Tr
(
F (x(t), u(t))F (x(t), u(t))T

∂2γ

(∂x)2

)
dt a.s.

For the above inequality to hold almost surely, the coefficient of dw(t) must be 0, i.e.:

c(t)T − ∂γ

∂x(t)

T

F (x(t), u(t)) = 0.

This leads to Eq. (5.19).

In addition, if a control process that solves Eq. (5.11) is obtainable, say uγ, the cost-to-
go due to that control process is Juγ (z). We will conveniently refer to Juγ (z) as Jγ(z).
Under the mild assumption that uγ is unique, it follows that Jγ(z) = J∗(z, γ(z)).

We also emphasize that when (x(t), q(t)) is inside the interior Do of D, the usual
dynamic programming principle holds. The extension of iMDP outlined below is
designed to compute the sequence of approximate cost-to-go values on the boundary
∂D and in the interior Do.

5.3 Algorithm

The following discussion follows closely the presentation in Chapters 3 and 4. Nev-
ertheless, we will work with both the original state space S and the augmented state
space S. Thus, we will repeat the description in detail for the sake of clarity.

In particular, we briefly overview how the Markov chain approximation technique
is used in both the original and augmented state spaces. We then present the extended
iMDP algorithm that incrementally constructs the boundary values and computes
solutions to our problem. We sample in the original state space S to compute J∗(·, 1)
and its induced collision probability Υ(·) as in Eq. (5.14), the min-failure probability
γ(·) as in Eq. (5.11) and its induced cost-to-go Jγ(·). Concurrently, we also sample
in the augmented state space S with appropriate values for samples on the boundary
of D and approximate the optimal cost-to-go function J∗(·, ·) in the interior Do. As a
result, we construct a sequence of anytime control policies to approximate an optimal
control policy ϕ∗ = (µ∗, κ∗) in an efficient iterative procedure.

5.3.1 Markov chain approximation

On the state space S, we want to approximate J∗(z, 1), Υ(z), γ(z) and Jγ(z) for
any state z ∈ S, and it suffices to consider Markov controls as shown in [136, 137].
The Markov chain approximation method approximates the continuous dynamics in
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Eq. (5.1) using a sequence of MDPs {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and a sequence
of holding times {∆tn}∞n=0 that are locally consistent as presented in Chapter 3. In
particular, we construct Gn(z, v) = g(z, v)∆tn(z), and Hn(z) = h(z) for each z ∈ Sn
and v ∈ U . We also require:

• For all z ∈ S, limn→∞∆tn(z) = 0,

• For all z ∈ S and all v ∈ U :

lim
n→∞

EPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= f(z, v),

lim
n→∞

CovPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= F (z, v)F (z, v)T .

We recall that in the Markov chain approximation approach, we solve a sequence
of control problems defined on {Mn}∞n=0 as follows. A Markov or feedback policy µn
is a function that maps each state z ∈ Sn to a control µn(z) ∈ U . The set of all such
policies is Πn. We define tni =

∑i−1
0 ∆tn(ξni ) for i ≥ 1 and tn0 = 0. Given a policy

µn that approximates a Markov control process u(·) in Eq. (5.3), the corresponding
cost-to-go due to µn on Mn is:

Jn,µn(z) = EPn

[
In−1∑
i=0

αt
n
i Gn(ξni , µn(ξni )) + αt

n
InHn(ξnIn)

∣∣∣ x(0) = z

]
,

where {ξni ; i ∈ N} is the sequence of states of the controlled Markov chain under the
policy µn, and In is the termination time defined as In = min{i : ξni ∈ ∂Sn} where
∂Sn = ∂S ∩ Sn.

The optimal cost-to-go function J∗n(·, 1) : Sn → R that approximates the uncon-
strained optimal cost-to-go function J∗(·, 1) is denoted as

J∗n(z, 1) = inf
µn∈Πn

Jn,µn(z) ∀z ∈ Sn. (5.20)

An optimal policy for the unconstrained problem in Eq. (5.20), denoted by µ∗n, satisfies
Jn,µ∗n(z) = J∗n(z, 1) for all z ∈ Sn. For any ε > 0, µn is an ε-optimal policy if
||Jn,µn(·)− J∗n(·, 1)||∞ ≤ ε. We also define the failure probability function Υn : Sn →
[0, 1] due to an optimal policy µ∗n as follows:

Υn(z) = EPn
[
1Γ(ξnIn)

∣∣ x(0) = z ; µ∗n
]
∀z ∈ Sn, (5.21)

where we denote µ∗n after the semicolon (as a parameter) to emphasize the dependence
of the Markov chain on this control policy.

In addition, the min-failure probability γn on Mn that approximates γ is defined
as:

γn(z) = inf
µn∈Πn

EPn
[
1Γ(ξnIn)

∣∣ x(0) = z
]
∀z ∈ Sn. (5.22)
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We note that the optimization programs in Eq. (5.20) and Eq. (5.22) may have two
different optimal feedback control policies. Let νn ∈ Πn be a control policy on Mn

that achieves γn, then the cost-to-go function due to νn is Jn,νn which approximates
Jγ. For this reason, we conveniently refer to Jn,νn as Jγn .

Similarly, in the augmented state space S, we use a sequence of MDPs {Mn =
(Sn, U, P n, Gn, Hn)}∞n=0 and a sequence of holding times {∆tn}∞n=0 that are locally
consistent with the augmented dynamics in Eq. (5.6). In particular, Sn is a random
subset of D ⊂ S, Gn is identical to Gn, and Hn(z, η) is equal to Hn(z) if η ∈
[γn(z), 1] and +∞ otherwise. Similar to the construction of Pn and ∆tn, we also
construct the transition probabilities P n onMn and holding time ∆tn that satisfy the
local consistency conditions for nominal dynamics f(x, q, u, c) and dispersion matrix
F (x, q, u, c).

A trajectory on Mn is denoted as {ξni ; i ∈ N} where ξ
n

i ∈ Sn. A Markov policy
ϕn is a function that maps each state (z, η) ∈ Sn to a control (µn(z, η), κn(z, η)) ∈ U .
Moreover, admissible κn at (z, 1) ∈ Sn is 0 and at (z, γn(z)) ∈ Sn is a function of
µ(z, γn(z)) as shown in Eq. (5.19). Admissible κn for other states in Sn is such that the
martingale-component process of {ξni ; i ∈ N} belongs to [0,1] almost surely. Using the
fact that Brownian motions can approximated as random walks, from Lemma 5.2.1,
we can show that equivalently, each control component of κn(z, η) belongs to[

− min(η, 1− η)

∆tndw
,
min(η, 1− η)

∆tndw

]
. (5.23)

The set of all such policies ϕn is Ψn.

Under a control policy ϕn, the cost-to-go function on Mn that approximates the
function in Eq. (5.7) is defined as:

Jn,ϕn(z, η) = EPn

In−1∑
i=0

αt
n
i Gn(ξ

n

i , µn(ξ
n

i )) + αt
n
InHn(ξ

n

In)
∣∣∣ ξn0 = (z, η)

 ,
where t

n
i =

∑i−1
0 ∆tn(ξ

n

i ) for i ≥ 1 with t
n
0 = 0, and In is index when the x-component

of ξ
n

i first arrives at ∂S. The approximating optimal cost J∗n : Sn → R for J∗ in
Eq. (5.8) is:

J∗n(z, η) = inf
ϕn∈Ψn

Jn,ϕn(z, η) ∀(z, η) ∈ Sn. (5.24)

To solve the above optimization, we compute approximate boundary values for states
on the boundary of D using the sequence of MDP {Mn}∞n=0 on S as discussed above.
For states (z, η) ∈ Sn ∩Do, the normal dynamic programming principle holds.

The extension of iMDP outlined below is designed to compute the sequence of op-
timal cost-to-go functions {J∗n}∞n=0, associated failure probability functions {Υn}∞n=0,
min-failure probability functions {γn}∞n=0, min-failure cost functions {Jγn}∞n=0, and the
sequence of anytime control policies {µn}∞n=0 and {κn}∞n=0 in an incremental proce-
dure.
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5.3.2 Extended iMDP algorithm

Before presenting the details of the algorithm, we discuss a number of primitive
procedures.

Sampling

The Sample(X) procedure sample states independently and uniformly in X.

Nearest Neighbors

Given ζ ∈ X ⊂ RdX and a set Y ⊆ X, for any k ∈ N, the procedure Nearest(ζ, Y, k)
returns the k nearest states ζ ′ ∈ Y that are closest to ζ in terms of the dX-dimensional
Euclidean norm.

Time Intervals

Given a state ζ ∈ X and a number k ∈ N, the procedure ComputeHoldingTime(ζ, k, d)
returns a holding time computed as follows:

ComputeHoldingTime(ζ, k, d) = χt

(
log k

k

)θςρ/d
,

where χt > 0 is a constant, and ς, θ are constants in (0, 1) and (0, 1] respectively.

Transition Probabilities

We are given a state ζ ∈ X, a subset Y ∈ X, a control v in some control set V ,
a positive number τ describing a holding time, k is a nominal dynamics, K is a
dispersion matrix. The procedure ComputeTranProb(ζ, v, τ, Y, k,K) returns:

i. A finite set Znear ⊂ X of states such that the state ζ + k(ζ, v)τ belongs to the
convex hull of Znear and ||z′ − z||2 = O(τ) for all ζ ′ 6= ζ ∈ Znear, and

ii. A function P that maps Znear to a non-negative real numbers such that P (·) is
a probability distribution over the support Znear.

As done in the previous chapters, these transition probabilities are designed to pro-
vide a sequence of locally consistent Markov chains that approximate the nominal
dynamics k and the dispersion matrix K.

Backward Extension

Given T > 0 and two states z, z′ ∈ S, the procedure ExtBackwardsS(z, z′, T ) returns
a triple (x, v, τ) such that (i) ẋ(t) = f(x(t), u(t))dt and u(t) = v ∈ U for all t ∈ [0, τ ],
(ii) τ ≤ T , (iii) x(t) ∈ S for all t ∈ [0, τ ], (iv) x(τ) = z, and (v) x(0) is close to z′.
If no such trajectory exists, the procedure returns failure. We can solve for the triple

106



Algorithm 7: Risk Constrained iMDP()

1 (S0, S0, J0, γ0,Υ0, J
γ
0 , µ0, κ0,∆t0,∆t0)← (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅);

2 for n = 1→ N do
3 UpdateDataStorage(n− 1, n) ;
4 SampleOnBoundary(n) ;

// K1,n ≥ 1 rounds to construct boundary conditions

5 for i = 1→ K1,n do
6 ConstructBoundary(Sn, Sn, Jn, γn,Υn, J

γ
n , µn,∆tn) ;

// K2,n ≥ 0 rounds to process the interior region

7 for i = 1→ K2,n do
8 ProcessInterior(Sn, Sn, Jn, γn,Υn, J

γ
n , µn, κn,∆tn);

(x, v, τ) by sampling several controls v and choose the control resulting in x(0) that
is closest to z′.

When (z, η), (z′, η′) are in S, the procedure ExtBackwardsSM((z, η), (z′, η′), T ) re-
turns (x, q, v, τ) in which (x, v, τ) is the output of ExtBackwardsS(z, z′, T ) and q is
sampled according to a Gaussian distribution N(η′, σq) where σq is a parameter.

Sampling and Discovering Controls

For z ∈ S and Y ⊆ S, the procedure ConstructControlsS(k, z, Y, T ) returns a set of
k controls in U . We can uniformly sample k controls in U . Alternatively, for each state
z′ ∈ Nearest(z, Y, k), we solve for a control v ∈ U such that (i) ẋ(t) = f(x(t), u(t))dt
and u(t) = v ∈ U for all t ∈ [0, T ], (ii) x(t) ∈ S for all t ∈ [0, T ], (iii) x(0) = z and
x(T ) = z′.

For (z, η) ∈ S and Y ⊆ S, the procedure ConstructControlsSM(k, (z, η), Y, T )
returns a set of k controls in U such that the U -component of these controls are com-
puted as in ConstructControlsS, and the martingale-control-components of these
controls are sampled in admissible sets.

Algorithm Description

The extended iMDP algorithm is presented in Algorithms 7-11. The algorithm incre-
mentally refines two MDP sequences, namely {Mn}∞n=0 and {Mn}∞n=0, and two hold-
ing time sequences, namely {∆tn}∞n=0 and {∆tn}∞n=0, that consistently approximate
the original system in Eq. (5.1) and the augmented system in Eq. (5.6) respectively.
We associate with z ∈ Sn a cost value Jn(z, 1), a control µn(z, 1), a failure probability
Υn(z) due to µn(·, 1), a min-failure probability γn(z), a cost-to-go value Jγn(z) induced
by the obtained min-failure policy. Similarly, we associate with z ∈ Sn a cost value
Jn(z), a control (µn(z), κn(z)).

As shown in Algorithm 7, initially, empty MDP models M0 and M0 are cre-
ated. The algorithm then executes N iterations in which it samples states on the
pre-specified part of the boundary ∂D, constructs the un-specified part of ∂D and
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Algorithm 8: ConstructBoundary(Sn, Sn, Jn, γn,Υn, J
γ
n , µn,∆tn)

1 zs ← Sample(S) ;
2 znear ← Nearest(zs, Sn, 1) ;
3 if (xe, ue, τ)← ExtBackwardsS(znear, zs, T0) then
4 ze ← xe(0);
5 ic = τg(ze, ue) + ατJn(znear, 1);
6 icγ = τg(ze, ue) + ατJγn(znear);

7 (Sn, Sn, Jn(ze, 1), γn(ze),Υn(ze), J
γ
n(ze), µn(ze, 1),∆tn(ze))←

(Sn ∪ {ze}, Sn ∪ {(ze, 1)}, ic, γn(znear),Υn(znear), ic
γ, ue, τ) ;

// Perform Ln ≥ 1 updates

8 for i = 1→ Ln do

// Choose Kn = Θ
(
|Sn|θ

)
< |Sn| states

9 Zupdate ← Nearest(ze, Sn\∂Sn,Kn) ∪ {ze};
10 for z ∈ Zupdate do
11 UpdateS(z, Sn, Jn, γn,Υn, J

γ
n , µn,∆tn) ;

processes the interior of D. More specifically, at Line 3, UpdateDataStorage(n−1, n)
indicates that refined models in the nth iteration are constructed from models in the
(n−1)th iteration, which can be implemented by simply sharing memory among iter-
ations. Using rejection sampling, the procedure SampleOnBoundary at Line 4 sample
states in ∂S and ∂S × [0, 1] to add to Sn and Sn respectively. We also initialize
appropriate cost values for these sampled states.

We conduct K1,n rounds to refine the MDP sequence {Mn}∞n=0 as done in the
original iMDP algorithm using the procedure ConstructBoundary (Line 6). Thus, we
can compute the cost function Jn and the associated failure probability function Υn on
Sn×{1}. In the same procedure, we compute the min-failure probability function γn as
well as the min-failure cost function Jγn on Sn. In other words, the algorithm effectively
constructs approximate boundaries for D and approximate cost-to-go functions Jn on
these approximate boundaries over iterations. To compute cost values for the interior
Do of D, we conduct K2,n rounds of the procedure ProcessInterior (Line 8) that
similarly refines the MDP sequence {Mn}∞n=0 in the augmented state space. We can
choose the values of K1,n and K2,n so that we perform a large number of iterations to
obtain stable boundary values before processing the interior domain when n is small.
In the following discussion, we will present in detail the implementations of these
procedures.

In Algorithm 8, we show the implementation of the procedure ConstructBoundary.
We construct a finer MDP modelMn based on the previous model as follows. A state
zs, is sampled from the interior of the state space S (Line 1). The nearest state znear

to zs (Line 2) in the previous model is used to construct an extended state ze by
using the procedure ExtendBackwardsS at Line 3. The extended states ze and (ze, 1)
are added into Sn and Sn respectively. The associated cost value Jn(ze, 1), failure
probability Υn(ze), min-failure probability γn(ze), min-failure cost value Jγn(ze) and

108



Algorithm 9: ProcessInterior(Sn, Sn, Jn, γn,Υn, J
γ
n , µn, κn,∆tn)

1 zs = (zs, qs)← Sample(S);

2 znear = (znear, qnear)← Nearest(zs, Sn, 1);
3 if (xe, qe, ue, τ)← ExtBackwardsSM(znear, zs, T0) then
4 ze ← (xe(0), qe);
5 if qe < γn(znear) then

// C takes a large value

6 (Sn, Jn(ze), µn(ze), κn(ze),∆tn(ze))← (Sn ∪ {ze}, C, ue, 0, τ) ;

7 else
8 ic = τg(ze, ue) + ατJn(znear);

9 (Sn, Jn(ze), µn(ze), κn(ze),∆tn(ze))← (Sn ∪ {ze}, ic, ue, 0, τ) ;

// Perform Ln ≥ 1 updates

10 for i = 1→ Ln do

// Choose Kn = Θ
(
|Sn|θ

)
< |Sn| states

11 Zupdate ← Nearest(ze, Sn\∂Sn,Kn) ∪ {ze};
12 for z = (z, q) ∈ Zupdate do
13 UpdateSM(z, Sn, Jn, γn,Υn, J

γ
n , µn, κn,∆tn);

control µn(ze) are initialized at Line 7.

We then perform Ln ≥ 1 updating rounds in each iteration (Lines 8-11). In
particular, we construct the update-set Zupdate consisting of Kn = Θ(|Sn|θ) states
and ze where |Kn| < |Sn|. For each state z in Zupdate, the procedure UpdateS as
shown in Algorithm 10 implements the following Bellman update:

Jn(z, 1) = min
v∈Un(z)

{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]}.

The details of the implementation are as follows. A set of Un controls is constructed
using the procedure ConstructControlsS where |Un| = Θ(log(|Sn|)) at Line 2. For
each v ∈ Un, we construct the support Znear and compute the transition probability
Pn(· | z, v) consistently over Znear from the procedure ComputeTranProb (Line 4). The
cost values for the state z and controls in Un are computed at Lines 5. We finally
choose the best control in Un that yields the smallest updated cost value (Line 7).
Correspondingly, we improve the min-failure probability γn and its induced min-
failure cost value Jγn in Lines 9-12.

Similarly, in Algorithm 9, we carry out the sampling and extending process in
the augmented state space S to refine the MDP sequence Mn (Lines 1-3). In this
procedure, if an extended node has a martingale state that is below the corresponding
min-failure probability, we initialize the cost value for extended node with a very large
constant C representing +∞ (see Lines 5-6). Otherwise, we initialize the extended
node as seen in Lines 8-9. We then execute Ln rounds (Lines 10-13) to update the
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Algorithm 10: UpdateS(z, Sn, Jn, γn,Υn, J
γ
n , µn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|, dx);
// Sample or discover Mn = Θ(log(|Sn|)) controls

2 Un ← ConstructControlsS(Mn, z, Sn, τ);
3 for v ∈ Un do
4 (Znear, Pn)← ComputeTranProb(z, v, τ, Sn, f, F );

// Update cost

5 J ← τg(z, v) + ατ
∑

y∈Znear
Pn(y)Jn(y, 1);

6 if J < Jn(z, 1) then
7 p←

∑
y∈Znear

Pn(y)Υn(y);

8 (Jn(z, 1),Υn(z), µn(z, 1),∆tn(z))← (J, p, v, τ);

// Update min-failure probability

9 b←
∑

y∈Znear
Pn(y)γn(y);

10 if b < γn(z) then
11 J ← τg(z, v) + ατ

∑
y∈Znear

Pn(y)Jγn(y);

12 (γn(z), Jγn(z))← (b, J);

cost-to-go Jn for states in the interior Do of D using the procedure UpdateSM as
shown in Algorithm 11. When a state z ∈ Sn is updated in UpdateSM, we perform
the following Bellman update:

Jn(z) = min
(v,c)∈Un(z)

{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, (v, c)]},

where the control set Un is constructed by the procedure ConstructControlsSM, and
the transition probability P n(·|z, (v, c)) consistently approximates the augmented dy-
namics in Eq. (5.6). To implement the above Bellman update at Line 5 in Algo-
rithm 11, we make use of the characteristics presented in Section 5.2.3 where the
notation 1A is 1 if the event A occurs and 0 otherwise. That is, when the martingale
state s of a state y = (y, s) in the support Znear is at least Υn(y), we substitute Jn(y)
with Jn(y, 1). Similarly, when the martingale state s is equal to γn(y), we substitute
Jn(y) with Jγn(y).

Feedback control

At the nth iteration, given a state x ∈ S and a martingale component q, to find a
policy control (v, c), we perform a Bellman update based on the approximated cost-
to-go Jn for the augmented state (x, q). During the holding time ∆tn, the original
system takes the control v and evolves in the original state space S while we simulate
the dynamics of the martingale component under the martingale control c. After this
holding time period, the augmented system has a new state (x′, q′), and we repeat
the above process.
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Algorithm 11: UpdateSM(z = (z, q), Sn, Jn, γn,Υn, J
γ
n , µn, κn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|, dx + 1);

// Sample or discover Mn = Θ(log(|Sn|)) controls

2 Un ← ConstructControlsSM(Mn, z, Sn, τ);

3 for v = (v, c) ∈ Un do

4 (Znear, P n)← ComputeTranProb(z, v, τ , Sn, f , F );

5 J ← τg(z, v) + ατ
∑

y=(y,s)∈Znear
P n(y)

[
1s=γn(y)J

γ
n(y) + 1γn(y)<s<Υn(y)Jn(y) +

1s≥Υn(y)Jn(y, 1)
]
;

// Improved cost

6 if J < Jn(z) then
7 (Jn(z), µn(z), κn(z),∆tn(z))← (J, v, c, τ);

Figure 5-3 visualizes how feedback policies look in the original and augmented
state spaces. In the augmented state space S, a feedback control policy is a deter-
ministic Markov policy as a function of an augmented state (x, q). As the system
actually evolves in the original state space S, and the martingale state q can be seen
as a random parameter at each state x, the feedback control policy is a randomized
policy.

Using the characteristics presented in Section 5.2.3, we infer that when a certain
condition meets, the system can start following a deterministic control policy. More
precisely, we recall that for all η ∈ [Υ(z), 1], we have J∗(z, η) = J∗(z, 1). Thus,
starting from any augmented state (z, η) where η > Υ(z), we can solve the problem
as if the failure probability were 1.0 and use optimal control policies of the uncon-
strained problem from the state z. We illustrate this idea in Fig. 5-4. As we can see,
when the martingale state along the trajectory is at least the corresponding value
provided by Υ, the system starts following a deterministic control policy µn(·, 1) of
the unconstrained problem.

Algorithm 12 implements the above feedback policy. As shown in this algorithm,
Line 3 returns a deterministic policy of the unconstrained problem if the martingale
state is large enough, and Lines 5-13 perform a Bellman update to find the best
augmented control if otherwise. When the system starts using deterministic policies
of the unconstrained problem, we can set the martingale state to 1.0 and set the
optimal martingale control to 0 in the following control period.

Complexity

Similar to the original iMDP version in Chapter 3, the time complexity per iteration of
the implementation in Algorithms 7-11 is O

(
|Sn|θ(log |Sn|)2

)
. The space complexity

of the iMDP algorithm is O(|Sn|) where |Sn| = Θ(n) due to our sampling strategy.
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Figure 5-3: A feedback-controlled trajectory of OPT 3. In the augmented state space
S, a feedback control policy is a deterministic Markov policy as a function of an
augmented state (x, q). As the system actually evolves in the original state space S,
and the martingale state q can be seen as a random parameter at each state x, the
feedback control policy is a randomized policy.

5.4 Analysis

Previous results in Chapter 3 show that Jn(·, 1) returned from the iMDP algorithm
converges uniformly to J∗(·, 1) in probability. That is, we are able to compute J∗(·, 1)
in an incremental manner without directly computing J∗n(·, 1). As a consequence, it
follows that Υn converges to Υ uniformly in probability. Using the same proof, we
conclude that γn(·) and Jγn(·) converges uniformly to γ(·) and J∗(·, γ) in probability
respectively. Therefore, we have incrementally constructed the boundary values on
∂D of the equivalent stochastic target problem presented in Eqs. (5.8)-(5.9). These
results are established based on the approximation of the dynamics in Eq. (3.1) using
the MDP sequence {Mn}∞n=0.

Similarly, the uniform convergence of Jn(·, ·) to J∗(·, ·) in probability on the inte-
rior of D is followed from the approximation of the dynamics in Eq. (5.6) using the
MDP sequence {Mn}∞n=0. In the following theorem, we formally summarize the key
convergence results of the extended iMDP algorithm.

Theorem 5.4.1 Let Mn and Mn be two MDPs with discrete states constructed in
S and S respectively, and let Jn : Sn → R be the cost-to-go function returned by the
extended iMDP algorithm at the nth iteration. Let us define ||b||X = supz∈X b(z) as
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Figure 5-4: A modified feedback-controlled trajectory of OPT 3. We continue the
illustration in Fig. 5-3. When the martingale state along the trajectory is at least
the corresponding value provided by Υ, the system starts following a deterministic
control policy µn(·, 1) of the unconstrained problem.

the sup-norm over a set X of a function b with a domain containing X. We have the
following random variables converge in probability:

1. plimn→∞||Jn(·, 1)− J∗(·, 1)||Sn = 0,

2. plimn→∞||Υn −Υ||Sn = 0,

3. plimn→∞||γn − γ||Sn = 0,

4. plimn→∞||Jγn − Jγ||Sn = 0,

5. plimn→∞||Jn − J∗||Sn = 0.

The first four events construct the boundary values on ∂D in probability, which leads
to the probabilistically sound property of the extended iMDP algorithm. The last event
asserts the asymptotically optimal property through the convergence of the approximat-
ing cost-to-go function Jn to the optimal cost-to-go function J∗ on the augmented state
space S.
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Algorithm 12: Risk Constrained Policy(z = (z, q) ∈ S, n)

1 znearest ← Nearest(z, Sn, 1);
2 if q ≥ γn(znearest) then

// Switch to a deterministic control policy

3 return
(
ϕ(z) = (µn(znearest), 0),∆tn(znearest)

)
;

4 else

// Perform a Bellman update to select a control

5 (Jmin, vmin, cmin)← (+∞, ∅, ∅) ;

6 τ ← ComputeHoldingTime(z, |Sn|, dx + 1);

// Sample or discover Mn = Θ(log(|Sn|)) controls

7 Un ← ConstructControlsSM(Mn, z, Sn, τ);

8 for v = (v, c) ∈ Un do

9 (Znear, P n)← ComputeTranProb(z, v, τ , Sn, f , F );

10 J ← τg(z, v) + ατ
∑

y=(y,s)∈Znear
P n(y)

[
1s=γn(y)J

γ
n(y) +

1γn(y)<s<Υn(y)Jn(y)+1s≥Υn(y)Jn(y, 1)
]
;

// Improved cost

11 if J < Jmin then
12 (Jmin, vmin, cmin)← (J, v, c) ;

13 return
(
ϕ(z) = (v, c), τ

)
;

5.5 Experiments

We carried out an experiment that is similar to the experiment in Chapter 4. We
controlled a system with stochastic single integrator dynamics to a goal region with
free ending time in a cluttered environment (see Fig. 5-5). The dynamics is given

by dx(t) = u(t)dt + Fdw(t) where x(t) ∈ R2, u(t) ∈ R2, and F =

[
0.5 0
0 0.5

]
.

The system stops when it collides with obstacles or reach the goal region. The cost
function is the weighted sum of total energy spent to reach the goal G at (8, 8), which
is measured as the integral of square of control magnitude, and a terminal cost, which
is −1000 for the goal region G and 10 for the obstacle region Γ, with a discount factor
α = 0.9. The maximum velocity of the system in the x and y directions is one. At
the beginning, the system starts from (6.5,−3). Failure is defined as collisions with
obstacles, and thus we use failure probability and collision probability interchangeably.

We first show how the extended iMDP algorithm constructs the sequence of ap-
proximating MDPs on S over iterations in Fig. 5-6. In particular, Figs. 5-6(a)-5-6(c)
depict anytime policies on the boundary S × 1.0 after 500, 1000, and 3000 iterations.
Figures 5-6(d)-5-6(f) show the Markov chains created by anytime policies found by the
algorithm on Mn after 200, 500 and 1000 iterations. We observe that the structures
of these Markov chains are indeed random graphs that are (asymptotically almost-
surely) connected to cover the state space S. As in the original version of iMDP,
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Figure 5-5: An operating environment for the single integrator system. The sys-
tem starts at (6.5,−3) to reach a goal at (8, 8). There are three obstacles in the
environment which creates narrow corridors.

it is worth noting that the structures of these Markov chains can be constructed
on-demand during the execution of the algorithm.

The sequence of approximating MDPs on S provides boundary values for the
stochastic target problem as shown in Fig. 5-7. In particular, Figs. 5-7(a)-5-7(c)
shows a policy map, cost value function J4000,1.0 and the associated collision proba-
bility function Υ4000 for the unconstrained problem after 4000 iterations. Similarly,
Figs. 5-7(d)-5-7(f) show a policy map, the associated value function Jγ4000, and the
min-collision probability function γ4000 after 4000 iterations. As we can see, for the un-
constrained problem, the policy map encourages the system to go through the narrow
corridors with low cost-to-go values and high probabilities of collision. In contrast,
the policy map from the min-collision probability problem encourages the system
to detour around the obstacles with high cost-to-go values and low probabilities of
collision.

We now show how the extended iMDP algorithm constructs the sequence of ap-
proximating MDPs on the augmented state space S. Figures 5-8(a)-5-8(c) show the
corresponding anytime policies in S over iterations. In Fig. 5-8(c), we show the top-
down view of a policy for states inM3000\M3000. Compared to Fig 5-6(c), we observe
that the system will try to avoid the narrow corridors when the risk tolerance is low.
In Figs. 5-8(d)-5-8(f), we show the Markov chains that are created by anytime policies
in the augmented state space. As we can see again, the structures of these Markov
chains quickly cover S with (asymptotically almost-surely) connected random graphs.

We then examine how the algorithm computes the value functions for the interior
Do of the reformulated stochastic target problem in comparison with the value func-
tion of the unconstrained problem in Fig. 5-9. Figure 5-9(a)-5-9(c) show approximate
cost-to-go Jn when the probability threshold η0 is 1.0 for n = 200, 2000 and 4000.
We recall that the value functions in these figures form the boundary conditions on
S × 1, which is a subset of ∂D. In the interior Do, Figs. 5-9(d)-5-9(f) present the ap-
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(a) Policy on M500.
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(b) Policy on M1000.
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(c) Policy on M3000.
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(d) Markov chain implied by
M200.
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(e) Markov chain implied by
M500.

(f) Markov chain implied by
M1000.

Figure 5-6: A system with stochastic single integrator dynamics in a cluttered en-
vironment. The standard deviation of noise in x and y directions is 0.5. The cost
function is the sum of total energy spent to reach the goal, which is measured as the
integral of square of control magnitude, and a terminal cost, which is −1000 for the
goal region (G) and 10 for the obstacle region (Γ), with a discount factor α = 0.9.
Figures 5-6(a)-5-6(c) depict anytime policies on the boundary S× 1.0 over iterations.
Figures 5-6(d)-5-6(f) show the Markov chains created by anytime policies onMn over
iterations.

proximate cost-to-go J4000 for augmented states where their martingale components
are 0.1, 0.5 and 0.9. As we can see, the lower the martingale state is, the higher the
cost value is – which is consistent with the characteristics in Section 5.2.3.

Lastly, we tested the performance of obtained anytime policies after 4000 iterations
with different initial collision probability thresholds η. To do this, we first show how
the policies of the unconstrained problem and the min-collision probability problem
perform in Fig. 5-10. As we can see, in the unconstrained problem, the system takes
risk to go through one of the narrow corridors to reach the goal. In contrast, in the
min-collision probability problem, the system detour around the obstacles to reach the
goal. While there are about 49.27% of 2000 trajectories (plotted in red) that collide
with the obstacles for the former, we observe no collision out of 2000 trajectories
for the latter. From the characteristics presented in Section 5.2.3 and illustrated in
Fig. 5-4, from the starting state (6.5,−3), for any initial collision probability threshold
η that is at least 0.4927, we can execute the deterministic policy of the unconstrained
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(a) Policy on M4000.
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(b) Value function J4000,1.0.
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(c) Collision probability Υ4000.
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(d) Policy map induced by γ4000.
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(e) Value function Jγ4000.

 

 

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

(f) Min-collision prob. γ4000.

Figure 5-7: Boundary values. Figures 5-7(a)-5-7(c) shows a policy map, cost value
function and the associated collision probability function for the unconstrained prob-
lem after 4000 iterations. Similar, Figures 5-7(d)-5-7(f) show a policy map, the
associated value function, and the min-collision probability function after 4000 iter-
ations. These values provide the boundary values for the stochastic target problem.
For the unconstrained problem, the policy map encourages the system to go through
the narrow corridors with low cost-to-go values and high probabilities of collision. In
contrast, the policy map from the min-collision probability problem encourages the
system to detour around the obstacles with high cost-to-go values and low probabili-
ties of collision.

problem.

In Fig. 5-11, we provide an example of controlled trajectories that are illustrated
in Fig. 5-4 when the system starts from (6.5,−3) with the failure probability thresh-
old η = 0.4. In this figure, the min-collision probability function γ4000 is plotted in
blue, and the collision probability function Υ4000 is plotted in green. Starting from
the augmented state (6.5,−3, 0.40), the martingale state varies along controlled tra-
jectories as a random parameter in a randomized control policy. When the martingale
state is above Υ4000, the system follows a deterministic control policy obtained from
the unconstrained problem.

Similarly, in Fig. 5-12, we show controlled trajectories for different values of η
(0.01, 0.05, 0.10, 0.20, 0.30, 0.40). In Figs. 5-12(a)-5-12(c) and Figs. 5-12(g)-5-12(i),
we show 50 trajectories resulting from a policy induced by J4000 with different ini-
tial collision probability thresholds. In Figs. 5-12(d)-5-12(f) and Figs. 5-12(j)-5-12(l),

117



−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

(a) Policy on M200

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

(b) Policy on M3000
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(c) Policy on M3000\M3000:
Top-down view

(d) Markov chain implied by
M200.

(e) Markov chain implied by
M500.

(f) Markov chain implied by
M1000.

Figure 5-8: Figures 5-8(a)-5-8(c) and Figures 5-8(d)-5-8(f) show the corresponding
anytime policies and the associated Markov chains on Mn respectively. In Fig. 5-
8(c), we show the top-down view of a policy for states in M3000\M3000. We observe
that the system will try to avoid the narrow corridors when the risk tolerance is low.
We can also observe that the structures of the Markov chains quickly cover the state
spaces S and S with connected random graphs.

we show 5000 corresponding trajectories in the original state space S with reported
simulated collision probabilities and average costs in their captions. Trajectories that
reach the goal region are plotted in blue, and trajectories that hit obstacles are plot-
ted in red. These simulated collision probabilities and average costs are shown in
Table 5.1. As we can see, the lower the threshold is, the higher the average cost is as
we expect. When η = 0.01, the average cost is −19.42 and when η = 1.0, the average
cost is −125.20.

More importantly, the simulated collision probabilities follow very closely the val-
ues of η chosen at time 0. In Fig. 5-13, we plot these simulated probabilities for the
first N trajectories where N ∈ [1, 5000] to show that the algorithm fully respects
the bounded failure probability. Thus, this observation indicates that the extended
iMDP algorithm is able to manage the risk tolerance along trajectories in different
executions to minimize the expected costs using feasible and time-consistent anytime
policies.
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(a) Value function J200,1.0.
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(b) Value function J2000,1.0.
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(c) Value function J4000,1.0.
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(d) Value function J4000,0.1
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(e) Value function J4000,0.5
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(f) Value function J4000,0.9

Figure 5-9: Examples of incremental value functions over iterations. Figure 5-9(a)-
5-9(c) show the approximate cost-to-go functions Jn when the probability threshold
η0 is 1.0 for n = 200, 2000 and 4000. Figures 5-9(d)-5-9(f) present the approximate
cost-to-go function J4000 in M4000 for augmented states where their martingale com-
ponents are 0.1, 0.5 and 0.9 respectively. The plot shows that the lower the martingale
state is, the higher the cost value is – which is consistent with the characteristics in
Section 5.2.3.

Table 5.1: Failure ratios and average costs for 5000 trajectories for Fig. 5-13.

η Failure Ratio Average Cost
1.00 0.4927 -125.20
0.40 0.4014 -115.49
0.30 0.2819 -76.80
0.20 0.1560 -65.81
0.10 0.1024 -58.00
0.05 0.0420 -42.53
0.01 0.0084 -19.42
0.001 0.0000 -18.86
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(a) Unconstrained problem trajectories: simulated collision proba-
bility 49.27%, average cost −125.20.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

(b) Min-collision trajectories: simulated collision probability 0%,
average cost −17.85.

Figure 5-10: Examples of trajectories from policies of the unconstrained problem
(Fig. 5-10(a)) and the min-collision probability problem (Fig. 5-10(b)). In the un-
constrained problem, the system takes risk to go through one of the narrow corridors
to reach the goal. In contrast, in the min-collision probability problem, the system
detours around the obstacles to reach the goal. While there are about 49.27% of 2000
trajectories (plotted in red) that collide with the obstacles for the former, we observe
no collision out of 2000 trajectories for the latter.
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Figure 5-11: An example of controlled trajectories using boundary values for Fig. 5-
4. The system starts from (6.5,−3) with the failure-probability threshold η = 0.4.
The martingale state varies along controlled trajectories as a random parameter in a
randomized control policy. When the martingale state is above Υ, the system follows
a deterministic control policy obtained from the unconstrained problem. As seen in
Fig. 5-13, the algorithm is able to keep the failure ratio in 5000 executions around
0.40 as dictated by the choice of η = 0.40 at time 0.
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(a) Threshold η = 0.01. (b) Threshold η = 0.05. (c) Threshold η = 0.10.

(d) η = 0.01: 0.8%, −19.42. (e) η = 0.05: 4.2%, −42.53. (f) η = 0.10: 10%, −58.00

(g) Threshold η = 0.2. (h) Threshold η = 0.3. (i) Threshold η = 0.4.

(j) η = 0.2: 15.6%, −65.81. (k) η = 0.3: 28.19%, −76.80. (l) η = 0.4: 40%, −115.59.

Figure 5-12: Trajectories after 5000 iterations starting from (6.5,−3). In Figs. 5-
12(a)-5-12(c) and Figs. 5-12(g)-5-12(i), we show 50 trajectories resulting from
a policy induced by J4000 with different collision-probability thresholds (η =
0.01, 0.05, 0.10, 0.20, 0.30, 0.40). In Figs. 5-12(d)-5-12(f) and Figs. 5-12(j)-5-12(l), we
show 5000 corresponding trajectories in the original state space S with simulated col-
lision probabilities and average costs in their captions. Trajectories that reach the
goal region are plotted in blue, and trajectories that hit obstacles are plotted in red.
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Figure 5-13: Failure ratios for the first N trajectories (1 ≤ N ≤ 5000) starting from
(6.5,−3) with different values of η. These failure ratios follow very closely the values
of η, which indicates that the iMDP algorithm is able to provide solutions that are
probabilistically sound.
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Chapter 6

Conclusions

Sampling-based algorithms have received much attention from the robotics commu-
nity as a randomized approach to solve the fundamental deterministic robot motion
planning. The motivation of this thesis is to address the robot motion planning in
uncertain environments. This problem is formulated abstractly as a stochastic op-
timal control problem. The formulation is also general enough for a wide range of
potential applications in biology, healthcare, and management.

Therefore, in this thesis, we have introduced a set of new sampling-based al-
gorithms for solving a general class of continuous-time continuous-space stochastic
optimal control problems in the presence of complex risk constraints. In the follow-
ing, we will first summarize the algorithms and results developed in this thesis, and
subsequently present possible directions for future research.

6.1 Summary

The main contribution of this thesis is a new computationally-efficient sampling-based
algorithm called the incremental Markov Decision Process (iMDP) algorithm that
provides asymptotically-optimal solutions to continuous time and space stochastic
control problems.

The iMDP algorithm constructs a sequence of approximating finite-state Markov
Decision Processes (MDPs) that consistently approximates the original continuous-
time stochastic dynamics and solves the optimal control problem in an incremental
manner. Using the rapidly-exploring sampling technique to sample in the state space,
iMDP forms the structures of finite-state MDPs randomly over iterations. Control
sets for states in these MDPs are constructed or sampled properly in the control space.
The finite models serve as incrementally refined models of the original problem. More
precisely, the connected random graph structures of Markov chains on MDPs explore
well the original state space. To have consistent approximation, only the mean and
covariance of displacement per step along a Markov chain under any control are
required to be close enough to those of the original dynamics. Consequently, the
distributions of approximating trajectories and control processes returned from these
finite models approximate arbitrarily well the distributions of optimal trajectories
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and optimal control processes of the original problem.
The iMDP algorithm approximates the optimal cost-to-go function using the asyn-

chronous Bellman value iteration procedure such that computation in the current
iteration is inherited from the previous iterations. We show that the time complexity
per iteration grows as the product of fractional power and polylogarithmic time while
the space complexity grows linearly over iterations.

There are two main advantages to use the iMDP algorithm for solving stochastic
optimal control problems. First, the iMDP algorithm provides a method to compute
optimal control policies without the need to derive and characterize viscosity solutions
of the associated HJB equations. Second, the algorithm is suitable for various online
robotics applications without a priori discretization of the state space.

Risk management has always been an important part of stochastic optimal control
problems to guarantee safety during the execution of control policies. We consider
two types of risk constraints in this thesis. The first type of risk constraints called
bounded trajectory performance that has the same integration structure as the ob-
jective function with different cost rate, terminal cost functions and discount factors.
We enforce this type of constraint for all sub-trajectories along the controlled pro-
cess. The iMDP algorithm has been extended to provide probabilistically-sound and
asymptotically optimal control policies for this class of constrained stochastic control
problems. The returned policies from the original iMDP and this extended version
are deterministic function of states.

The second type of risk constraints is called bounded probability of failure, which
is enforced for particular initial states. We have introduced the martingale approach
to handle probability constraints on the terminal states. The martingale approach
transforms the probability-constrained problem into an equivalent stochastic target
problem with the augmented state and control spaces. The boundary conditions for
the transformed problem is, however, unspecified. We have presented a new extended
version of the iMDP algorithm that incrementally computes the boundary values and
any-time feedback control policies for the transformed problem. The returned policies
can be considered as randomized policies in the original state space. Effectively,
the extended iMDP algorithm provides probabilistically-sound and asymptotically-
optimal control policies for the class of stochastic control problems with bounded
failure-probability constraints.

6.2 Future Directions

In this sections, we present some directions for future research on related problems.

6.2.1 Partially-observable states

In several systems, true states are not available during the controlled process. Instead,
there are sensors to provide noisy measurements of unknown states. Controlling
systems in these situations leads to a class of stochastic optimal control problems
with imperfect state information, known as Partially Observable Markov Decision
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Processes (POMDPs). Although POMDPs are fundamentally more challenging than
the problem that is studied in this paper, our approach differentiates itself from
existing sampling-based POMDP solvers (see, e.g., [145]) with its incremental nature
and computationally-efficient search. Hence, the research presented in this paper
opens a new alley to handle POMDPs.

Recent research by Chaudhari et al. [146, 147] has explored this direction for the
problem of state estimation and POMDPs. In [147], the authors use an approximating
sequence of discrete time finite-state POMDPs to approximate continuous POMDPs
such that the optimal cost function and control policies for these POMDP approxi-
mations converge almost surely to their counterparts for the underlying continuous
systems in the limit. For each POMDP approximation, the authors use an existing
POMDP solver, SARSOP [145], to obtain a policy for the POMDP approximation.
However, SARSOP still encounters major computational challenges for practical sys-
tems in high dimensional state spaces. As a result, providing efficient approximate
solutions to POMDPs is still an open research problem.

One possible research direction is to provide incremental computation of policies
without fully solving each finite-state POMDP using SARSOP. This is also the key
idea behind the iMDP algorithm. Another research idea is to combine results in
information theory and control theory such that we can better utilize sensor data to
design better approximating structures for the continuous time and space POMDPs.

6.2.2 Error bounds for anytime policies

Although anytime policies in this thesis are asymptotically optimal, we have not
investigated the error bounds of the cost-to-go function under these policies in com-
parison to the optimal cost-to-go function. Estimates of error bounds would provide
better understanding in the quality of anytime policies. The upper bounds on the
cost-to-go function can be found by simulating the returned policies. Estimating the
lower bounds is more challenging and is an active research topic.

One possible approach called information relaxations can be used to find the lower
bounds (see, e.g. [148, 149] and references therein). In this approach, we relax the
nonanticipativity constraints that require decisions to depend only on the informa-
tion available at the time a decision is made and impose a “penalty” that punishes
violations of nonanticipativity. In many cases, the relaxed version of the problem is
simple to solve and provides the lower bounds. We suggest a future research direction
that incorporates information relaxations into the sampling-based iMDP algorithm
to provide useful anytime error bounds.

6.2.3 Investigation of new noise models

Noise can be driven by not only Brownian processes but also jump processes so that
the controlled process has the form:

x(t) = x(0) +

∫ t

0

f(x(τ), u(τ))dτ +

∫ τ

0

F (x(τ), u(τ)dw(τ) + J(t),
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where the term J(t) produces the jumps. To characterize the jump term, we would
like to specify the probability that a jump occurs in any small time interval and
the distribution of any resulting jumps as the function of the past history process.
Between jumps, the term J(t) is constant.

The Markov chain approximation method can be extended to handle the stochas-
tic process with jumps (see Chapter 5 of [43]). The local consistency conditions now
include the approximation for jump intensities during holding times. As a result, con-
vergence results will follow. We would like to extend the iMDP algorithm to provide
incremental computation of anytime policies for this class of stochastic dynamics.

6.2.4 Logic constraints

In reality, complex systems obey not only physical rules but also logical rules set by
authorities and operators that specify valid sequences of allowed operations. Such
constraints are useful to enable self-driving cars to follow traffic law or steerable
medical needles to follow safety guidelines. Temporal logic as a formal high level
language can describe succinctly these constraints.

Current research such as [150–153] has investigated similar logic constraints for
the robot motion planning problem in deterministic environments. The main idea
is to construct suitable approximating discrete structures for logic constraints that
represent well the original logical rules in the continuous state space.

However, controlling complex systems with temporal logic constraints in the pres-
ence of disturbances is a challenging unexplored problem. We would like to extend the
sampling-based approach presented in this thesis to incorporate such logic constraints.
In particular, one promising future research direction is to investigate suitable approx-
imating structures for these logic constraints such that they can be combined with
the approximating MDPs structure in an efficient and effective way.

6.2.5 Exploiting dynamics of mechanical systems

This thesis has focused on general system dynamics. For robotics applications, we of-
ten deal with nonlinear dynamics with special properties such as underactuation [154]
and differential flatness [155,156]. Exploiting these properties to design optimal con-
trol policies would provide higher performance in many situations. Designing new
versions of the iMDP algorithm that incorporate directly these properties is left for
future investigation.

6.2.6 Parallel implementation

As our considered stochastic optimal control problems become more complex due to
both risk constraints and logic constraints, despite low theoretical time complexity
per iteration guarantees, the actual running time to compute anytime solutions for
such problems would increase significantly. Therefore, parallel implementation for
iMDP-like algorithms would be highly desirable to obtain fast running time. We note
that the algorithms presented in this thesis are highly parallelizable by design. An
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interesting research direction is to combine parallelization and the interdependence
of primitive procedures in the iMDP algorithm to speed up its running time. This
direction is similar to the ideas proposed by Bialkowski [97] for RRT-like algorithms.

6.2.7 Collaborative multi-agent systems

We can further consider a team of separate and independent agents collaborating
to optimize a common objective function in uncertain environments. Each agent
can compute a policy in their explored state space and is able to communicate its
computed policy and intension with other agents through possibly bandwidth-limited
and unreliable networks.

One possible direction for this problem is to extend the iMDP algorithm so that
each agent constructs its own approximating data structures in its interested regions
of the state space. Agents are coordinated to communicate these approximating
data structures with each other, and they can further refine their own approximating
data structures based on received information. Designing a coordination plan that
enables each agent to compute good approximations of an optimal control policy
while minimizing the amount of data transfered is an interesting research question to
answer.

6.2.8 Stochastic games

In stochastic games, we have several agents each operating independently and strate-
gically to optimize their own objective functions in the presence of uncertainties. Each
agent can observe other agents’ trajectories to compute their decision at any moment.
These problems form an interesting and challenging class of stochastic optimal control
problems.

Recent works develop the weak dynamic programming principle for zero-sum
games in continuous-time [157,158] and further derive Partial Differential Equations
for this sub-class of games. Developing incremental policies for each agent that are
consistent with their observations and initial requirements is an open research ques-
tion. We suggest an approach that is similar to the martingale approach presented
in this work as one possible direction.

6.2.9 Exploring applications in management and finance

The formulation considered in this thesis is fairly abstract and can find applications in
many areas such as mathematical economics and finance. Examples of these problems
are optimal dynamic contract design [1], optimal hedging in the presence of propor-
tional transaction costs, and liquidation with a target costs constraint [24]. Applying
the ideas in the iMDP algorithm to design algorithms for these applications is an
interesting research direction to pursue.

129



130



Bibliography

[1] L. Ljungqvist and T. J. Sargent, Recursive macroeconomic theory. The MIT
press, 2004.

[2] N. L. Stokey, R. E. Lucas, and E. C. Prescott, Recursive methods in economic
dynamics. Harvard University Press, 1989.

[3] H. Pham, Continuous-time stochastic control and optimization with financial
applications. Springer, 2009, vol. 61.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents), 2001.

[5] E. Todorov, “Stochastic optimal control and estimation methods adapted to the
noise characteristics of the sensorimotor system,” Neural Computation, vol. 17,
pp. 1084–1108, 2005.
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