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Abstract— A large number of studies have been reported on
top-down influences of visual attention. However, less progress
have been made in understanding and modeling its mechanisms
in real-world tasks. In this paper, we propose an approach
for learning spatial attention taking into account influences of
physical actions on top-down attention. For this purpose, we
focus on interactive visual environments (video games) which
are modest real-world simulations, where a player has to attend
to certain aspects of visual stimuli and perform actions to
achieve a goal. The basic idea is to learn a mapping from
current mental state of the game player, represented by past
actions and observations, to its gaze fixation. A data-driven
approach is followed where we train a model from the data
of some players and test it over a new subject. In particular,
two contributions this paper makes are: 1) employing multi-
modal information including mean eye position, gist of a scene,
physical actions, bottom-up saliency, and tagged events for
state representation and 2) analysis of different methods of
combining bottom-up and top-down influences. Comparing with
other top-down task-driven and bottom-up spatio-temporal
models, our approach shows higher NSS scores in predicting
eye positions.

I. INTRODUCTION

The concept of saliency has attracted a lot of attention

over the past several years. Basically, it is a fast and low-

cost pre-processing step to select important image regions or

objects to pass to higher-level and computationally demand-

ing processes.

The main concern in modeling saliency is how, when, and

based on what, to select salient image regions. It is often

assumed that attention is attracted by salient stimuli or events

in the visual array [1][2]. While this is the case, it is also

known that a larger portion of attentional behavior comes

from ongoing task inferences which dynamically change and

are dependent on the algorithm of the task. Computational

modeling of task influences on attention is conceptually hard

to frame. The biggest challenge comes from the fact that we

don’t know much about how humans perform complex tasks.

This has been at the focus of artificial intelligence (AI) and

cognitive science research for the past 50 years. However,

we know to some extent about algorithms and attentional

behaviors of some laboratory-scale stimuli and tasks. One

solution when dealing with complex problems is learning

from data, experiences or history which could be gathered

from the behavior of other humans especially when the goal

is to explain human data.

There are already many bottom-up saliency models for

static (still images) and spatio-temporal stimuli (videos).
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However, bottom-up models are inflexible (Fig. I) and can

account for only a small fraction of the observed fixations

in natural behavior [4][5][6]. Our goal in this study is to

introduce a top-down spatial attention model which could

automatically direct gaze based on task. Instead of trying

to figure out an explicit algorithm for doing a task, (e.g.,

designing a state space and mapping its states to actions and

attended locations), we are following a data-driven approach

which could be easily applied to any task and situation.

A. Bottom-up (BU) models

The bottom-up saliency assumption is based on the hy-

pothesis that certain features of the visual scene inherently

attract gaze. That is, that vision is essentially reactive and

stimulus driven. Typically, multiple low-level visual features

such as intensity, color, orientation, texture, and motion are

extracted from an image at multiple scales. Saliency maps are

computed for different features which are then normalized

and combined in a linear or non-linear fashion into a master

map that represents the conspicuity of each pixel [16].

Our work in this paper falls in the category of saliency

models based on machine learning approaches. Some models

train a classifier to distinguish fixated patches from random

patches. Facing a scene they assign a value to each patch

that is the probability of that patch to be fixated. Kienzle

et al. [7] learned a model of saliency directly from human

eye movement data. Their model consists of a nonlinear

mapping from a normalized image patch to a real value,

trained to yield positive values on fixated patches, and

negative values on randomly selected image patches. Judd

et al. [8] used a SVM classifier for an attention model based

on low-, mid and high-level features calculated by existing

saliency methods. In modeling eye fixations of observers

when looking for a pedestrian in a scene, Ehinger et al. [26]

showed that a model of search guidance combining three

sources: low-level saliency, target features, and scene context,

outperforms models based on any of these single sources. Vig

et al. [9] used 3D spatio-temporal volumes from video for

spatiotemporal saliency modeling. Li et al. [10] proposed

a multi-tasking Bayesian approach for combining bottom-

up and top-down saliency components. Kimura et al. [11]

learned a Dynamic Bayesian Network (DBN) to predict the

likelihood of locations where humans typically focus on

a video scene. Chikkerur et al. [27] presented a Bayesian

model based on assumptions that the goal of the visual

system is to say what is where and visual processing happens

sequentially.
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Fig. 1. Sample frames from our game stimuli and their corresponding BU saliency maps [16]. Red diamond shows the maximum of the saliency map and
blue circle is the actual eye position. Left and bottom bars in frames are the pedal and wheel positions, respectively. Actions are represented by numbers
at the bottom. Attention is attracted to task-relevant regions which do not agree with the BU saliency.

B. Top-down (TD) models

The other main component of attention comes from top-

down demands such as knowledge of the task, emotions,

expectations, predictions, etc. which are embedded in a tem-

porally extended task. Modeling top-down attention is hard

because: 1) it is difficult to frame and conceptually define

the problem, 2) different tasks require different algorithms,

and 3) there is a high degree of inter-subject variability. In

this paper, we take another step (after [15]) in modeling top-

down spatial attention considering multi-modal information

including physical actions.

Research on top-down attention dates back to the classic

study of Yarbus [3] who showed that gaze patterns are

dependent on the asked question when viewing a picture.

Research on task-driven influences of gaze have been mostly

at the analysis level. It has been shown that the vast majority

of fixations are directed to task-relevant locations, and fixa-

tions are coupled in a tight temporal relationship with other

task-related behaviors such as reaching and grasping [12].

Furthermore, eye movements often provide a clear window

to the mind of an observer in a way that it is sometimes

possible to infer how a subject solves a particular task from

the pattern of his/her eye movements for tasks like “block

copying“ [13] , “making tea“ [4] , “driving“ [14], etc.

In [15], Peters and Itti learned a mapping using gist of

a scene to eye fixation from data of subjects playing a

video game. In [17], using this model, they showed that

during the occurrence of an event (such as hitting a target in

shooting games or accident in driving games) bottom-up cues

are more important than top-down cues and based on this

proposed event detectors by combining stimuli and behavior

signatures. While this model is interesting, it does not benefit

from the real potential of interactive environments which

are interactions via physical actions. In our work, we follow

a similar fashion by proposing a richer state representation

and propose a new approach to combine bottom-up and top-

down cues. In a related study, Navalpakkam and Itti [18]

tried to build a top-down attention framework in conjunction

with the saliency model in situations where the algorithm

for the task is at hand. Sprague and Ballard [19], proposed a

method based on reinforcement learning for learning visio-

motor behaviors and used their model to account for saccades

in a side walking task.

C. Influence of action on attention

The interaction between action and perception makes up

one of the most important facets of our daily life. Many stud-

ies support the idea that perception affects action (e.g., [20]).

It has also been proposed that changes due to actions lead to

corresponding changes in perception [20][21]. An example

of interaction between action and perception is driving which

also needs sophisticated attentional behavior. In [23], authors

showed that preparation of a grasping movement affects

detection and discrimination of visual stimuli. Our work

also borrows from the ideas of sensory-motor integration:

The process by which the sensory and motor systems com-

municate and coordinate with each other (e.g., hand-eye

coordination). The above statement is closely related to the

premotor theory of spatial attention which argues that the

major function of attentional selection is not only reducing

the incoming information, but rather to select a proper action

on the basis of a specific stimulus [22].

D. Our approach and contributions

We aim to learn top-down spatial attention (where to look)

from visual information and physical actions recorded from

human subjects playing video games. The basic idea is to

best estimate the mental state of the player and map it to an

eye fixation. For state estimation, we merged all information

including scene gist, physical actions, salient regions, and

events. A classifier is learned from these data and is used to

predict the eye fixations of a new subject.

A central open question in saliency modeling is “how

the bottom-up salient and top-down task-driven stimuli are

integrated in the course of a task”? We tackled this ques-

tion by evaluating different ways of integrating BU and

TD attention components either in the decision space or

at sensory level. Experiments were performed on driving

which is a daunting task demanding high-level sensory-motor

integration and attention/action coordination skills. It has also

been the subject to several behavioral and computational

modeling studies (e.g., [14][25]).

Our model: 1) is easily applicable to interactive visual

environments when subjects perform physical (motor) ac-

tions and visually attend and 2) has potential applications in

robotics and computer vision including robot localization, in-

teractive computer graphics environments (“virtual reality“ or

video games), flight and driving simulators (and assistants),

as well as visual prosthetic devices.

II. PSYCHOPHYSICS AND EYE TRACKING

To set a basis and benchmark for future research and

large-scale quantitative evaluation of studies on task-driven

top-down saliency modeling, we have collected a large scale

dataset of videos along with eye tracking data and actions.
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Fig. 2. a) Correlation between wheel and eye-x and eye-y saccade coordinates (left two panels), and saccade positions (right panel) overall all events of
3DDS. b) Left 3 panels: same as (a) for sample events. Right panel shows the frequency of pedal positions.

Accompanying code in C++ and Matlab will be available on

the web to facilitate future research.

A. Data collection

Participants were 10 subjects between 18-25 years old

with valid driving license and at least 2 years of driving

experience. They had normal or corrected-to-normal vision

and were compensated for their participation. Experimental

protocol was approved by the university of Southern Califor-

nia Institutional Review Board. Each subject played each of

the 3 games: 3D Driving School (3DDS), 18 Wheels of Steel

(18 WoS), and Test Drive Unlimited (TDU) (Fig. I). There

was a 5-min training session for each game in which subjects

were introduced to the goal of the game, rules, buttons,

etc. After training, subjects played the game for another 5

minutes. At the beginning of the test session, eye tracker

was calibrated using 9-point calibration. Training and testing

phases were from the same game but different situations.

Subject’s distance from screen was 130 cm yielding a field

of view of 43o × 25o. The overall recording resulted in 2.5

hours of 156 GB video, 192,000 frames, 1,536,000 fixations,

and 10,518 saccades.

Subjects played driving games on PC1 which had Win-

dows XP running the games. An array of wheel, pedal

and other actions (signal, mirror, etc) was logged with

frequency of 62Hz. The frames were recorded on PC2

running Linux Mandriva OS. Game stimuli were shown to

the subject at 30Hz. This machine sent a copy of each

frame to LCD monitor and saved one copy to the hard

disk. PC2 also instructed the eye tracker (PC3) for recording

eye positions when watching the screen. PC2 had a dual-

CPU processor and used SCHED_FIFO scheduling to en-

sure microsecond accurate timing. Each subject’s right eye

position was recorded at 240 Hz with a hardware-based eye-

tracking system (ISCAN Inc. RK-464). Subjects drove using

the Logitech Driving Force GT steering wheel, automatic

transmission, brake and gas pedals, 11-inch rubber-overmold

rim, 900 degrees rotation (only 360 degrees; 180 left, 180

right; were used in experiments), Force Feedback, connected

via USB to the PC1.

B. Model-free analysis of the dataset

We are interested in two types of model-free analyses:

1) analysis of saccade and fixation distributions in order to

find out which locations attract subject’s attention; and 2)

correlation among eye fixation and actions to be used for

eye movement prediction later.

Fig. 2.a shows task-relevant locations for all 10 subjects

(each dot represents one saccade) over 3DDS. Since fixa-

tion maps are highly dense, only saccades are shown for

illustration purpose. However, reported patterns are the same

over both fixations and saccades. Over 3DDS, task-relevant

regions are: an arrow sign at the top-left indicating direction,

instruction command at top, instructor and rear-view mirror

at the top-right, horizontal view and road (middle), red light

slightly above road, and interior (speedometer) of the car

at the bottom shown by blue ellipses. Please see Fig. I the

leftmost panel for a sample frame and Fig. 2.a the rightmost

panel for saccade locations. As it shows, there is a strong

horizontal bias in this task similar to free-viewing and visual
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search tasks [8]. Profile of wheel angle vs. eye-y (image

width) shows that subjects viewed all the vertical line when

wheel was released (value of 127). This happened when

subjects were driving straight or were stopped. There is a

slight tendency to look at the bottom when turning left or

right. Wheel angle vs. eye-x(image height) shows two main

saccade directions: 1) horizontal bias, and 2) diagonal which

means that wheel toward right is correlated with saccade to

the right (similarly wheel toward left correlates with saccade

to the left).

To further analysis the data we also tagged each frame

of games based on different events that happened in driving.

Some games did not have all the events. Events of each game

could be found in Fig. 4. In “going straight” event, there is

a horizontal and vertical bias (wheel vs. eye) and subjects

looked more at the center (center-bias) while looking around

to get important information (eye-x vs. eye-y). For ”turn

right” event, there is a rightward shift of fixations based

on wheel (similarly for turn left). For ”red light” event,

since task-driven influences are not much strong (stopping

situation), then subjects have time to look around (i.e., less

task demand). Frequency of brake/gas is shown in right

panels of Fig. 2.b. There is a peak at the center indicating

that most of the time, gas/brake pedal is released. Subjects

pressed the gas and brake more when turning right and at

the red light, respectively.

To learn about the temporal relationships between eye

position and wheel angle, we plotted fixations in steps of

32 of wheel angle for all games in Fig. 3. Green circle

shows the mean eye fixation position and vertical red line

shows the normalized (linearly to its max) wheel position.

It could be seen that a linear relationship with the eye

fixation holds for wheel positions between 64 to 192, but

for extreme values it seems that wheel position is slightly

leading. Temporal analysis along with tagged events, could

help better fixation prediction provided that the event could

be predicted correctly.

Fig. 4, shows the average number of saccades per frame

of each event of all three games. It shows more saccades

happen in ”red light” and ”mistakes” events and less in

”turning” and ”going straight”. This along with sparseness

of saccades/fixations for an event indirectly is a measure of

how demanding is a behavior (event) and could be used as

a cue for weighting top-down and bottom-up saliency maps.

III. LEARNING TASK-DEPENDENT SPATIAL MAP

In the following, we explain our model for learning task-

driven influences on eye position. First, we compiled a train-

ing set containing feature vectors and eye positions corre-

sponding to individual frames from several video game clips.

The learned mapping is then used to predict fixation location

over a new frame. Note that here we are only interested in

prediction of fixations (one fixation per frame). We compared

two combination approaches: In the first approach called

“decision combination method“, individual predictors were

learned by mapping a feature vector describing state or scene

to corresponding fixation of that frame. Outputs of these
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Fig. 4. Average number of saccades per frame for each event. Error bars
are standard deviations.

predictors were then fused using addition or multiplication.

In the second approach, ”feature combination method”, all

feature vectors were combined in a single vector in a hope

that it might give a better scene/state description. Then a

mapping was learned from this vector to eye fixations.

A. Training

Let St be the state of a player at time t defined as

St = [b, Lt−m, ...Lt−1, Lt] as a history of past scene rep-

resentations where Lt = [Gt, Bt, At, Et] is the information

at time t. b is a scalar bias value, Gt is the gist of the

scene, Bt is the raw bottom-up saliency map, At is the

associated action for frame t and Et is the labeled event.

m is the depth of history. When a task is Markovian, all

information regarding state is available at the current time

(i.e., m = 0). We are interested in finding a mapping F from

St to Pt+1 = [xt+1, yt+1], the eye position at time t + 1.

Assume q subjects have performed task T . Our collected

data is D = {M,N} where M is a n×|S| matrix of feature

vectors and N is the n × |P | matrix of eye positions. n is

the number of data point from q − 1 subjects and |P | is 2..
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A classifier is learned from these data and is tested over the

remaining q−th subject using leave-one-out cross validation.

In the decision combination approach, we combine de-

cisions of predictions learned from different features. That

is, saliency map at time t, is a function G of different F
mappings, (each F could be considered as a single behavior).

This arbitration mechanism, G, itself is task dependent and

tells how different top-down factors should be integrated.

Here, we tried two simple integration functions: addition

and multiplication. Since final behavior is a combination of

pure bottom-up and top-down influences, we considered pure

bottom-up map Bt as an individual predictor as well.

In the feature combination approach, we started with a

simple classifier F0 by only considering the bias term b and

gradually added more features to it to build more predictive

classifiers {F1,F2, ...}.

Assuming a linear relationship between feature vectors

and eye fixations [15], we solve the equation MW = N .

Solution to this equation is: W = M+N , where M+ is

the pseudo inverse of matrix M . When feature vector is b,

the solution (predicted map) is simply the average of all

eye position vectors in N . This classifier is called mean eye

position (MEP). This way, we are solving a linear regression

classifier with the least squares method. We used SVD to find

the pseudo inverse of matrix M . An important point here is

that we set singular values smaller than half of the biggest

singular value to a small value (0.001) to avoid numerical

instability.

Vector P which is eye position over the 640× 480 image

is down sampled to 20× 15 and transformed into a 1× 300
vector with a 1 at the actual eye position and zeros elsewhere.

In testing phase, in order to predict the eye position for a

new frame of a subject first, a feature vector (as above) is

extracted and then a saliency map is generated by applying

the learned mapping. Maximum of this map could be used to

direct attention. In combination (addition and multiplication),

saliency maps are linearly normalized and combined to form

a new saliency map.

B. Features

The features that we used for representation of scene (Lt)

are explained below.

Mean eye position (MEP) . MEP is the prediction when

distribution of fixations is available (average of all fixations

over the train data). In dynamic environments used in this

paper, since frames are generated dynamically and there

are few fixations per frame, aligning frames (in contrast

to movies) is not possible. If a method could dynamically

predict eye movements in a frame by frame basis, then

achieving a higher accuracy than MEP is possible.

Gist of the scene (G). Gist is a rough representation of

a scene that does not contain much details about individual

objects or semantics but can provide sufficient information

for coarse scene discrimination (e.g., indoor vs. outdoor).

The pyramid-based feature vector (pfx) [24], relies on 34

feature pyramids from the bottom-up saliency model: 6

intensity channels, 12 color channels (first 6 red/green and

next 6 blue/yellow color opponency), and 16 orientations.

For each feature map there are 21 values that encompass

average values of various spatial pyramids: value 0 is the

average value of the entire feature map, values 1 to 4 are the

average values of each 2×2 quadrant of the feature map and

values 5 to 20 are the average value for each of the 4 × 4
grids of the feature map leading to overall of 34× 21 = 714
elements.

Bottom-up saliency map (B). This model includes 12

feature channels sensitive to color contrast (red/green and

blue/yellow), temporal luminance flicker, luminance contrast,

four orientations (0, 45, 90, 135), and four oriented motion

energies (up, down, left, right). After a center-surround

difference operation and across scale competitions, a unique

saliency map is created and subsampled to a 20×15 feature

vector which is then linearized to a vector of 1× 300 [16].

Physical actions (A). In the driving experiment, actions

are a 22D feature vector containing wheel positions, pedals

(brake and gas), left and right signals, mirrors, left and right

views, gear change, etc which are wheel buttons subjects

used while playing.

Labeled events (E). Each frame of games was manually

labeled belonging to one of different events such as left turn,

right turn, going straight, adjusting left, adjusting right, stop

sign, etc (Fig. 4). Hence this is only a scalar feature.

IV. MODEL-BASED RESULTS

To quantify how well model predictions matched with

observers’ actual eye positions, we used the normalized

scanpath saliency (NSS) metric, which is defined as the

response value at the human eye position, (xh, yh), in a

model’s predicted gaze density map that has been normalized

to have zero mean and unit standard deviation.

In the first experiment, we trained our model over each

separate game. Each game segment (per subject) has 8,000

frames. Training was done over 9 × 8, 000 frames and the

learned model was tested over the remaining subject. Final

results are averaged over 10 subjects. Fig. 5.a shows NSS

scores of models with single features and best answers for

both combination approaches (addition and multiplication)

for each individual game. Over three games, decision com-

bination approach resulted in higher NSS scores. Saliency

maps learned from gist features and the raw BU map were the

most informative ones. Feature combination resulted in lower

performance but still higher than all other single predictors.

In agreement with previous results [15], the BU raw map

resulted in the least performance (below 0.5) again indicating

that BU saliency does not account for task-driven fixations.

High NSS score for gist means that scene representation is a

good predictor of subject’s state. Compared with the model

of [15] that multiplies raw bottom-up and the TD model

learned from the Gist, our combination approach resulted

in higher NSS scores. Multiplication approach proposed

in [15] resulted in NSS smaller than 1. Using only action

features, our model outperforms MEP and Gaussian models

significantly indicating influence of action on prediction of

top-down attention. Prediction based on only event feature
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Fig. 5. NSS scores of different models with actual recorded eye positions
(single features and combinations). a) model trained over each individual
game, b) model trained over all games. A larger NSS score means a better fit.
Each bar represents mean s.e.m. across all 80,000 fixations for each game.
“&“ sign means that final maps were combined (decision combination) and
“-“ sign indicated that features were combined (feature combination).

was slightly lower than MEP but still better than Gaussian

and raw BU map. All models performed significantly above

chance (NSS = 0).

In the second experiment, we trained the model over

all games, each time over 29 subjects and tested over the

remaining subject. Results are shown in Fig. 5.b. Consistent

with results in Fig. 5.a, decision combination approaches led

to higher NSS performance. NSS values for MEP, Gaussian,

action, event and gist in order are: 2.68, 1.96, 2.72, 2.61,

and 2.93. Our results for addition, multiplication and Feature

Combination are 3.16, 3.08, and 2.96, respectively which are

significantly higher than Gist model (paired t-test, p < 0.05)

across all fixations. It shows that our approach has more

prediction power compared with previous models [15][16].

Action features alone are significantly higher than MEP and

Gaussian. In feature combination approach, adding action

and event features to the state representation improved the

performance.

Fig. 6 shows sample frames from three games along with

their corresponding predicted saliency maps from various

models. Bottom-up saliency map (BU raw) shows spread

activity with a weak maximum at the actual eye position.

Predicted saliency maps by our models show dense activity

at task relevant locations thereby narrowing attention and

leading to higher NSS score. It seems that combined maps in

general are more capable of finding the task-relevant regions.

These maps change per frame as opposed to the static MEP

and Gaussian.

High NSS score for Gaussian indicates high center-bias in

these tasks which can be verified from mean eye positions

(MEPs) in Fig. 7. The fact that the data is center-biased

makes surpassing the MEP difficult (see Fig. 7). The main

reason for this is that a huge number of fixations happen in

the center which means MEP automatically has a lot of true

positives. Given the high center bias, a predictor has only a

small chance to show its superiority over few samples off

the center.

V. DISCUSSION AND CONCLUSION

In this work we analyzed the influence of action on

visual attention and proposed general methods for modeling

top-down spatial attention. Our models are more effective

for tasks when attention is more influenced by motor ac-

tions. Results show that combining decisions works better

than combining features for fixation prediction over driving

games.

In our experiments, we noticed that the history depth (m)

is not helping much while adding computational complexity.

Thus, we set m to zero. This does not necessarily mean that

history is not important. A more appropriate approach of

employing history of previous actions and perceptions would

be using sequence processing techniques such as hidden

Markov models (HMM) and DBNs. The performance of

our models is limited by the correlation among subjects in

looking at the same spots for a same scene. The higher the

correlation, the better learning and prediction.

A big issue in saliency modeling (either BU or TD)

is handling center-bias. Most of the available datasets are

center-biased meaning that a large proportion of fixations

happen to be in the center of the image. For example,

available still images shows photographer bias when pho-

tographers intentionally put interesting eye catching objects

in the center [8]. Similarly, game designers dynamically

change the viewpoint in order to put the needed object (main

character, road, etc) at the center. This contaminates the

scores. Gathering less center-biased datasets over movies and

interactive setups and designing appropriate scores is very

helpful for fair evaluation of top-down models in future.

One area to look for inspiration for designing more effec-

tive top-down models is recent video processing and analysis
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Fig. 6. Sample frames along with predicted top-down maps of different
models. Each row is the output of a different model. BU raw is the output
of the purely bottom-up saliency model and BU predicted means predicted
saliency map when raw BU features are used. Red diamond: maximum of
each map, blue circle: actual eye position for that frame. Gist×BU is the
point-wise product of BU predicted and gist models.
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Fig. 7. a) Mean eye position maps, b) mean bottom-up saliency maps
for three games. BU saliency maps have stable white regions which creates
false positives over many frames.

approaches (e.g., video segmentation, action recognition, and

visual tracking). Here we followed a data-driven approach; a

promising extension will be trying to infer some high-level

knowledge or behaviors from data similar to [19].
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