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Abstract— Motion planners for autonomous vehicles often
involve a two-level hierarchical structure consisting of a high-
level, discrete planner and a low-level trajectory generation
scheme. To ensure compatibility between these two levels of
planning, we previously introduced a motion planning frame-
work based on multiple-edge transition costs in the graph used
by the discrete planner. This framework is enabled by a special
local trajectory generation problem, which we address in this
paper. In particular, we discuss a trajectory planner based
on model predictive control for complex vehicle dynamical
models. We demonstrate the efficacy of our overall motion
planning approach via examples involving non-trivial vehicle
models and complex environments, and we offer comparisons of
our motion planner with state-of-the-art randomized sampling-
based motion planners.

I. INTRODUCTION

Motion planning for autonomous vehicles [1], i.e., the

problem of finding control inputs that enable vehicles to

satisfy high-level task specifications, is often solved over

two hierarchical levels. The higher level geometric path

planner typically uses a discrete representation of the vehi-

cle’s workspace (such as workspace cell decompositions) and

deals with the satisfaction of the task specifications (such as

obstacle avoidance). The lower level trajectory planner deals

with the vehicle’s kinematic and dynamic constraints.

The hierarchical approach described above suffers from

a lack of “consistency” between the two planners, in that

the geometric path may be infeasible or unacceptably sub-

optimal when the vehicle dynamical constraints are con-

sidered at the trajectory planning level. To address this

problem, we introduced in [2] a motion planning framework

based on assigning costs to multiple edge transitions in the

graphs associated with cell decompositions. In particular, we

introduced in [2] the so-called tile motion planning problem

which facilitates an interaction between the two planners.

In [2], [3], we discussed the solution of the tile motion

planning problem, using purely geometric constructions, for

the Dubins car [4] kinematic model. In this paper, we present

a general scheme, based on the well-known model predictive

control paradigm, for implementing the tile motion planner

for complex vehicle dynamical models.

Model predictive control (MPC) is a popular approach

for control design in the presence of state- and input con-

straints [5], [6], and MPC-based approaches for trajectory

generation and motion planning have previously appeared in
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the literature. For instance, a mixed integer linear program-

ming (MILP) formulation of the motion planning problem,

which involves the introduction of several binary decision

variables to obtain a linear program that encodes obstacle-

avoidance constraints, has been developed [7], [8], and

applied for planar path planning [9] and three dimensional

path planning [10] for UAVs in cluttered environments

while including minimum turn radius constraints. Similarly,

receding horizon path planning has been investigated in

the contexts of vision-based navigation [11]; of obstacle

avoidance for a bicycle model [12]; of trajectory generation

for wheeled vehicles moving over rough terrain [13]; of path

planning for environments involving both static and moving

obstacles [14]; and of robust path planning [15], [16].

A serious problem associated with MPC-based motion

planning is the unavoidable presence of non-convex state

constraints arising from the obstacle-avoidance requirement.

The MILP formulation discussed in [7] is one approach to

alleviate this difficulty. In the tile motion planning scheme

proposed in this paper, we use the idea of effective target

sets [17] to transform non-convex state constraints on the

MPC optimization problem into convex constraints, along

with a special boundary condition.

The main contributions of this paper are as follows. The

tile motion planner discussed in this paper is a crucial

component of the overall motion planning framework de-

scribed in [2]. This motion planning framework is powerful

in that it allows the discrete and continuous facets of motion

planning to be separated from one another while maintaining

a guarantee of “consistency” between the two planners. In

this paper, we provide concrete examples of applications

of this motion planning framework for non-trivial vehicle

dynamical models. Also, we demonstrate that the idea of

effective target sets (which may be computed offline) can be

used to reduce the complexity of local trajectory generation.

In light of the limited on-board computational resources

of autonomous vehicles, the proposed method of trajectory

generation requires the solution of a simpler online problem

with fewer variables and constraints, as compared to a

nonlinear programming formulation or a MILP formulation.

Finally, we demonstrate via numerical simulation results that

the overall motion planner, which is enabled by the local

trajectory generation scheme discussed in this paper, results

in trajectories of significantly lower-cost in comparison to

state-of-the-art randomized sampling-based motion planners.

The rest of this paper is organized as follows. In Section II,

we describe briefly the tile motion planning problem intro-

duced in [2]. In Sections III and IV, we discuss the applica-
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tion and the computation of effective target sets for solving

the tile motion problem using MPC. Finally, in Section V,

we provide numerical simulation results demonstrating the

efficacy of the overall motion planner.

II. H -COST MOTION PLANNING

Workspace cell decompositions [1, Ch. 5], which partition

the workspace into convex regions called cells, are frequently

used in path planning. A graph G = (V,E) is associated

with the decomposition, such that each cell corresponds to a

unique vertex in V and each pair of geometrically adjacent

cells corresponds to a unique edge in E. We will denote by

cell(j) the cell associated with the vertex j ∈ V .

It has been noted in several previous works [9], [18], [19],

including ours [2], that single-edge transition costs cannot

capture adequately the vehicle’s kinematic and dynamic

constraints. In light of this observation, we discussed a

motion planning framework [2] based on the solution of the

so-called H-cost shortest path problem, which is defined as

the problem finding a path of least cost in a graph where

transition costs are defined on multiple successive edges

(called H-histories). In this motion planner, the transition

costs on H-histories are assigned by solving a low-level

trajectory generation problem described next.

We consider a vehicle model described as follows. Let

(x, y, θ) ∈ C := R2 × S1 denote the position coordinates of

the vehicle in a pre-specified Cartesian axis system, and let

ψ denote any additional state variables required to describe

the state of the vehicle. We assume that ψ ∈ Ψ, where Ψ is

a n-dimensional smooth manifold. The state of the vehicle

is thus described by ξ := (x, y, θ, ψ) ∈ D = C × Ψ. Let

U ∈ Rm denote the set of admissible control values; and for

t > 0, let Ut denote the set of piecewise continuous functions

defined on the interval [0, t] that take values in U . We

assume that the evolution of the vehicle state ξ over a given

time interval [0, tf ] is described by the differential equation

ξ̇(t) = f(ξ(t), u(t)) for all t > [0, tf ], where u ∈ Utf is

an admissible control input, and f is sufficiently smooth

to guarantee global existence and uniqueness of solutions.

We denote by ξ(· ; ξ0, u) the state trajectory that is the

unique solution to the preceding differential equation with

initial condition ξ(0) = ξ0. Finally, we denote by x(ξ) the

projection of a state ξ on R2.

We define a tile as the sequence of cells associated with

a H-history (j0, . . . , jH+1), where jk ∈ V for each k =
0, . . . , H + 1, and (jk, jk+1) ∈ H for each k = 0, . . . , H.
A tile motion planner (TILEPLAN) is any algorithm that

determines if a given tile may be feasibly traversed. A precise

and general description of TILEPLAN is given in Fig. 1.

III. MPC-BASED TILE MOTION PLANNING

The implementation of TILEPLAN is difficult mainly

because (1) imposes a non-convex constraint on the state

trajectory. To alleviate this difficulty, we take advantage of

the fact that each cell in the sequence of cells associated with

a tile is a convex region, using the idea of effective target

sets introduced in [17].

Tile Motion Planning Algorithm (TILEPLAN)

1: Determine if there exist tf ∈ R and admissible control

input u ∈ Utf such that ξ(· ; ξ0, u) satisfies

x(ξ(t; ξ0, u)) ∈ ⋃H

k=1cell(jk), t ∈ (0, tf) , (1)

x(ξ(tf ; ξ0, u)) ∈ cell(jH) ∩ cell(jH+1) (2)

2: if ∃tf and ∃u then

3: Find t1 such that

x(ξ(t1; ξ0, u)) ∈ cell(j1) ∩ cell(j2) (3)

4: Return t1, u[0,t1], ξ1 := ξ(t1; ξ0, u), and

Λ :=

∫ t1

0

ℓ(ξ(t; ξ0, u), u, t) dt (4)

5: else

6: Return Λ = ∞

Fig. 1. General form of the tile motion planning algorithm.

The concept of effective target sets is informally described

as follows. Consider a discrete-time dynamical system de-

scribed by ξ(k+1) = fd(ξ(k), u(k)), k ∈ N. Let ξ0 = ξ(0)
be the initial state of the system, and let a horizon N ∈ N

and a target set XN ⊆ D be pre-specified. Consider now

the problem of finding a sequence of N control inputs such

that ξ(N) ∈ XN . Suppose that such a control input sequence

exists, and consider the set XN−1 ⊆ D defined by

XN−1 := {ξ ∈ D : ∃uN−1 ∈ U s.t. fd(ξ, uN−1) ∈ XN}.

It follows that ξ(N−1) ∈ XN−1. In other words, the original

problem can be reduced to the problem of finding a sequence

of N − 1 inputs with the constraint ξ(N − 1) ∈ XN−1.

Continuing recursively, we may define sets Xk by

Xk := {ξ ∈ D : ∃uk ∈ U s.t. fd(ξ, uk) ∈ Xk+1},

for k = 1, . . . , N − 2, and then reduce the original problem

of finding a sequence of N inputs to the problem of finding

a single admissible input u(0) such that f(ξ(0), u(0)) ∈ X1.

A. Definitions of Effective Target Sets for TILEPLAN

Consider the tile associated with the H-history

(j0, . . . , jH+1). We define a sequence {Xk}H+1
k=1 of subsets

of the vehicle state space, called effective target sets, as

follows. Let XH := (cell(jH) ∩ cell(jH+1)) × [−π, π] × Ψ.
For each k = 1, . . . , H − 1, we define the effective

target set Xk as the set of all states ξk ∈ D such

that x(ξk) ∈ cell(jk) ∩ cell(jk+1) and such that there exists

tk+1 ∈ R+ and an admissible control input uk+1 ∈ Utk+1

such that the state trajectory ξ(· ; ξk, uk+1) satisfies

x(ξ(t; ξk, uk+1)) ∈ cell(jk+1), t ∈ (0, tk+1) , (5)

ξ(tk+1; ξk, uk+1) ∈ Xk+1. (6)

Now suppose there exist a time t1 and a control u1 ∈ Ut1
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such that the resultant state trajectory ξ(· ; ξ0, u1) satisfies

x(ξ(t; ξ0, u1)) ∈ cell(j1), t ∈ (0, t1) , (7)

ξ1 := ξ(t1; ξ0, u1) ∈ X1. (8)

Because ξ1 ∈ X1, it follows by (5)-(6) that there exists a

t2 ∈ R+ and a u2 ∈ Ut2 such that

x(ξ(t; ξ1, u2)) ∈ cell(j2), ξ(t2; ξ1, u2) ∈ X2, t ∈ (0, t2) .

In other words, the admissible control input u1−2 defined as

the concatenation of the inputs u1 and u2 by

u1−2(t) :=

{

u1(t), t ∈ [0, t1) ,
u2(t), t ∈ [t1, (t1 + t2)] ,

enables the vehicle’s traversal through the cells correspond-

ing to the vertices j1 and j2. Continuing recursively the

preceding arguments, it follows that for each H > 2, there

exist tk+1 ∈ R+ and inputs uk+1 ∈ Utk+1
, for k =

1, . . . , H − 1, such that the admissible input u defined by

u(t) := uk(t), t ∈ [Tk−1, Tk) , Tk :=
∑k

m=1 tm, (9)

for k = 1, . . . , H , solves the tile motion planning problem.

Thus, if the effective target sets Xk, the corresponding

times of traversal tk+1 and the control inputs uk in (9) are

known for each k = 1, . . . , H , then the tile motion planning

problem is equivalent to the problem of finding u1 and t1
as described above. Crucially, (7) constrains the position

components of the state trajectory to lie within a convex

set. Furthermore, we may replace X1 in (8) by an interior

convex approximating set X̃1 ⊂ X1 thus transforming the

tile motion planning problem into the problem of finding u1
and t1 subject to convex constraints.

B. MPC Problem Formulation

In the MPC formulation of TILEPLAN, we first approxi-

mate the vehicle dynamical model by the linear system ξ̇ =

Aξ+B1u+B2, where A := ∂f
∂ξ

∣

∣

∣

(ξ0,u0)
, B1 := ∂f

∂u

∣

∣

∣

(ξ0,u0)
,

and B2 := f(ξ0, u0) − Aξ0 − B1u0, and then consider the

corresponding discrete-time linear system. We denote by HP

the prediction horizon, by ℓ̃ : D × U → R+ a pre-specified

incremental cost function, and by Λ̃f : D → R+ a pre-

specified terminal cost function. The MPC problem is then

described as follows:

min
HP∈N,(u(0),...,u(HP))

{

Λ̃f(ξ(HP)) +

HP−1
∑

k=0

ℓ̃(ξ(k), u(k))

}

,

subject to ξ(HP) ∈ X̃1, ξ(k) ∈ cell(j1), (10)

and u(k) ∈ U, for each k ∈ {0, . . . , HP − 1}.
Note that the incremental cost ℓ̃ in (10) need not be the same

as the incremental cost ℓ in (4): the role of TILEPLAN in

the overall motion planning framework is that of ensuring

feasibility of traversal of tiles, while it is the higher-level

discrete planner that searches for an optimal sequence of cell

transitions. To implement TILEPLAN, the MPC-problem (10)

is solved; the first input of the resulting input sequence is

chosen and applied to the actual (nonlinear) vehicle model;

the linearization is performed about the new state [6]; and

the preceding steps are repeated.

d1

d2

x

W

α

X

y

β(y)

β(y)

A B

CD

Z

Y

Fig. 2. Setup for Problem 3.

IV. COMPUTATION OF EFFECTIVE TARGET SETS

In this section, we discuss the construction of the effective

target sets that were previously defined for simplifying the

MPC implementation of TILEPLAN. First, we consider the

computation of the intersections of the effective target sets

with the configuration space C = R
2 × S

1. To this end,

we define the effective target configuration sets by Ck :=
Xk∩C, and, in what follows, we outline a geometric scheme

of computing the sets Ck.

Assumption 1: The geometric curves in the plane that can

be feasibly traversed by the vehicle satisfy a local upper

bound on their curvatures.

We will comment on the validity of Assumption 1 in

Section IV-A. First, we use this Assumption to compute the

sets Ck by solving the following problems in plane geometry.

Let ABCD be a rectangle. We attach a Cartesian axes

system as shown in Fig. 2. Let the dimensions of the

rectangle be d1 and d2, and let r > 0 be fixed.

Definition 2: Let β(x), β(x), x ∈ [0, d2] be functions such

that −π
2 6 β(x) 6 β(x) 6 π

2 . Let Y = (d1, y), Z = (d1, z)
be points on the segment BC with y 6 z. A path Π is a

Type 1 admissible path if it satisfies the following properties:

1) The curvature at any point on Π is at most r−1,

2) Π intersects the segment BC in exactly one point X =
(d1, x) such that x ∈ [y, z], and it may intersect segment

AB and/or CD in at most one point each, and

3) Π′ (X) ∈
[

β(x), β(x)
]

,

where Π′ (X) is the angle of the tangent to Π at X . A Type 2

admissible path is defined analogously for traversal across

adjacent edges. Next, we state two geometric problems as

follows. Let β, β, Y, and Z be as in the preceding definitions.

Let W = (0, w) and r > 0 be fixed.

Problem 3 (resp. Problem 4) - Traversal across parallel

(resp. adjacent) edges: Find α, α such that for all α ∈ [α, α],
there exists a Type 1 (resp. Type 2) admissible path with

initial configuration (W,α).
Problems 3 and 4 appear in the recursive computation of

effective target configurations as follows. Suppose that the

effective target configuration set Ck+1 is known. We may

then express Ck+1 as the product set of the line segment

cell(jk+1) ∩ cell(jk+2) with a set of allowable orientations

on this line segment. We may then solve Problem 3 or 4, as

applicable for the cell cell(jk+1), for each point on the line

segment cell(jk)∩cell(jk+1) to obtain allowable orientations

for each point on this line segment, and thus construct Ck.
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The solutions to Problems 3 and 4 are outlined in [3],

and a detailed analysis of these problems appears in [20]. In

this paper, we focus on the application of these solutions

to TILEPLAN for different vehicle models. Note that the

computation of effective target sets over rectangular channels

also enables motion planning for vehicles with a finite size.

Specifically, one may constrain allowable trajectories through

a given tile to a shruken channel within the tile. This

shrunken channel will itself be a rectangular channel, thus

allowing direct application the preceding analysis.

A. Computing Curvature Bounds on Feasible Paths

We may characterize as follows the curvature of the

geometric paths corresponding to projections on R2 of fea-

sible state trajectories. Note that the following kinematical

equations relate the inertial position coordinates x, y to the

orientation θ irrespective of the vehicle dynamical model:

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t). (11)

The curvature of the planar curve p(t) = (x(t), y(t)) is [21]:

κ(t) =
√

(〈ṗ, ṗ〉〈p̈, p̈〉 − 〈ṗ, p̈〉2)/〈ṗ, ṗ〉3 =
∣

∣

∣
θ̇/v

∣

∣

∣
, (12)

by (11). In the context of the vehicle dynamical model, the

curvature of feasible paths is related to the set of admissible

control values via the term in the numerator of (12), and the

upper bound κmax on the curvature of a feasible path over

a given time interval of interest [0, tf ] is

κmax
6 min

t∈[0,tf ]
max
u(t)∈U

∣

∣

∣
θ̇(ξ(t), u(t))/v(t)

∣

∣

∣
. (13)

B. Illustrative Example: Particle Dynamical Model

Consider a vehicle dynamical model described by

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t),

θ̇(t) = ω(t), v̇(t) = a(t),

where v > 0 is the forward speed of the vehicle; u1 = a is

the acceleration input, and u2 = ω is the steering input. The

speed v is constrained to lie within pre-specified bounds vmin

and vmax; these bounds may be different for different regions

of the workspace. The set of admissible control inputs is

U := {(a, ω) : (vω/fmax
r )2 + (a/fmax

t )2 6 1}, (14)

where fmax
r and fmax

t are pre-specified. The input constraint

defined by (14) is an example of a “friction ellipse” constraint

that models the limited tire frictional forces available for

acceleration and steering of the vehicle. Finally, we denote

by vmax
j and vmin

j pre-specified bounds on the vehicle speed

inside the cell corresponding to the vertex j ∈ V .

We may now compute the effective target sets for this

vehicle model as follows. We may transform, as in [22], the

input constraint (14) to a strict inequality by adding to the

L.H.S. of the inequality a small positive quantity ε2, where

0 < ε≪ 1. The tightened constraint implies that acceleration

of the vehicle with |v̇| > εfmax
t is always feasible. It follows

that the upper and lower bounds for the vehicle speed v at

each of the boundaries of adjacent cells in the tile are

vk = min{vmax
jk

, vmax
jk+1

,
√

vk+1 + 2εfmax
t d},

vk = max{vmin
jk

, vmin
jk+1

,
√

vk+1 − 2εfmax
t d},

whenever the cell corresponding to jk involves traversal

across parallel edges, and by vk = min{vmax
jk

, vk+1},

vk = min{vmin
jk

, vk+1}, whenever the cell corresponding to

jk ∈ V involves traversal across adjacent edges. The upper

bound κmax
k on the curvature of paths traversing the cell

corresponding to jk ∈ V for k = 1, . . . , H − 1, is, by (13),

κmax
k = fmax

r

√

1− ε2/(max {vk, vk+1})2. (15)

The bound (15) on the curvature of feasible paths is

conservative because the bound on the vehicle speed in

the denominator does not involve the initial speed v0, i.e.,

the maximum reachable speed within each of the cells in

the tile may be lower than max{vk, vk+1}, and may be a

less conservative bound on the speed (and consequently, on

the curvature). A heuristic approximation to the maximum

reachable speed may be obtained by considering maximum

acceleration along the longest linear path within the cell

(i.e., the diagonal of length
√
2d). Thus, a less conservative,

heuristic bound on the curvature is given by

κmax
k =

fmax
r

√
1− ε2

(min{max{vk, vk+1},
√

v20 + 2
√
2fmax

t d})2
.

C. Illustrative Example: Aircraft Navigational Model

Consider an aircraft navigational model described by

ẋ(t) = v(t) cos γ(t) cosψ(t),

ẏ(t) = v(t) cos γ(t) sinψ(t),

ż(t) = v(t) sin γ(t),

ψ̇(t) = −q(t)CL(t)/mv(t) cos γ(t),

v̇(t) =
(

T (t)− q(v(t))CD,0 −KC2
L(t)

)

/m,

γ̇(t) = (q(v(t))CL(t) cosφ(t)−mg cos γ(t)) /mv(t),

where x, y, and z denote the inertial position coordinates, v
denotes the speed, ψ denotes the aircraft heading, γ denotes

the flight path angle, q(v) := 1
2ρv

2S denotes the dynamic

pressure, m denotes the mass of the aircraft, and CD,0 and K
are pre-specified constants. The control inputs are the thrust

T , the lift coefficient CL, and the bank angle φ.

We consider the motion of the aircraft in the horizontal

plane, i.e., γ(t) = 0 and γ̇(t) = 0, and to this end we set

CL(t) = mg/(q(v(t)) cosφ(t)).

We may assume the aircraft’s cruise speed to be a constant

vcr. The thrust input is then given by

T (vcr, φ(t)) = q(vcr)CD,0 −K((mg/(q(vcr) cosφ(t))
2.

Alternatively, we may assume a constant thrust input

of value T (vcr, 0), and allow small decreases in the air-

craft speed during turning flight. In either case, the upper

bound on the curvature, by (13), is given by κmax
k =

g tan (min |φmin|, |φmax|)/vcr, for k = 1, . . . , H − 1.
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Fig. 4. Comparison of trajectory costs: for the RRT and T-RRT data, the
blue (left), red (middle), and green (right) bars represent, respectively, the
maximum, the minimum, and the average values over 30 trials.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present numerical simulation results

that show that the overall motion planner enabled by

TILEPLAN results in trajectories of significantly lower cost

compared to randomized sampling-based algorithms based

on RRTs [23]. We compared the proposed motion planner

against the standard RRT-based planner [23], and the T-

RRT planner recently reported in [24] for planning minimum-

time trajectories for the particle dynamical model1 in Sec-

tion IV-B. The T-RRT planner finds low-cost trajectories

with respect to a pre-specified state space cost map. As the

minimum-time criterion cannot be expressed as a state space

cost map, we executed the T-RRT planner with the objective

“travel as fast as possible,” which is immediately defined

by the state space cost map c(ξ) = v. For extending known

1The “friction ellipse” parameters were fixed: fmax

r
= 1, fmax

t
= 0.25.
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Fig. 5. The blue curve corresponds to the resultant state trajectory, while
the channel of cells in black is the result of path planning without vehicle
dynamical constraints. The initial position is at the top left corner.

states towards randomly selected new states, we programmed

the RRT-based planners to randomly select an input vector

from the set of admissible inputs and integrate the vehicle

model for a fixed time δ, as recommended in [23]. We

conducted 30 trials of the standard RRT and T-RRT algorithms

for different values of δ, and we compared the results with

the proposed algorithm on the same environment with three

different values of H .

Figures 3(a) and 3(b) show the two environments that

we used for the numerical simulations. The black colored

regions represent obstacles, and the other colors indicate

different bounds on the speed of the vehicle. The blue curve

in Figs. 3(a) and 3(b) corresponds to the trajectory found by

the proposed algorithm.

The green curve in Fig. 3(a) corresponds to a sample

path found by the T-RRT planner. This example illustrates

that the “travel as fast as possible” objective is not always

a satisfactory alternative to the minimum-time criterion:

Figure 3(c) shows that the vehicle achieves higher speeds

along the T-RRT trajectory but the travel time is 35.2% higher

than the trajectory found by the proposed planner. This result

is a consequence of the input constraint (14), which forces

the vehicle to traverse paths of lower curvature at higher

speeds, thus producing longer geometric paths. Figure 4(a)

shows comparative data for the trajectory costs (i.e., time

of traversal) resulting from the simulations described above.

The proposed motion planner returned trajectories with al-

most identical costs for each H , in particular, the trajectory

cost corresponding to H = 6 was 26.626 s. On the other

hand, both the standard RRT and T-RRT planners returned,

on an average, significantly costlier trajectories.

The green curve in Fig 3(b) corresponds to a sample tra-

jectory found by the standard RRT motion planner2. Note that

this environment has a narrow “short-cut” between the initial

cell and the goal cell. Figure 4(b) shows comparative data for

the trajectory costs for this environment. The proposed mo-

tion planner returned trajectories with almost identical costs

for each H ; in particular, the trajectory cost corresponding

to H = 5 was 56.23 s. The trajectory costs returned by

2The T-RRT planner was found to be impractically slow for this example.
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the standard RRT planner were significantly higher, mainly

because it failed to traverse the aforementioned “short-cut”

on several occasions, as illustrated in Fig. 3(b). Clearly,

the average costs of trajectories returned by RRT-based

planners may be further worsened in environments where the

differences between the costs of trajectories corresponding to

“short-cuts” and the costs of alternative trajectories is larger.

Finally, Fig. 5 shows the result of simulating the overall

motion planner using the aircraft navigational model dis-

cussed in Section IV-C with CD,0 = 0.02, K = 0.04,

S = 30 m2, mg = 50 kN, and vcr = 85 m/s. The aircraft

speed was assumed to be constant, and the limits on the

bank angle control input were set to φmin = −45◦ and

φmax = 20◦. The objective was to minimize a cost defined on

the workspace (indicated by regions of different intensities

in Fig. 5; the darker regions correspond to higher costs).

The preceding simulations were all implemented in the

MATLAB simulation environment. Therefore, accurate indi-

cations of the computation time of the proposed planner in

a real-time implementation are not yet available. However,

the reader may refer [20] for comments on implementation-

independent performance indicators of the proposed work.

The RRT∗ algorithm [25] is a recent development in

randomized sampling-based optimal kinodynamic motion

planning, and a thorough comparison of the proposed work to

RRT∗ for motion planning with complex vehicle dynamical

models is currently under investigation. The primary chal-

lenge in implementing RRT∗ for complex dynamical models

is the development of an asymptotically optimal point-to-

point steering algorithm for the given dynamical model,

which is, in general, a more difficult problem than the tile

motion planning problem discussed in this work.

VI. CONCLUSIONS AND FUTURE WORK

We presented a MPC-based local trajectory generation

scheme, called TILEPLAN, to enable a hierarchical motion

planner that incorporates vehicle kinematic and dynamic

constraints in the geometric planning stage. The proposed

TILEPLAN scheme relies on the idea of effective target

sets to transform non-convex state constraints into convex

constraints. We illustrated the proposed scheme using two

non-trivial examples of vehicle dynamical models. Also, we

demonstrated the efficacy of the overall motion planner via

numerical simulation results that show significantly lower

costs of resultant trajectories as compared to state-of-the-art

randomized sampling-based planners. Future work includes

applications of the proposed TILEPLAN scheme to more

complex vehicle models and multi-resolution implementa-

tions of the overall motion planner.
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on configuration-space costmaps,” IEEE Transactions on Robotics,
vol. 26, no. 3, pp. 647–659, 2010.

[25] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
pp. 846–894, 2011.

4008


