
Use of Relaxation Methods in Sampling-Based Algorithms
for Optimal Motion Planning

Oktay Arslan Panagiotis Tsiotras

Abstract— Several variants of incremental sampling-based
algorithms have been recently proposed in order to solve
optimally motion planning problems. Popular examples include
the RRT∗ and the PRM∗ algorithms. These algorithms are
asymptotically optimal and provide high quality solutions.
However, the convergence rate to the optimal solution may
still be slow. This paper presents a new incremental sampling-
based motion planning algorithm based on Rapidly-exploring
Random Graphs (RRG), denoted by RRT# (RRT “sharp”),
which also guarantees asymptotic optimality, but, in addition,
it also ensures that the constructed spanning tree rooted at the
initial state contains lowest-cost path information for vertices
which have the potential to be part of the optimal solution.
This implies that the best possible solution is readily computed
if there are some vertices in the current graph that are already
in the goal region.

I. INTRODUCTION

In order to overcome the computational complexity as-
sociated with searching a high dimensional space, most
motion planning algorithms are designed in a similar way
and perform two fundamental tasks: exploration and ex-
ploitation [10], [3], [14]. Exploration acquires information
about the topology of the search space, i.e., how subsets
of the space are connected, while exploitation incrementally
improves the solution by processing the available information
computed by the exploration task. Exploration may thus fail
to find a solution if the available information is not sufficient.
Nonetheless, exploration leverages the currently available
information to the highest degree. Generally speaking, the
way these two tasks are incorporated produces planners of
different characteristics in terms of suboptimality, asymptotic
optimality, convergence rate, etc. In order to design motion
planning algorithms that are optimal, one must ensure that
exploration covers the whole search space (at least asymptot-
ically) and that exploitation finds the best possible solution
given the available information without being trapped in a
local solution.

Probabilistic methods have proven to be very efficient
for the solution of motion planning problems with dy-
namic constraints in high dimensional search spaces. Among
them,rapidly exploring random trees (RRTs) [11] are among
the most popular. It has been recently shown however that the
best path returned by RRTs when the algorithm converges

Oktay Arslan is a Robotics, PhD student with the D. Guggenheim School
of Aerospace Engineering at the Georgia Institute of Technology, Atlanta,
GA 30332-0150, USA, Email: oktay@gatech.edu

Professor Panagiotis Tsiotras is with the faculty of D. Guggenheim
School of Aerospace Engineering and the Center for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA 30332-0150,
USA, Email: tsiotras@gatech.edu

is almost always (i.e., with probability one) far from opti-
mal [7]. This has renewed the interest to develop incremen-
tal sampled-based algorithms for motion-planning problems
with optimality guarantees. In [6] the authors proposed the
Rapidly-exploring Random Graphs (RRG) algorithm, which
is asymptotically optimal, that is, it ensures that the optimal
path will be found as the number of samples tends to
infinity. Based on the RRG algorithm, the same authors later
proposed a new algorithm, namely RRT∗, that extracts a tree
from the graph constructed by the RRG algorithm [7]. The
RRT∗ algorithm follows the same procedure for exploration
as in the RRG algorithm, however, in addition, newly avail-
able information is immediately followed by exploitation.
This is achieved by rewiring the tree in the locality of the
newly sampled point in order to improve the cost-to-come
value of the neighbor vertices. Therefore, exploration and
exploitation tasks are coupled in the RRT∗ algorithm by
design, i.e., the cost-to-come value of any vertex of the
current tree cannot be improved without including a new
vertex into the tree. Since these two tasks are fundamentally
different, one intuitive way to improve performance (e.g.,
improve the convergence rate), is to separate the two and
implement them as different procedures, such that they can
be run in parallel as much as possible.

In this work we follow-up on this idea and propose a
new incremental sampling-based motion planning algorithm
that implements exploration and exploitation as two separate
procedures. For further efficiency, we also use relaxation
during the exploitation step. The proposed new algorithm,
denoted by RRT# (RRT “sharp”) adopts the exploration
algorithm of the RRG algorithm, and then uses a Gauss-
Seidel type relaxation method for exploitation. The RRT#

algorithm guarantees asymptotic optimality but, in addition,
it also ensures that, at each step, the information available
up to that step is fully exploited to the highest degree. A
spanning tree rooted at the initial point is constructed for
the underlying graph that contains information about the best
possible path from the initial point to the goal set, along with
the cost-to-come values for a subset of vertices, including the
goal set, which have the potential to be part of the optimal
solution. This has two benefits. First, it ensures that at each
instant of time, the algorithm returns the shortest path given
the currently available sampled points. Second, it allows us
to classify the vertices according to their potential of being
part of the optimal path. As a result, one can quickly identify
the region where the optimal solution is more likely to be
found. This information can be subsequently used to improve
the speed of convergence of the algorithm, as well as in order

to more efficiently explore the obstacle-free space.

II. PROBLEM FORMULATION

A. Notation and Definitions

Let X denote the state space, which is assumed to be an
open subset of Rd, where d ∈ N with d ≥ 2. Let the obstacle
region and the goal region be denoted by Xobs and Xgoal,
respectively. The obstacle-free space is defined by Xfree =
X\Xobs. Let the initial state be denoted by xinit ∈ Xfree. The
straight-line segment between given two points x, x′ ∈ Rd

is denoted by Line(x, x′) = {θ ∈ R, 0 ≤ θ ≤ 1 : θx +
(1 − θ)x′}. Let G = (V,E) denote a graph, where V and
E ⊆ V ×V are finite sets of vertices and edges, respectively.
In the sequel, we will use graphs to represent the connections
between a (finite) set of points selected randomly from Xfree.

Successor vertices: Given a vertex v ∈ V in a directed
graph G = (V,E), the set-valued function succ : (G, v) 7→
V ′ ⊆ V returns the vertices in V that can be reached from
vertex v.

Predecessor vertices: Given a vertex v ∈ V in a directed
graph G = (V,E), the set-valued function pred : (G, v) 7→
V ′ ⊆ V returns the vertices in V that are the tails of the
edges going into v.

Parent vertex: Given a directed graph G = (V,E) and a
vertex v ∈ V , the function parent : v 7→ u returns a unique
vertex u ∈ V such that (u, v) ∈ E and u ∈ pred(G, v).

Spanning tree: Given a directed graph G = (V,E), a span-
ning tree of G can be defined such that T = (Vs, Es), where
Vs = V and Es = {(u, v) : (u, v) ∈ E and parent(v) =
u}.

Edge cost value: Given an edge e = (u, v) ∈ E, the
function c : e 7→ r returns a non-negative real number.
Then c(u, v), where v ∈ succ(G, u), is the cost incurred
by moving from u to v.

Cost-to-come value: Given a vertex v ∈ V , the function
g : v 7→ r returns a non-negative real number r, which is the
cost of the path to v from a given initial state xinit ∈ Xfree.
We will use g∗(v) to denote the optimal cost-to-come value
of the vertex v which can be achieved in Xfree.

Heuristic value: Given a vertex v ∈ V , and a goal region
Xgoal, the function h : (v,Xgoal) 7→ r returns an estimate r
of the optimal cost from v to Xgoal; we set h(v) = 0 if v ∈
Xgoal. It is an admissible heuristic if it never overestimates
the actual cost of reaching Xgoal. In this paper, we always
assume that h is an admissible heuristic. It is well known that
inadmissible heuristics can be used to speed-up the search,
but they may lead to suboptimal paths [13].

We wish to solve the following motion planning problem:
Given a bounded and connected open set X ⊂ Rd, the sets
Xfree and Xobs = X\Xfree, and an initial point xinit ∈ Xfree

and a goal region Xgoal ⊂ Xfree, find the minimum-cost
path connecting xinit to the goal region Xgoal. If no such
path exists, then report that no solution is possible.

In the next section we present an iterative algorithm that
finds the optimal path connecting a sequence of points sam-
pled randomly from Xfree. The algorithm is based on ideas
similar to those found in the RRT∗ algorithm [7], with one

important distinction. While the RRT∗ algorithm is based
on a local rewiring of the tree after the addition of a new
vertex, the proposed algorithm incorporates, at each iteration,
a replanning step similar to what is implemented in the LPA*
and D* algorithms [9], [8] to efficiently propagate changes
in the relevant part of the graph owing to the inclusion of
the new vertex. As a result, the proposed algorithm ensures
that at each iteration, the optimal path in the current graph
is computed. The RRT∗ algorithm, on the contrary, does not
offer any guarantees that the interim path at any intermediate
iteration is optimal. Since any algorithm will be terminated
after a finite number of iterations, it is important to ensure
that, at termination, the returned path is optimal, given all the
available data up to that point. Furthermore, it is important
that the computation of the optimal path at each iteration
is done efficiently. This means that any prior information
from previous iterations is taken into consideration during the
next replanning step. In our implementation, this is done by
keeping track of the most “promising” vertices in the graph
(these are the vertices that can be part of the optimal path)
and by updating the cost-to-come values of these vertices
as new information becomes available. It is shown that this
amounts to implementing a dynamic-type programming step
at each iteration, after a suitable reordering of the variables
(in order to encode the updated information), similarly to
what is done in Gauss-Seidel relaxation methods for the
solution of fixed point problems. The details of the proposed
algorithm are given in Sections III and IV.

III. THE RRT# ALGORITHM - OVERVIEW

Given a graph G = (V,E), an initial vertex xinit and a
goal vertex set Xgoal, the following Bellman-type equation
can be used to compute the optimal cost-to-come values of
all vertices

g∗(vi) = min
vj∈pred(G,vi)

(g∗(vj) + c(vj , vi)), (1)

with boundary condition g∗(vi) = 0 if vi = xinit. This
equation can be solved efficiently using the Bellman-Ford
algorithm [4], [2]. One can introduce a Gauss-Seidel version
of the Bellman-Ford algorithm in terms of cost-to-come
values by relaxing equation (1). To this end, let nk be the
number of vertices (i.e., states) at the kth iteration of the
algorithm, and let gk,` ∈ Rnk be the nk-dimensional vector
whose components are the cost-to-come values of the vertices
after the cost-to-come value of `th order vertex is updated
during the kth iteration of the algorithm, that is, gk,`i = gk+1

i

if vi � vo(`) and gk,`i = gki if vo(`) ≺ vi. The initial
conditions are set as g0,0i = 0 for vi = xinit and g0,0i = ∞
for all vi ∈ V \ {xinit}. Then, a Gauss-Seidel iteration
of the Bellman-Ford algorithm can be written succinctly as
gk,0 = fG(g

k−1,0), where

fGo(`)
(gk−1,`−1)= min

vj∈pred(G,vo(`))
(gk−1,`−1j +c(vj , vo(`))), (2)

and boundary condition fGo(`)
(gk−1,`−1) = 0 if vo(`) =

xinit. During each iteration, the components of gk−1,0 are

updated one at a time by gk−1,`o(`) = fGo(`)
(gk−1,`−1) where

gk,0 = gk−1,nk .
The value computed by fGo(`)

at the `th step of the kth
iteration of the algorithm is the one-step lookahead cost-to-
come estimate of the vertex vo(`), called the locally minimum
cost-to-come estimate, or lmc-value of the vertex for short
(also called rhs-value in [9]). The lmc-value of the vertex vi
at stage (k, `) is therefore defined as lmck,`(vi) = fGi

(gk,`)
for Gauss-Seidel type iterations, and the vertex vi is called
stationary if gk,`(vi) = lmck,`(vi), which implies gk,`i =
fGi

(gk,`). Otherwise, it is called nonstationary.
The RRT# algorithm performs two tasks, namely explo-

ration and exploitation, during each iteration. The exploration
task implements the extension procedure of the RRG algo-
rithm, and is subsequently followed by the exploitation task
which implements the Gauss-Seidel version of the Bellman-
Ford algorithm as in equation (2). A brief description of each
of these steps is given below.

Exploration: This step samples randomly a point in
Xfree and then extends the underlying graph toward the sam-
pled point by including it as a new vertex in the current graph
by connecting the missing edges. The following procedures
are part of the exploration step.

Sampling: Sample : N → Xfree returns independent,
identically distributed (i.i.d) samples from Xfree.

Nearest neighbor: Nearest returns a point from a given
finite set V , which is the closest to a given point x in terms
of a given distance function.

Near vertices: Near returns the n closest points in a given
finite set V to a given point x in terms of a given distance
function.

Steering: Steer returns the point in a ball centered around
a given state x that is closest, with respect to the given
distance function, to another given point xnew.

Collision checking: Given two points x1, x2 ∈ Xfree, the
Boolean function ObstacleFree(x1, x2) checks whether the
line segment connecting these two points belongs to Xfree.
It returns True if the line segment is a subset of Xfree, i.e.,
Line(x1, x2) ⊂ Xfree, and False otherwise.

Graph extension: Extend is a function that extends the
nearest vertex of the graph G toward the randomly sampled
point xrand.

Exploitation: This step implements the task of improv-
ing the cost-to-come values of the current vertices as new
information becomes available. It also encodes the lowest-
cost path information for the promising vertices (see equation
(3) below) and v∗goal (the goal vertex that has the lowest
cost-to-come value in the goal set) as a spanning tree rooted
at the initial vertex. Cost-to-come values of nonstationary
vertices are updated in an order based on their f-values, i.e.,
an underestimate of the cost of the optimal path from the
initial vertex to the goal set passing through the vertex of
interest, and ties are broken in favor of vertices which have
smaller g-values at each iteration. Note that the algorithm
works so that stationarity of just a subset of vertices (rather
than of all vertices) suffices to compute the optimal path
from xinit to Xgoal. Details of the procedures used in the

exploitation step are given below.
Ordering: Given a vertex v ∈ V , the function Key : v 7→ k

returns a real vector k ∈ R2, whose components are k1(v) =
lmc(v) + h(v) and k2(v) = lmc(v). The components of the
key correspond to the f- and g-values in the A∗ algorithm,
respectively [12]. The precedence relation between keys is
determined according to lexicographical ordering. Given two
keys k1, k2 ∈ R2, the Boolean function 4 : (k1, k2) 7→
{False, True} returns True if and only if either k11 < k21
or (k11 = k21 and k12 ≤ k22), and returns False otherwise.

Promising vertices: Given a graph G = (V,E) with
xinit ∈ V , let g∗(v) be the optimal cost-to-come value of
the vertex v that can be achieved on the given graph G,
and let v∗goal = argminv∈V ∩Xgoal

g∗(v). The set of promising
vertices Vprom ⊂ V is defined by

Vprom={v : [f(v), g∗(v)] ≺ [f(v∗goal), g
∗(v∗goal)]}, (3)

where f(v) = g∗(v)+h(v). Only promising vertices have the
potential to be part of the optimal path from xinit to Xgoal.
Therefore, all promising vertices must be stationary at the
end of each iteration.

Relevant region: Let x∗goal ∈ Xgoal be the point in the
goal region that has the lowest optimal cost-to-come value in
Xgoal, i.e., x∗goal = argminx∈Xgoal

g∗(x). The relevant region
of Xfree is the set of points x for which the optimal cost-to-
come value of x, plus the estimate of the optimal cost moving
from x to Xgoal is less than the optimal cost-to-come value
of x∗goal, that is,

Xrel = {x ∈ Xfree : g
∗(x) + h(x) < g∗(x∗goal)}.

Points that lie in the Xrel have the potential to be part of the
optimal path starting at xinit and reaching Xgoal.

Replanning: Given a graph Gk = (V k, Ek) at the kth
iteration, a goal region Xgoal ⊂ Xfree and an arbitrary
vector gk−1,0 ∈ Rnk of cost-to-come values of all v ∈ V k,
where gk−1,0i = 0 for v = xinit, the function Replan :
(Gk,Xgoal, g

k−1,0) 7→ (Gk,Xgoal, g
k,0) operates on the non-

stationary vertices iteratively until all promising vertices
become stationary. The Replan function is used to propagate
the effects of the topological changes in the graph as new
vertices are added with each iteration.

Priority of vertices: The priority of vertices is the same
as the priority of their associated keys, and a priority queue
is used to sort all of the nonstationary vertices of the graph
based on their respective key values. The following functions
are defined to manage the priority queue.

Updating queue: The function UpdateQueue changes the
queue based on the g- and lmc-values of the vertex v. If the
vertex v is nonstationary, then it is either inserted into the
queue or its priority in the queue is updated based on its up-
to-date key value if it is already inside the queue. Otherwise,
the vertex is removed from the queue if it is a stationary
vertex. The order of expanded vertices is determined by
selecting the vertex of minimum key value in the queue for
expansion at each step.

Finding minimum: The function findmin() returns the
vertex with the highest priority of all vertices in the queue.
This is the vertex of minimum key value.

Removing a vertex: The function remove() deletes the
vertex v from the queue.

Updating priority: The function update() changes the
priority of the vertex v in the priority queue by reassigning
the key value of the vertex v with the new given key value.

Inserting a vertex: Given a vertex v ∈ V , and a key value,
the function insert() adds the vertex v with the given key
value into the queue.

IV. THE RRT# ALGORITHM - DETAILS

The main body of the RRT# algorithm is given in
Algorithm 1 and it is similar to the other RRT-variants
(RRT, RRG, RRT∗, etc.) with the notable exception that it
keeps track of vertex stationarity using the key values of all
current vertices in the graph. One of the important differences
between the RRT∗ and RRT# algorithms is that all vertices
in the tree computed by the RRT∗ algorithm have a uniform
type based on their finite cost-to-come value, whereas in
the RRT# algorithm the vertices have four different types
based on their one-step lookahead estimates of the cost-
to-come value. In the RRT# algorithm, each vertex v is
classified into one of the following four categories, based on
the values of its (g(v), lmc(v)) pair: stationary with finite
key value (g(v) < ∞, lmc(v) < ∞ and g(v) = lmc(v)),
stationary with infinite key value (g(v) =∞, lmc(v) =∞),
nonstationary with finite key value (g(v) < ∞ , lmc(v) <
∞ and g(v) 6= lmc(v)) and nonstationary with infinite g-
value and finite lmc-value (g(v) = ∞ , lmc(v) < ∞).
Stationary vertices with infinite key value are always non-
promising, whereas for the rest of the cases the vertices can
be either promising or non-promising.

Algorithm 1: Body of the RRT# Algorithm
1 RRT#(xinit, Xgoal, X)
2 V ← {xinit}; E ← ∅;
3 G ← (V ,E);
4 for k = 1 to N do
5 xrand ← Sample(k);
6 G ← Extend(G, xrand);
7 Replan(G,Xgoal);

8 (V ,E)← G; E′ ← ∅;
9 foreach x ∈ V do

10 E′ ← E′ ∪ {(parent(x), x)}
11 return T = (V ,E′)

The algorithm starts by adding the initial point xinit into
the vertex set of the underlying graph. Then, it incrementally
grows the graph in Xfree by sampling randomly a point
xrand from Xfree and extending the graph toward xrand. The
Replan procedure, which is provided in Algorithm 3, then
propagates the new information due to the extension across
the whole graph in order to improve the cost-to-come values
of the promising vertices in the graph. All computations due
to the sampling and extension steps, followed by exploitation
(Lines 5-7 of Algorithm 1), form a single iteration of the
algorithm. The process is repeated for a given fixed number
of iterations. The spanning tree of the final graph which is

rooted at the initial vertex, and which contains the lowest-
cost path information for the promising vertices and v∗goal,
is returned at the end.

This spanning tree (Line 7 in Algorithm 1) contains
information about the lowest-cost path for each promising
vertex and v∗goal, which can be achieved on the current graph.
This is one of the key difference between the RRT# algo-
rithm and other RRT-variants, including the RRT∗ algorithm.
In addition, in the RRT# algorithm the g-values of the
promising vertices are equal to their respective optimal cost-
to-come values that can be achieved through the edges of the
graph. This allows us to initialize the g-value of a new vertex
with a smaller estimate value during extension if it has any
promising neighbor vertex. This estimate keeps improving to
the best possible value whenever new information becomes
available on any part of the graph. Hence, the g-value of
each promising vertex in the graph converges to its optimal
cost-to-come value very quickly.

Algorithm 2: Extend Procedure
1 Extend(G,x)
2 (V ,E)← G; E′ ← ∅;
3 xnearest ← Nearest(G, x);
4 xnew ← Steer(xnearest, x);
5 if ObstacleFree(xnearest, xnew) then
6 Initialize(xnew, xnearest);
7 Xnear ← Near(G, xnew, |V |);
8 foreach xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 if lmc(xnew) > g(xnear)+c(xnear, xnew)
then

11 lmc(xnew) =
g(xnear) + c(xnear, xnew);

12 parent(xnew) = xnear;

13 E′ ← E′ ∪{(xnear, xnew), (xnew, xnear)} ;

14 V ← V ∪ {xnew};
15 E ← E ∪ E′;
16 UpdateQueue(xnew);

17 return G′ ← (V ,E)

The Extend procedure used in the RRT# algorithm is
given in Algorithm 2. During each iteration, the Extend

procedure tries to extend the graph toward the randomly
sampled point xrand ∈ Xfree. First, the closest vertex in the
graph xnearest is found in Line 3, then xnearest is steered
toward the randomly sampled point xrand in the next line.
If the line segment connecting the steered point xnew and
xnearest is feasible, then the new point xnew is prepared
for inclusion to the vertex set of the graph. Then, a local
search is performed in some neighborhood of xnew (i.e.,
inside the set of vertices returned by the Near procedure)
in order to find the local minimum cost-to-come estimate
value and the corresponding parent vertex. This is done in
Lines 8-13 of Algorithm 2. The new vertex xnew and all
extensions resulting in feasible paths are added to the vertex
and edge sets of the graph in Lines 14-15. In the end, the
new vertex is decided to be inserted in the priority queue or
not based on its stationarity in the UpdateQueue procedure.

A newly inserted vertex may be nonstationary if it has
a finite lmc-value. Therefore, the spanning tree needs to be

Algorithm 3: Replan Procedure
1 Replan(G,Xgoal)
2 while q.findmin() ≺ Key(v∗goal) do
3 x = q.findmin();
4 g(x) = lmc(x);
5 q.delete(x);
6 foreach s ∈ succ(G, x) do
7 if lmc(s) > g(x) + c(x, s) then
8 lmc(s) = g(x) + c(x, s);
9 parent(s) = x;

10 UpdateQueue(s);

Algorithm 4: Auxiliary Procedures
1 Initialize(x, x′)
2 g(x)←∞;
3 if x′ = ∅ then
4 lmc(x)←∞;
5 parent(x)← ∅;

6 else
7 lmc(x) = g(x′) + c(x′, x);
8 parent(x) = x′;

9 UpdateQueue(x)
10 if g(x) 6= lmc(x) and x ∈ q then
11 q.update(x,Key(x));

12 else if g(x) 6= lmc(x) and x /∈ q then
13 q.insert(x,Key(x));

14 else if g(x) = lmc(x) and x ∈ q then
15 q.delete(x);

16 Key(x)
17 return k = (lmc(x) + h(x),lmc(x));

checked, and appropriate operations must be performed in
order to update lowest-cost path information, if necessary.
The Replan procedure, which is provided in Algorithm 3,
is called to update the spanning tree by operating on the
nonstationary and promising vertices of the graph, iteratively.
It simply pops the most promising nonstationary vertex from
the priority queue, if there are any, and this nonstationary
vertex is made stationary by assigning its lmc-value to its
g-value. Then, its new g-value is propagated among its
neighbors in order to improve their lmc-values in Lines 6-10
of Algorithm 3. However, this information propagation may
also cause some vertices to become nonstationary; therefore,
all resulting nonstationary vertices are inserted in the priority
queue as well. This process continues until there are no
nonstationary promising vertices left in the priority queue.

Note that the termination condition in Line 2 of Algo-
rithm 3 ensures that when the Replan procedure terminates,
all promising and nonstationary vertices are expanded. This
would be clearly true if the Replan(Gk,Xgoal) procedure
were allowed to operate on all nonstationary vertices of
the graph, that is, if the termination condition in Line 2
of Algorithm 3 were replaced by the condition “queue is
not empty.” In such a case, the Replan procedure would
expand all vertices until they all became stationary before

the procedure terminated. However, the termination condition
in Line 2 of Algorithm 3 actually ensures much more,
namely, that all promising vertices (and only those) are
made stationary, so there is no need to expand the non-
promising vertices. This is important for efficiency since a
non-promising vertex cannot be part of the optimal path.
Therefore, there is no need to expand non-promising vertices,
thus speeding up the whole algorithm.

V. ANALYSIS

In this section we provide the main theoretical results
related to the RRT#. Details of the proofs can be found
in [1].

Lemma 1 Let u ∈ V k be the vertex selected for expansion
at the `th step of the kth iteration, that is, let u be the
nonstationary vertex of highest priority in the queue. Then,
the following relations hold for any vertex v ∈ V k due to
the expansion of the vertex u:

i) If v is nonstationary, then Keyk−1,`(v) �
Keyk−1,`−1(u).

ii) If v is stationary and becomes nonstationary at the next
step, then Keyk−1,`(v) � Keyk−1,`−1(u).

Proof: (Sketch) First, note that a vertex v ∈ V k can
be made nonstationary only if v ∈ succ(Gk, u) and its lmc-
value is also updated. This situation happens when the g-
value of one of the predecessors of v (in this case u) has
been decreased.

Case i): There are three possibilities in this case. First,
the key value of the vertex v is not updated and therefore
v remains nonstationary. It is easy to show that in this
case Keyk−1,`(v) = Keyk−1,`−1(v) � Keyk−1,`−1(u). Next,
assume that the key of vertex v is updated but v still
remains nonstationary during the expansion of vertex u.
In this case we have that lmck−1,`(v) < lmck−1,`−1(v).
It follows that Keyk−1,`(v) = [min(gi+1(v), lmci+1(v))+
h(v),min(gi+1(v), lmci+1(v))] = [gk−1,`(u) + c(u, v) +
h(v), gk−1,`(u) + c(u, v)]� [gk−1,`(u)+h(u), gk−1,`(u)] =
Keyk−1,`−1(u). Finally, assume that vertex v is nonsta-
tionary and it becomes stationary during the expansion of
vertex u. In this case it can be shown that Keyk−1,`(v) =
Keyk−1,`−1(u).

Case ii): Since vertex v becomes nonstationary at the
next step due to the expansion of vertex u, it follows that
u ∈ pred(Gk, v) and lmck−1,`(v) = gk−1,`(u) + c(u, v).
Furthermore, gk−1,`(u) = lmck−1,`(u) = lmck−1,`−1(u). It
follows that gk−1,`(v) = gk−1,`−1(v) = lmck−1,`−1(v) >
lmck−1,`(v) and thus gk−1,`(v) > lmck−1,`(v). Similarly to
Case i), it can be shown that Keyk−1,`(v) � Keyk−1,`−1(u).

Note that if v is stationary and remains stationary after the
expansion of u, nothing can be said about their key values.

During the kth iteration, the key value of the vertex with
the highest priority in the queue is nondecreasing during the
execution of the Replan(Gk,Xgoal) procedure. Furthermore,
if a vertex vi ∈ V k is stationary with Keyk−1,`−1(v) �
kk−1,`−1min where kk−1,`−1min is the key of highest priority vertex

in the queue at stage (k−1, `−1) in the Replan(Gk,Xgoal)
procedure, then it remains stationary until the procedure
terminates.

Theorem 1 Given the graph Gk = (V k, Ek) and a goal
set Xgoal, the Replan(Gk,Xgoal) procedure incrementally
operates on all nonstationary and promising vertices, and
only those. Thus, the lmc-values of the promising vertices are
equal to their respective optimal cost-to-come values when
the procedure terminates at the end of the kth iteration.

Proof: (Sketch) Let V k
exp denote the set of all vertices

that are expanded during the Replan(Gk,Xgoal) procedure.
We need to show that all nonstationary and promising ver-
tices are expanded before the Replan(Gk,Xgoal) procedure
terminates, that is, we need to show that V k

prom ⊆ V k
exp.

To this end, let `t be the step at which the termination
condition in Algorithm 3 is satisfied for the first time, i.e.,
let Keyk−1,`t−1(v∗goal) � Keyk−1,`t−1(vt) where vt is the
nonstationary vertex that is selected for expansion at the
`tth step, and assume that there exist a nonstationary and
promising vertex vi ∈ V k

prom, satisfying [fk(vi), g
∗k(vi)] ≺

[fk(v∗goal), g
∗k(v∗goal)], which is not expanded before the

Replan(Gk,Xgoal) procedure terminates at the end of the
kth iteration. Should Algorithm 3 were allowed to expand
all nonstationary vertices, then vertex vi would be selected
for expansion at the `ith step after the vertex vt with
`t ≤ `i and Keyk−1,`i(vi) = [fk(vi), g

∗k(vi)] accord-
ing to Theorem 6 of [9]. Since vertex vi is expanded
after vertex vt, Keyk−1,`t(vt) � Keyk−1,`i(vi) and that
[fk(v∗goal), g

∗k(v∗goal)] � [fk(vi), g
∗k(vi)]. This implies that

the vertex vi is a non-promising vertex, leading to a contra-
diction.

To show that V k
exp ⊆ V k

prom let us assume that a nonsta-
tionary vertex vi ∈ V k is expanded at the `ith step in the
Replan(Gk,Xgoal) procedure, i.e., vi ∈ V k

exp. It then follows
that Keyk−1,`i(vi) = [fk(vi), g

∗k(vi)] as shown in Theorem
6 of [9]. Also, as shown in Lemma 9 of [9], Keyk−1,`i(vi) ≺
[fk(v∗goal), g

∗k(v∗goal)] . It follows that [fk(vi), g
∗k(vi)] ≺

[fk(v∗goal), g
∗k(v∗goal)], and vi is a promising vertex. Hence

V k
exp ⊆ V k

prom. Finally, gk−1,`i(vi) = lmck−1,`i(vi) =

g∗k(vi) for any promising vertex vi ∈ V k when the
Replan(Gk,Xgoal) procedure terminates at the beginning of
the `tth step.

Theorem 2 Let Gk = (V k, Ek) and T k = (V k, Ek
s)

denote the graph and the spanning tree that is rooted at
the vertex xinit and constructed by the Replan(Gk,Xgoal)
procedure, respectively, at the kth iteration, and let σ be the
corresponding unique path from xinit to any terminal vertex
vi ∈ V k encoded by the tree T k. Then, this path is the
lowest-cost path with respect to the current graph Gk if the
terminal vertex vi is a promising vertex or if vi = v∗goal.

Proof: Let σ denote the unique path from xinit to
the terminal vertex vi encoded in the tree T k such that
σ(τj) = vpj for 0 ≤ τj ≤ 1 and j = 0, 1, . . . , ni where

τ0 = 0, τni
= 1 and vpj

are vertices along the path. We
have σ(τ0) = vp0

= xinit and σ(τni
) = vpni

= vi.
Also, the parent vertex of each vertex is given by vpj−1 =
parent(vpj

). Let us consider the paths in Gk from xinit
to any promising vertex or v∗goal. First, note that if the
terminal vertex of the path σ is a promising vertex or v∗goal,
then all of the intermediate vertices along the path σ are
promising. Second, when the Replan(Gk,Xgoal) procedure
terminates at the end of the kth iteration, the lmc-values of
all promising vertices and of v∗goal are equal to their corre-
sponding optimal cost-to-come values as shown in Theorem
3. Hence, lmck−1,nk(v) = g∗k(v) for all v ∈ V k

prom ∪
{v∗goal}. We can thus write g∗k(vpj) = lmck−1,nk(vpj) =

gk−1,nk(vpj−1) + c(vpj−1 , vpj) = lmck−1,nk(vpj−1) +

c(vpj−1
, vpj

) = g∗k(vpj−1
) + c(vpj−1

, vpj
), for any vertex

vpj along the path σ, which shows that each vertex on σ has
achieved the optimal cost-to-come.

Theorem 3 Let Gk = (V k, Ek) denote the graph at the kth
iteration. Then, the relationship g∗k+1(v∗goal) ≤ g∗k(v∗goal)
holds for all k, and the estimated optimal cost decreases with
each iteration.

Proof: (Sketch) Without loss of generality, let k ≥ N ,
where N is the iteration such that V N ∩Xgoal is not empty,
otherwise, the claim holds trivially. Let now nk denote the
index of the new sampled vertex, which is created in the
Extend(Gk−1, xrand) procedure at the beginning of the kth
iteration, that is, let vnk

= xnew. The g-value of vnk
is

initialized with infinity, i.e., gk−1,0(vnk
) = ∞ and its lmc-

value can be a finite value or infinite (the latter occurs if
all neighbor vertices have infinite g-values). Therefore, the
new vertex can be either stationary with infinite key value (in
which case gk−1,0(vnk

) = lmck−1,0(vnk
) = ∞) or nonsta-

tionary with finite key value (in which case gk−1,0(vnk
) =

∞, lmck−1,0(vnk
) < ∞). If the new vertex is stationary,

then it is not inserted into the queue. The Replan(Gk,Xgoal)
procedure thus terminates without updating the cost-to-come
value of any vertex when it is subsequently called after the
Extend(Gk−1, xrand) procedure. Therefore, the lowest-cost
path computed in the previous iteration will not be modified,
and thus g∗k(v∗goal) = g∗k−1(v∗goal). When the new vertex is
nonstationary, it is inserted into the queue. There are three
different cases to consider depending on the type of the new
vertex:

a) Case 1: Assume vnk
is neither a promising ver-

tex nor a goal vertex and assume that Keyk−1,0(vnk
) ≺

Keyk−1,0(v∗goal). Then the cost-to-come value of vnk
is

updated at Line 4 in the Algorithm 3, since all other nonsta-
tionary vertices in the queue have lower priority than v∗goal.
This implies that vnk

is a promising vertex, which leads
to a contradiction. Therefore, necessarily Keyk−1,0(v∗goal) �
Keyk−1,0(vnk

) and the Replan(Gk,Xgoal) procedure will
terminate immediately without updating the cost-to-come
value of any vertex and hence, g∗k(v∗goal) = g∗k−1(v∗goal).

b) Case 2: Let us consider the case when vnk
is not

a promising vertex but a goal vertex. In this case it can

be shown that the Replan(Gk,Xgoal) procedure terminates
without updating the cost-to-come value of any vertex. If
the lmc-value of the new vertex is smaller than of v∗goal
computed at the previous step, that is, if lmck−1,0(vnk

) <
lmck−2,nk−1(v∗goal), then the lowest-cost path will be modi-
fied, and g∗k(v∗goal) < g∗k−1(v∗goal). Otherwise, the lowest-
cost path computed at the previous step will be preserved,
and thus g∗k(v∗goal) = g∗k−1(v∗goal).

c) Case 3: Assume that vnk
is a promising vertex. First,

let us assume that Keyk−1,0(v∗goal) � Keyk−1,0(vnk
) in the

very beginning of the Replan(Gk,Xgoal) procedure. We then
have Keyk−1,0(v∗goal) � Keyk−1,0(vi) for all nonstationary
vi ∈ V k. Therefore, the Replan(Gk,Xgoal) procedure termi-
nates without updating the cost-to-come value of any vertex.
This implies that vnk

is a nonpromising vertex, leading
to a contradiction. Hence, we have that Keyk−1,0(vnk

) ≺
Keyk−1,0(v∗goal) and the cost-to-come value of the new
vertex is updated at the first step in the Replan(Gk,Xgoal)
procedure. Since the sequence computed by the Gauss-
Seidel version of the Bellman-Ford algorithm converges to
the optimal cost-to-come values from any initial values,
the Replan(Gk,Xgoal) procedure will compute the lowest-
cost path encoded by Gk by expanding all nonstationary
and promising vertices. If the cost of the lowest-cost path
from xinit to Xgoal passing through the new vertex is better
than that of the lowest-cost path computed at the previous
iteration, we then have g∗k(v∗goal) < g∗k−1(v∗goal); otherwise
g∗k(v∗goal) = g∗k−1(v∗goal).

Theorem 4 The RRT# algorithm is asymptotically optimal,
that is, g∗k(v∗goal)→ g∗(x∗goal) as k →∞.

Proof: Since the RRT# algorithm adopts the Extend

procedure of the RRG algorithm, they both create the same
graph Gk at the end of the kth iteration. The RRT# algo-
rithm, in addition, keeps a spanning tree T k that is rooted
at the vertex xinit and contains lowest-cost path information
for a subset of vertices (namely, all promising vertices, along
with v∗goal). At the end of each iteration, g∗k(v∗goal) = J∗k. In
addition, since the RRG algorithm is asymptotically optimal,
we have that J∗k → J∗ as k → ∞, where J∗ is the cost
of the optimal path from xinit to Xgoal in Xfree. Hence,
g∗k(v∗goal) = J∗k → J∗ = g∗(x∗goal) as k →∞.

VI. NUMERICAL SIMULATIONS

The RRT# algorithm was developed in C++ and run on a
computer with a 2.40 GHz processor and 12GB RAM run-
ning the Ubuntu 11.10 Linux operating system. A Fibonacci
heap was implemented as priority queue to store nonstation-
ary vertices during the search [5]. Extensive simulations were
run to compare the performance of the RRT# algorithm with
the RRT∗ algorithm, whose C implementation is available
to download from the RRT∗ authors’ website.

Both RRT# and RRT∗ algorithms were run in an envi-
ronment of several obstacles with the same sample sequence
in order to demonstrate the difference in their behavior while
growing the tree. All problems tested require finding an

optimal path in a square environment where there are some
box-like obstacles minimizing the Euclidean path length. The
heuristic value of a vertex is the Euclidean distance from the
vertex to the goal. The trees computed by both algorithms
at different stages are shown in Figure 1. The initial state is
plotted as a yellow square and the goal region is shown in
blue with magenta border (upper right). The minimal-length
path is shown in red. As shown in Figure 1, the best path
computed by the RRT# algorithm converges to the optimal
path. As mentioned earlier, one of the important differences
between the RRT∗ and RRT# algorithms is that the latter
classifies the vertices in one of the following four categories
based on the values of its (g(v), lmc(v)) pair: Stationary with
finite key value (shown in green), stationary with infinite key
value (shown in black), nonstationary with finite key value
(shown in blue), and nonstationary with infinite g-value and
finite lmc-value (shown in red).

Since only the points in the relevant region Xrel have the
potential to be part of the optimal path, the RRT# algorithm
tries to approximate Xrel with the set of promising vertices
Vprom. As seen in Figure 1, Xrel is approximated by green
vertices and it is much smaller than the whole Xfree. The
estimate of Xrel can be used to implement more intelligent
sampling strategies, if needed, although this possibility was
not pursued in this paper, where sampling was uniform.

A Monte-Carlo study was also performed in order to
compare the convergence rate and variance in the trials of
both algorithms in a high dimensional search space. Both
algorithms were run up until 4 million iterations 100 times
in a 5-dimensional search space where several 5-dimensional
hypercubes of different size were randomly placed in the
environment to represent obstacles. As shown in 2, the
RRT# algorithm computes solutions of lower cost and
having smaller variance than the RRT∗ algorithm.

VII. CONCLUSION

In this paper, a new incremental sampling-based algorithm,
denoted by RRT#, is presented, which offers asymptotically
optimal solutions for solving motion planning problems. By
incorporating stationarity information of all current vertices
in the tree we can have more informed estimates of the
optimal values of the potential paths and this results in an
initial convergence rate that is better than the one achieved
by the RRT∗ algorithm. The work in this paper can be
extended in several directions. First, since the RRT# al-
gorithm decomposes the vertex set into “promising” and
“non-promising” ones, smarter sampling strategies can be
developed to exploit this information. Also, a parallel version
of the algorithm could be implemented by running the
Extend and Replan procedures as separate threads. This
is part of ongoing work.

REFERENCES

[1] O. Arslan and P. Tsiotras. An efficient sampling-based algorithm for
motion planning with optimality guarantees. Technical Report DCSL-
12-09-010, Georgia Institute of Technology, School of Aerospace
Engineering, September 2012.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)

Fig. 1: The evolution of the tree computed by RRT∗ and RRT# algorithms is shown in (a)-(d) and (e)-(h), respectively.
The configuration of the trees (a), (e) is at 250 iterations, (b), (f) is at 500 iterations, (c), (g) is at 2500 iterations. and (d),
(h) is at 10000 iterations.

0 100 200 300 400 500 600 700 800

10
1.4

10
1.5

Time [s]

C
os

t

(a)

0 100 200 300 400 500 600 700 800
10

−1

10
0

10
1

10
2

Time [s]

C
os

t

(b)

RRT∗

RRT#

RRT∗

RRT#

Fig. 2: The change in the cost of the best paths computed by
RRT∗ and RRT# algorithms and the variance of the trials
are shown in (a) and (b), respectively (5D search space).

[2] D. P. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, Belmont, Massachusetts,
January 1997.

[3] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.

[4] L. R. Ford. Network flow theory. Technical report, RAND Corpora-
tion, Santa Monica, CA, 1956.

[5] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the Association
for Computing Machinery, 34(3):596–615, 1987.

[6] S. Karaman and E. Frazzoli. Sampling-based motion planning with
deterministic µ-calculus specifications. In IEEE International Confer-
ence on Decision and Control, pages 2222–2229, 2009.

[7] S. Karaman and E. Frazzoli. Sampling-based algorithms for opti-
mal motion planning. International Journal of Robotics Research,
30(7):846–894, 2011.

[8] S. Koenig and M. Likhachev. D∗ lite. In Eighteenth National
Conference on Artificial Intelligence, pages 476–483, Menlo Park, CA,
2002. American Association for Artificial Intelligence.

[9] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*.
Artificial Intelligence Journal, 155(1-2):93–146, 2004.

[10] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[11] S. M. LaValle and J. J. Kuffner, Jr. Rapidly-exploring random trees:
Progress and prospects. In B. R. Donald, K. Lynch, and D. Rus,
editors, New Directions in Algorithmic and Computational Robotics,
pages 293–308. 2001.

[12] N. J. Nilsson. Problem Solving Methods in Artificial Intelligence.
McGraw-Hill Inc., 1971.

[13] J. Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley Pub (Sd), 1984.

[14] M. Rickert, O. Brock, and A. Knoll. Balancing exploration and
exploitation in motion planning. In IEEE International Conference
on Robotics and Automation, pages 2812–2817, 2008.

	I Introduction
	II Problem Formulation
	II-A Notation and Definitions

	III The RRT# Algorithm - Overview
	IV The RRT# Algorithm - Details
	V Analysis
	VI Numerical Simulations
	VII Conclusion
	References

