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Abstract— Sampling-based motion planning algorithms, such
as the Probabilistic RoadMap (PRM) and the Rapidly-exploring
Random Tree (RRT), have received a large and growing amount
of attention during the past decade. Most recently, sampling-
based algorithms, such as the PRM∗ and RRT∗, that guarantee
asymptotic optimality, i.e., almost-sure convergence towards
optimal solutions, have been proposed. Despite the experimental
success of asymptotically-optimal sampling-based algorithms,
their extensions to handle complex non-holonomic dynamical
systems remains largely an open problem. In this paper, with the
help of results from differential geometry, we extend the RRT∗
algorithm to handle a large class of non-holonomic dynamical
systems. We demonstrate the performance of the algorithm in
computational experiments involving the Dubins’ car dynamics.

I. INTRODUCTION

The motion planning problem, i.e., the problem of finding
a dynamically-feasible trajectory from an initial state to a
goal state through a complex environment, is a fundamental
problem of robotics [1]. Moreover, it has found many appli-
cations well outside the robotics domain, in fields ranging
from computational biology to computer graphics [2].

Despite the discouraging computational complexity re-
sults [3], many practical algorithms were proposed. In partic-
ular, algorithms based on sampling, such as the Probabilistic
RoadMap (PRM) [4] and the Rapidly-exploring Random
Tree (RRT) [5] algorithms, have achieved substantial ex-
perimental success (see, e.g., [6]). Often implemented using
random sampling, these algorithms guarantee probabilistic
completeness, i.e., the algorithm returns a feasible path, when
one exists, with probability approaching to one as the number
of samples approaches infinity [4], [5], [1].

In many applications of robotics, however, the quality
of the solution returned by the algorithm is also a major
concern. In fact, in the context of sampling-based motion
planning, the importance of the quality of the motion,
measured with respect to a cost function, has been realized
early on [7], [8]. However, most existing algorithms relied
on problem-specific heuristics and failed to provide any
guarantees on convergence towards optimal solutions.

Recently, in our previous work in [9], we have studied
sampling-based algorithms in terms of their convergence to
optimal solutions. In particular, we have shown that, some of
the widely-used path planning algorithms, such as the RRT,
fail to converge to optimal solutions, with probability one.
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Subsequently, we have proposed two novel algorithms, called
the PRM∗ and the RRT∗, which guarantee asymptotic opti-
mality, i.e., almost-sure convergence to globally optimal so-
lutions, without sacrificing computational efficiency. In fact,
the asymptotic computational complexity of these algorithms
is the same as the most efficient existing sampling-based
algorithms, such as the RRT. The enabling idea behind PRM∗

and RRT∗ algorithms is to connect samples within hyper-
spheres of volume log n/n, a rate that guarantees asymptotic
optimality and computational efficiency at the same time.
More recently, these algorithms have been demonstrated on
a number of robotic platforms [10], [11].

In [9], we have focused solely on holonomic dynamical
systems (in the sense defined later in this paper). In this
paper, we propose modifications to the PRM∗ and RRT∗ al-
gorithms to be able to handle a large class of non-holonomic
dynamical systems. In particular, we show that, by seeking
connections within boxes that are substantially larger in
some dimensions than others, both asymptotic optimality
and computational efficiency can be ensured. The shape and
orientation of these boxes can be efficiently computed for
a large class of dynamical systems. Our analysis is based
on differential geometry, and it provides new insight into
sampling-based algorithms tailored for planning problems
involving non-holonomic dynamical systems, which may be
of independent interest. In particular, our results may also
lead to effective nearest neighbor metrics for RRTs.

Our work in this paper extends our previous work in [12],
where we had identified an RRT∗ variant for a class of
non-holonomic dynamical systems. Although this variant
was asymptotically optimal, it was not as efficient as, for
example, the RRT algorithm. Extending RRT∗ to deal with
non-holonomic dynamical systems have also been considered
by many others (see, e.g., [13], [14]). Most of this very
recent research focuses on developing steering functions for
various classes of dynamical systems. In contrast, our work
in this paper is on ensuring computational effectiveness of
the algorithm, when the steering function is given.

This paper is organized as follows. In Section II, the
motion planning problem is defined. In Section III, a number
of results from differential geometry are discussed; these
results play an important role in the analysis presented in
this paper. In Sections IV, the RRT∗ variant that can handle
a large class of dynamical systems is presented, and in
Section V, this algorithm is analyzed in terms of asymptotic
optimality and computational complexity. In Section VI, the
performance of the algorithm is illustrated in an example
involving a non-holonomic system. Finally, the paper is



concluded with remarks in Section VII.

II. PROBLEM DEFINITION

Consider the following time-invariant dynamical system:

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm, f : X × U → Rn
is Lipschitz continuous in both of its arguments. We tacitly
assume that the sets X and U are smooth manifolds (see
Section III-A for the definition of a smooth manifold).

The state x0 ∈ X (see Equation (1)) is called the initial
state. Let Xobs ⊂ X and Xgoal ⊂ X , called the obstacle set
and the goal set, be open relative to X . Let c : Σ → R≥0
be a cost function that assigns to each non-trivial trajectory
a non-zero cost. Then, the motion planning problem is to
find a dynamically-feasible trajectory x : [0, T ] → X that
(i) starts from the initial state, i.e., x(0) = x0, (ii) avoids
collision with obstacles, i.e., x(t) /∈ Xobs for all t ∈ [0, T ],
and (iii) reaches the goal region, i.e., x(T ) ∈ Xgoal. The
optimal motion planning problem is to find a trajectory x∗ :
[0, T ] → X that solves the motion planning problem while
minimizing the cost function c.

III. THE SHAPE OF SMALL-TIME ATTAINABLE SETS

Given a state x0 ∈ X and a real number t > 0, define the
small-time attainable set, denoted by A(x0, t), as the set of
all states reachable within time t by the dynamical system de-
scribed by Equation (1) when the system starts from the state
x0. The attainable set is defined as A(x0) :=

⋃
t>0A(x0, t).

The following property, also called the accessibility property
by D. Elliot [15], will play an important role in our analysis.

Definition 1 A system is said to be small-time locally at-
tainable (STLA) at state x0 ∈ X if A(x0, t) has a non-empty
interior (with respect to X) for all t > 0.

It is worth noting at this point that the small-time attain-
ability property is closely related to small-time local con-
trollability. According to Sussmann [15], a system described
by Equation (1) is said to be small-time locally controllable
(STLC) at x0 ∈ X if A(x0, t) contains a neighborhood of x0
for all t > 0 and locally controllable at x0 if A(x0) contains
an open neighborhood of x0. Clearly, the STLC property
implies the STLA property. Hence, STLC is a stronger
condition. For instance, the Dubins’ car [16] is STLA but
not STLC [17]. In Section III-C, we recall the conditions
under which a system is STLA or STLC.

In rest of this section, a key lemma characterizing the
small-time attainable set for a large class of dynamical sys-
tems is provided (see Lemma 4). This key lemma constitutes
the building block for the proposed algorithms in Section IV
and for our analysis to follow in Section V.

Before stating this result, some other useful results from
sub-Riemannian geometry are introduced in this section.
Along the way, a number of examples from control theory
and robotics are provided. Our notation in this section is
fairly standard and closely follows that of Montgomery [18].

For a detailed exposition to sub-Riemannian geometry, the
reader is referred to the monographs [19], [20], [18], [21].

A. Fundamentals of Differential Geometry

Let n,m ∈ N, and let V ⊆ Rn and W ⊆ Rm be open sets.
Recall that a function f : V →W is said to be smooth if all
its partial derivatives exist and are continuous. The function
f is said to be a diffeomorphism if f is a bijection and both f
and its inverse f−1 are smooth. Two open sets V,W are said
to be diffeomorphic if there exists such a diffeomorphism.

A set M ⊆ Rn is a smooth d-dimensional manifold, if, for
all p ∈ M , there exists an open set V ⊂ Rn such that V ∩
M is diffeomorphic to an open set V ′ ⊂ Rd.1 An interval,
usually denoted by I , is a convex subset of R. A smooth
curve on a manifold M is a smooth function γ : I →M for
some interval I that includes the origin. Given a point p ∈
M , a vector v ∈ Rn is said to be a tangent vector of M at p,
if there exists a smooth curve γ : R→M such that γ(0) = p
and γ̇(0) = v. The tangent space of M at p is defined as
TpM := {γ̇(0) | γ is a smooth curve on M and γ(0) = p}.

Example A trivial example of a manifold is the n-
dimensional Euclidean space itself. Clearly, Rn is an n-
dimensional manifold since it is diffeomorphic to itself. One
of the most basic examples of a non-trivial manifold is the
unit circle. Defined as S1 := {(x1, x2) ∈ Rn |

√
x21 + x22 =

1} ⊂ R2, it is a one-dimensional manifold that has important
applications in robotics [23], [1]. In particular, the configura-
tion space of an n-link planar manipulator can be represented
by its n joint angles, hence the manifold formed by the
Cartesian product of n unit circles, i.e., S1×S1× · · · ×S1.
Another example is the configuration space of a Reeds-Shepp
car [24] involving its planar position and its orientation, i.e.,
R2 × S1. �

B. Sub-Riemannian Geometry

A smooth function Y : M → Rn is said to be a smooth
vector field on the manifold M , if Y (p) ∈ TpM for all
p ∈M . The set of all smooth vector fields on M is denoted
by VF(M). Let k, l ∈ N. A set E ⊂M ×Rl is said to be a
smooth vector bundle of rank k over the manifold M , if the
set Ep := {v ∈ Rl | (p, v) ∈ E} is a k-dimensional linear
subspace of Rl. The set Ep is also called the fiber of E
over p. In particular, the vector bundle TM := {(p, v) | p ∈
M,v ∈ TpM} is called the tangent bundle of M . Note that
its fiber, TpM , is an m-dimensional linear subspace of Rn.
A subbundle of a vector bundle is a subset that is a vector
bundle on its own right.

A distribution on a manifold M is a subbundle H of
the tangent bundle TM . A sub-Riemannian geometry on a
manifold M is a distribution H on M together with an inner
product 〈·, ·〉 : H×H → R≥0. The set H is also called the
horizontal distribution. The fiber of H at a point p ∈ M
is denoted by Hp. A curve γ : I → M defined on the

1In general, a smooth manifold is a Hausdorff space with a countable basis
such that any point on the manifold has a neighborhood that is diffeomorphic
to an open subset of the Euclidean space [22]. For all practical purposes,
we are only interested in manifolds that are subsets of an Euclidean space.



manifold M is said to be horizontal if it is tangent to H,
i.e., γ̇(t) = Hγ(t) for all t ∈ I .

Example Suppose the configuration space of a robot is
represented by a manifold M . Then, the dynamics governing
this robot, i.e., constraints on its velocities while moving
within its configuration space, can be represented by a dis-
tribution. Recall from the previous example that the config-
uration space of the Reeds-Shepp car can be represented by
the manifold M = R2×S1 encoding its planar position and
its orientation. To succinctly describe its dynamics, define
the state variables (x, y, θ), where (x, y) ∈ R2 describes the
position and θ ∈ [−π, π] describes the orientation of the
vehicle. Then,

ẋ(t) = u1(t) cos(θ(t))

ẏ(t) = u1(t) sin(θ(t))

θ̇(t) = u1(t)u2(t)

where |u1(t)|, |u2(t)| ≤ 1. The input signals u1 and u2
denote the forward velocity and the steering angle, respec-
tively.

The right hand side of the equation above induces a distri-
bution on the manifold M . At the origin, i.e., at (x, y, θ) =
(0, 0, 0), this distribution is spanned by the vectors (1, 0, 0)
and (0, 0, 1). These vectors span a two dimensional plane
along the coordinates x and θ. This merely indicates that the
car can move in the longitudinal direction and it can change
its orientation; but it can not move sideways, as the vector
(0, 1, 0) is not included in the span of the distribution at the
origin. �

The length of a (smooth) horizontal curve γ is defined as

Length(γ) =

∫
I

‖γ̇(t)‖dt,

where ‖γ̇(t)‖ =
√
〈γ̇(t), γ̇(t)〉. Since we are only interested

in manifolds that are submanifolds of an Euclidean space,
we will take the inner product to be the usual Euclidean
inner product. Thus, ‖ · ‖ denotes the usual Euclidean norm
on Rn throughout this paper. The length function naturally
induces a distance function on the manifold M . Given two
points p, p′ ∈M , the sub-Riemannian distance from p to p′

is defined as

d(p, p′) := inf{Length(γ) | γ is a smooth horizontal
curve that connects p and p′}.

By convention, d(p, p′) is infinite if there is no such curve.
Define the sub-Riemannian ball of radius ε centered at p as

B(p, ε) := {p′ ∈M | d(p, p′) ≤ ε}.

Central to our analysis will be the size of the sub-
Riemannian ball. In what follows, we recall from the dif-
ferential geometry literature an important result, called the
ball-box theorem, that provides an asymptotic estimate for
the size of the sub-Riemannian ball (see Theorem 3). First,
let us introduce some preliminary definitions.

Given two vector fields Y, Z defined on a smooth manifold
M , their Lie bracket is a vector field defined as

[Y,Z](p) := dZ(p)Y (p) − dY (p)Z(p),

for all p ∈ M , where dY (p) : TpM → Rn denotes the
derivative of the Y at point p ∈ M . More formally, the
derivative of Y at point p ∈ M in the direction v ∈ TpM ,
denoted by dY (p) v, is defined as follows. Let γ : R → M
be a smooth curve such that γ(0) = p and γ̇(0) = v, and
define dY (p) v = d

dt

∣∣
t=0

Y (γ(t)) = lims→0
Y (γ(s))−Y (p)

s . It
can be shown that this limit does exist; moreover the limit
is independent of the particular curve chosen to evaluate it.

Let Lie(F) denote the set of all vector fields formed by
F along with all iterated Lie brackets of vector fields from
F , i.e., Lie(F) := F ∪ {[Y1, [Y2, . . . [Yn−1, Yn] . . . ] |Yi ∈
F , n ∈ N}. It can be shown that Lie(F), also called the Lie
hull of F , is a Lie algebra. Given a manifold M and a point
p ∈M , define Lie(F)p := {Y (p) |Y ∈ Lie(Y )}.

Given a distribution H on M , let Hp denote its fiber at the
point p ∈ M . Define H1 := {Y ∈ VF(M) |Y (p) ∈ Hp}.
For all k ∈ N and k > 1, define Hk+1 := Hk ∪ [H1,Hk],
where [H1,Hk] = Span{[Y, Z] |Y ∈ H1, Z ∈ Hk}. Define
the fiber of Hk at point p ∈M as Hkp := {Y (p) |Y ∈ Hk}.
Then, the Lie hull of H is simply Lie(H) :=

⋃
k≥1Hk.

Its fiber over p ∈ M is Lie(H)p := {Y (p) |Y ∈ Lie(H)}.
The distribution H is said to be bracket generating, if the
Lie hull of H spans the whole tangent space of M , i.e.,
Lie(H)p = TpM for all p ∈ M . A central result in sub-
Riemannian geometry is stated in the following theorem.

Theorem 2 (Chow’s Theorem [25] (see [18])) Let H be a
bracket generating distribution on a connected manifold M .
Then, any two points of M is joined with a horizontal path.

The distribution being bracket generating is called Chow’s
condition in sub-Riemannian geometry [18], the linear alge-
bra rank condition in control theory [26], [27], [28], and
Hörmander’s condition in the context of partial differential
equations [29].

Example We continue the previous example. Given any con-
figuration (x, y, θ) of the Reeds-Shepp car, the vector fields
Y1 = (cos θ, sin θ, 0) and Y2 = (0, 0, 1) span the distribution
induced by its dynamics. The Lie bracket of these two vector
fields can be calculated as [Y1, Y2] = (− sin θ, cos θ, 0).
Notice that the vector fields {Y1, Y2, [Y1, Y2]} span the whole
tangent space, satisfying Chow’s condition. Then, Chow’s
theorem merely tells us that, given two configurations of
the Reeds-Shepp car, there exists a dynamically-feasible
trajectory, i.e., a horizontal curve, that joins the two. �

Let H be a bracket generating distribution. Then, for any
p ∈ H, there exists an integer r(p) such that

Hp ⊂ H2
p ⊂ · · · ⊂ Hr(p)p = TpM.

The smallest such integer is also called the degree of
nonholonomy of the distribution H at point p [30], [18].
Define nk(p) := dim(Hkp). Then, the list (n1(p), n2(p), . . . ,



nr(p)(p)) of integers is called the growth vector of H at p.
Note that, when H is bracket generating, the dimensionality
of Hr(p)p equals to that of TpM , i.e., nr(p) = n. The point p
is called a regular point if there exists an open neighborhood
of M around p such that the growth vector is constant;
otherwise, p is said to be a singular point of H.

For a given vector field Y , let exp tY denote its flow. That
is, (exp tY ) : M → M is such that (exp tY )(p) is equal to
y(t) where y : [0, t] → M is a solution to the following
differential equation: d

dty(τ) = Y (y(τ)) and y(0) = p. In
other words, (exp tY )(p) denotes the point that a system
evolving on the manifold M reaches under the influence of
the vector field Y for t time units starting from the point p.

Suppose that p is a regular point, and denote the
growth vector simply as (n1, n2, . . . , nr), where nr =
n. Define the vector fields Y1, Y2, . . . , Yn as follows: the
set {Y1, Y2, . . . , Yn1

} of vector fields spans H; the set
{Y1, Y2, . . . , Yn2} spans H2; and so on. Define the joint
flow of all these vector fields as Φ(t1, t2, . . . , tn; p) :=(
(exp t1Y1) ◦ (exp t2Y2) ◦ · · · ◦ (exp tnYn)

)
(p), where

◦ denotes the functional composition operator. Hence,
Φ(t1, t2, . . . , tn; p) denotes the point reached under the influ-
ence of vector field Yn for tn time units, then Yn−1 for tn−1
time units, and so on. Since p is a regular point, such a map
can be defined in some neighborhood of p. For notational
convenience, define the weights wi := k if Yi(p) ∈ Hkp
and Yi(p) /∈ Hk+1

p for all i ∈ {1, 2, . . . , n}, and define
w := (w1, w2, . . . , wn). Finally, define the w-weighted box
of size ε > 0 centered at p ∈M as

Boxw (p, ε) := {Φ(t1, t2, . . . , tn; p) | |tk| ≤ εwk}.

Recall that the sub-Riemannian ball of radius ε centered at
p is defined as B(p, ε) := {p′ ∈M | d(p, p′) ≤ ε}.

The following theorem, attributed to Mitchell, Ger-
shkovich, and Nagel-Stein-Wainger by Gromov [20], is of
central importance for the purposes of this paper.

Theorem 3 (Ball-Box Theorem (see [18])) Suppose that
H satisfies Chow’s condition. Then, there exists positive
constants ε0, c, C with c < C such that for all ε < ε0 and
for all p ∈M ,

Boxw (p, cε) ⊂ B(p, ε) ⊂ Boxw (p, Cε) .

Informally speaking, the ball box theorem estimates the
size of a small sub-Riemannian ball up to a constant factor. It
states that the set of states that can be reached by a horizontal
path starting from p contains a weighted box of radius c ε and
is contained in a box of radius C ε. The orientation of these
boxes at a particular point is determined by the vector fields
{Y1, Y2, . . . , Yn} evaluated at that point. Note that Chow’s
theorem can be deduced from the ball-box theorem [18].

It is remarkable that the shape of the sub-Riemannian ball
can be estimated up to a constant factor for an arbitrary
distribution. This result will be used in the next section to
estimate the shape of the small-time attainable sets, which
in turn will be used heavily in our analysis.

C. Links with Control Systems

It was recognized early on that Chow’s theorem has
implications on the attainability and controllability properties
of dynamical systems. For example, Hermann [31] has shown
that, for any real analytic system that is symmetric in the
sense that any dynamically-feasible trajectory run backwards
is also a dynamically-feasible trajectory, the system is con-
trollable if and only if Chow’s condition holds. In fact, the
sufficiency of Chow’s condition is immediate from Theo-
rem 2. An example of such a system is a driftless control-
affine real-analytic dynamical system with the property that
the control set U is symmetric with respect to the origin.

In [30], the author studies such systems in depth using Lie
theoretic methods. In particular, it is known that a symmetric
real-analytic system is small-time locally controllable if and
only if Chow’s condition holds. Moreover, the ball box
theorem provides distance estimates in the following sense.
Note that the dynamics can be written in the following
form: ẋ(t) =

∑m
i=1 ui(t) gi(x(t)), where x(t) ∈ M and

u(t) ∈ U . Let H denote the distribution generated by the
vector fields gi. Suppose that H satisfies Chow’s condition
and x0 ∈M is a regular point ofH. Denote the weight vector
at x0 by w = (w1, . . . , wn). Then, there exists t0, c, C > 0
such that Boxw (x0, ct) ⊂ A(x0, t) ⊂ Boxw (x0, Ct) for all
t < t0 [30].

It is rather easy to show that a symmetric system is STLC
if and only if it is STLA. Thus, for symmetric real-analytic
systems, Chow’s condition characterizes both the STLC and
the STLA properties in terms of Lie brackets. However, many
realistic engineering systems are not symmetric. Important
examples include the class of linear systems and systems
with drift. Yet, a characterization of these properties under
minimal assumptions is important for the purposes of motion
planning.

Fortunately, the small-time local attainability property
is completely characterized in terms of Lie brackets by
Krener [32] (see also [33]). His result, usually called the
positive form of Chow’s theorem [15], implies the following.
Consider a real-analytic control-affine system of the follow-
ing form: ẋ(t) = f(x(t)) +

∑m
i=1 ui(t) g(x(t)). This system

is STLA if and only if the distribution generated by the vector
fields {f, g1 . . . , gm} satisfies Chow’s condition. Moreover,
Krener’s result can be related to the ball-box theorem as
follows.

Lemma 4 Let H denote the distribution (on M ) that is
generated by the vector fields {f, g1, . . . , gm}. Suppose H
satisfies the Chow’s condition. Let x0 be a regular point of
this distribution. Let w denote the weight vector at x0. Then,
there exists constants t0, c > 0 such that for all t < t0 there
exists a point x1 ∈M such that Boxw (x1, c t) ⊂ A(x0, t).

This lemma will play a central role in proving our main
results (Theorems 5 and 6). The proof of Lemma 4 follows
from the results in [33], [32]. Below, we provide an example
that illustrates Hermann’s result and Lemma 4.



(a) (b)

Fig. 1. Figure (a) shows the resulting trajectory of the vehicle when it
moves forward while turning right. Figure (b) shows the resulting trajectory
after four maneuvers. The x- and y-axes are also shown in the figures. Note
that Figure (b) is rotated 90 degrees when compared to Figure (a).

Example Denote the distribution induced by the dynamics
of the Reeds-Shepp car by H. From the previous example,
H ⊂ H2 = TpM , and that the vector fields Y1 =
(cos θ, sin θ, 0), Y2 = (0, 0, 1), and Y3 = (− sin θ, cos θ, 0)
are such that Span{Y1, Y2} = H while Span{Y1, Y2, Y3} =
H2. Since dim(H) = 2 and dim(H2) = 3, the growth
vector is (2, 3) for all points on the manifold describing
the configuration space of the Reeds-Shepp car. The weight
vector, on the other hand, can be computed as w = (1, 2, 1).

Suppose that the car is at the origin, i.e., (x, y, θ) = 0 :=
(0, 0, 0). Then, Y1(0) = (1, 0, 0), Y2(0) = (0, 0, 1), and
Y3(0) = (0, 1, 0). In this case, the ball-box theorem implies
that the set of states reachable from 0 within t time units
contains a box of size [−c t, c t]× [−c t2, c t2]× [−c t, c t] for
all small enough t > 0, where c > 0 is a constant.

In other words, the car can move a distance of c t in the
longitudinal direction within t time units, and it can turn
with a constant speed, both of which are apparent from
the equations describing its dynamics. However, the ball-
box theorem also estimates that the car can move a distance
of c t2 sideways by combining its maneuvers, which is not
immediately obvious.

Let us explicitly provide a sequence of maneuvers that
translates the car sideways for at least a distance of c t2

within time t. Consider the following four maneuvers applied
sequentially in this order: (i) forward and right, i.e., u1(t) =
u2(t) = −1, (ii) forward and left, i.e., u1(t) = 1, u2(t) = 1,
(iii) backward and right, i.e., u1(t) = −1, u2(t) = −1, and
(iv) backward and left, i.e., u1(t) = −1, u(t) = 1, with each
set of controls applied for T/4 time units. See Figure 1.

As seen in the figure, with each maneuver the car moves a
distance of 1 = cos(α) = 1− cos((π/2) t) along the y-axis.
Using the Taylor expansion, cosα = 1− α2

2! + α4

4! − · · · , we
conclude that total distance traveled by the car along the y-
axis satisfies 4 (1−cos((π/2) t)) = c t2 +o(t2), where o(t2)
denotes terms that are smaller than t2 asymptotically and c
is a constant. Hence, after the aforementioned four moves,
the car ends up roughly at the point (0, c t2, 0), confirming
the result of the ball-box theorem. �

Example An example of a dynamical system with drift is the

Fig. 2. The small-time reachable set of the Dubins car and the box of size
[−c t, c t]× [−c t2, c t2]× [c t, c t] that is included in the reachable set are
illustrated. Only the projection of these sets to x- and y−axes are shown.
The projection of the reachable set is shaded in light grey whereas that of
the box is shaded in dark grey. The coordinate axes are also indicated.

Dubins’ car [16] described by the following set of equations: ẋ(t)
ẏ(t)

θ̇(t)

 =

 cos θ(t)
sin θ(t)

0

+

 0
0
1

u(t), (2)

where |u(t)| ≤ 1 is the steering input. In this model, the
Dubins car travels with constant unit speed.

Lemma 4 implies that the set of states reachable within
time t starting from a given point (x, y, θ) includes a
box of size [−c t, c t] × [−c t2, c t2] × [−c t, c t] oriented in
coordinates (cos θ, sin θ, 0), (− sin θ, cos θ, 0), (0, 0, 1). See
Figure 2. �

In the rest of this paper, we will focus on real analytic
control-affine dynamical systems of the following form:

ẋ(t) = f(x(t)) +

m∑
i=1

ui(t) gi(x(t)), x(0) = x0

where x(t) ∈ X ⊂ Rn, u(t) = (u1(t), u2(t), . . . , um(t)) ∈
U , f(·, ·) is a real analytic function, and X is a real analytic
manifold. Let H denote the distribution generated by the
vector fields {f, g1, . . . , gm}. In the sequel, we refer to H
as the distribution generated by the dynamics.

Recall that Boxw (x, ε) denotes the weighted box of size
ε centered at x ∈ X , where w = (w1, w2, . . . , wn) denotes
the weight vector at x. We assume that the weight vector is
constant over the whole manifold X . Define D :=

∑n
i=1 wi.

The integer D is at least as large as the dimensionality n
of the state space. Let us note that D coincides with the
Hausdorff dimension of the distribution H (see [18]).

IV. ALGORITHM

Before presenting the RRT∗ algorithm for non-holonomic
dynamical systems, let us note the following primitive pro-
cedures. Recall that ‖ · ‖ denotes the usual Euclidean norm.

a) Sampling: The Sample procedure returns uniformly
random samples from the free space on the maximal integral
manifold of the dynamics through x0, i.e., Nx0 \Xobs.



Algorithm 1: The RRT∗ Algorithm
1 V ← {zinit}; E ← ∅; i← 0;
2 while i < N do
3 G← (V,E);
4 zrand ← Sample(i); i← i+ 1;
5 (V,E)← Extend(G, zrand);

Algorithm 2: The Extend Procedure
1 V ′ ← V ; E′ ← E;
2 znearest ← Nearest(G, z);
3 (xnew, unew, Tnew)← Steer(znearest, z);
4 znew ← xnew(Tnew);
5 if ObstacleFree(xnew) then
6 V ′ := V ′ ∪ {znew};
7 zmin ← znearest; cmin ← Cost(znew);
8 Znearby ← NearVertices(G, znew, |V |);
9 for all znear ∈ Znearby do

10 (xnear, unear, Tnear)← Steer(znear, znew);
11 if ObstacleFree(xnear) and xnear(Tnear) = znew

then
12 if Cost(znear) + J(xnear) < cmin then
13 cmin ← Cost(znear) + J(xnear);
14 zmin ← znear;

15 E′ ← E′ ∪ {(zmin, znew)};
16 for all znear ∈ Znearby \ {zmin} do
17 (xnear, unear, Tnear)← Steer(znew, znear);
18 if xnear(Tnear) = znear and ObstacleFree(xnear)

and Cost(znear) > Cost(znew) + J(xnear) then
19 zparent ← Parent(znear);
20 E′ ← E′ \ {(zparent, znear)};
21 E′ ← E′ ∪ {(znew, znear)};

22 return G′ = (V ′, E′)

b) Local Steering: Given two states x1, x2 ∈ X ,
the Steer procedure returns a terminal time T and
a dynamically-feasible trajectory that starts from x1
and reaches x2. The returned trajectory is denoted by
Steer(x1, x2) : [0, T ]→ X .

We assume that the local steering procedure satisfies the
topological property (see [17]), i.e., for any ε > 0 there
exists some real number ηε > 0 such that, for any two
states x1, x2 ∈ X with ‖x1 − x2‖ < η, we have ‖x1 −
Steer(x1, x2)(t)‖ < ε for all t ∈ [0, T ]. Clearly, ηε ≤ ε.
Apart from this property, we also assume ηε/ε converges to
one as ε approaches zero.

c) Nearest Neighbor: Given a state x and a finite set
V of states, the Nearest procedure returns the state that
is closest to x among the states in V . More precisely,
Nearest(V, x) := arg minx′∈V ‖x′ − x‖.

d) Near Neighbors: The Near procedure returns a
subset of V with states that are close to x in the following
sense:

Near(V, x) := V
⋂

Boxw

(
x, γ

(
log |V |
|V |

)1/D
)
,

where |V | denotes the cardinality of V , D is the Hausdorff
dimension of the distribution generated by the dynamics,

and γ is a constant that is independent of |V |. It is worth
noting at this point that the volume of the weighted box
in the right hand side of the definition above is equal to
γD (log |V |/|V |).

e) Collision Checking: Given a trajectory x : [0, T ]→
X , the ObstacleFree(x) procedure returns true if x avoids
collision with obstacles, i.e., x(t) /∈ Xobs for all t ∈ [0, T ],
and returns false otherwise.

Let us remark that the sampling, local steering, and near
neighbor procedures differ from their counterparts in RRT∗

for holonomic systems [9] in a number of ways. Firstly, the
sampling procedure is assumed to return random samples
from the maximal integral manifold through the initial state.
If the Lie hull of the distribution generated by the dynamics
spans the tangent space of the state space at every point of
X , then the maximal integral manifold is X itself. Hence,
in that case, the sampling procedure returns samples from
the free space X \ Xobs. Second, the steering procedure
must have the topological property, which is often required
even when one seeks to find a feasible trajectory that solves
the motion planning problem, i.e., even when optimality is
not a concern [17]. To guarantee optimality, in addition, we
require that ηε/ε converges to one as ε approaches zero.
Roughly speaking, this implies that as ε approaches zero, the
trajectories returned by the local steering algorithm resemble
time-optimal trajectories. Third, and most important, the near
neighbors are not computed considering an Euclidean ball,
but within a weighted Euclidean box the shape of which
resembles the shape of the sub-Riemannian ball.

The RRT∗ algorithm is given in Algorithm 1. The algo-
rithm is the same as that presented in [9] on all accounts
except the primitive procedures. It is worth noting at this
point that, if the Hausdorff dimension of the distribution is
equal to that of the state space, i.e., D = n, in other words,
when the system at hand is holonomic, then Algorithm 1
reduces to the RRT∗ algorithm presented in [9].

V. ANALYSIS

In this section, it is shown that the RRT∗ algorithm is
asymptotically optimal. The algorithm is also analyzed in
terms of computational complexity. It is shown that the
asymptotic computational complexity of the RRT∗ algorithm
is no more than that of the RRT.

First, let us recall some definitions from [9] modified for
the setting in this paper. Let δ be a positive real number. A
state x is said to be in the δ-interior of the free space, if the
closed ball of radius δ lies entirely inside Xfree = X \Xobs.
The collection of all states that are in the δ-interior of Xfree,
denoted by intδ(Xfree), is called the δ-interior of Xfree.

A dynamically-feasible trajectory x : [0, T ] → X is said
to have strong δ-clearance if it lies entirely in the δ-interior
of the free space, i.e., x(t) ∈ intδ(Xfree) for all t ∈ [0, T ]. A
dynamically feasible trajectory is said to be robustly feasible
it has strong δ-clearance, for some δ > 0, and solves

Let ΣT denote the set of all Lebesgue measurable func-
tions from [0, T ] to Rn. Given x, x′ ∈ Σ, define ‖x′−x‖∞ :=
maxt∈[0,T ] ‖x′(t)−x(t)‖, where ‖ · ‖ is the usual Euclidean



norm on Rn. A continuous function ψ : [0, 1]→ Σ is called
a homotopy between two trajectories x, x′ : [0, T ] → Xfree,
if ψ(0) = x and ψ(1) = x′ and ψ(τ) is collision-free for all
τ ∈ [0, 1]. The trajectories x and x′ are said to be homotopic,
if there exists a homotopy between them. A dynamically-
feasible trajectory x : [0, T ] → X is said to have weak
δ-clearance if there exists a path x′ : [0, T ] → X that has
strong δ-clearance, and there exists a homotopy ψ between x
and x′ such that ψ(τ) has strong δτ -clearance for some δτ >
0 for all τ ∈ (0, 1). The reader is referred to [9] for examples
of trajectories with weak δ-clearance. A dynamically-feasible
trajectory x∗ : [0, T ] → X that solves the optimal motion
planning problem is said to be robustly optimal if it has weak
δ-clearance and any sequence {xn}n∈N of trajectories that
converge to x∗ satisfies limn→∞ c(xn) = c(x∗).

An sampling-based algorithm is said to be asymptotically
optimal if, for any instance of the motion planning problem
that admits a robustly optimal solution with finite cost c∗,
P(lim supn→∞ Yn = c∗) = 1, where Yn is the cost of the
best path after invoking the sampling procedure n times.

Theorem 5 (Asymptotic Optimality) The RRT∗ algorithm
(Algorithm 1) is asymptotically optimal.

Let MRRT
n denote the number of simple operations per-

formed the by the RRT algorithm in iteration n. The random
variable MRRT∗

n is defined similarly.

Theorem 6 (Computational Complexity) The RRT∗ and
RRT algorithms have the same per-iteration asymptotic com-
putational complexity, i.e., there exists a finite c such that
limn→∞ E[MRRT∗

n ]/E[MRRT
n ] ≤ c.

The full proofs of these theorems are omitted for the
sake of brevity. The proof of Theorem 5 is the same as
the corresponding result in our previous work in [9] with
one exception: the balls with volume (log n/n) are replaced
with scaled boxes (as defined in the presentation of the Near

procedure), which also have volume log n/n, where n is the
number of vertices in the graph. The proof of Theorem 6 is
also similar to the corresponding result in [9].

VI. COMPUTATIONAL EXPERIMENTS

In this section, we present results from a computational
experiment involving a Dubins’ car, the dynamics governing
which was given by Equation (2). The algorithm proposed
in Section IV was implemented using the C++ programming
language in a Unix environment. The implementation was
executed on a computational platform powered by a proces-
sor with 2.66 GHz clock speed and 8GB of RAM.

The algorithm was run in an empty environment of length
20 and width 20 centered at the origin. The cost function
was chosen as the time to reach the goal region, which is
a square centered at the coordinate (7, 7) of size 2 in both
longitudinal and lateral directions.

The results are compared with a naive algorithm that
is asymptotically optimal but not computationally efficient.
This algorithm runs exactly as the RRT∗, except the Near

procedure is defined as follows: Near(V, x) := {x′ ∈ X :
‖x′ − x‖∞ ≤ (log n/n)1/D}, where ‖ · ‖∞ denotes the
L∞ norm. Hence, this algorithm seeks connections within a
hypercube, rather than a scaled box. It can be shown that this
hypercube is large enough to ensure asymptotic optimality. In
fact, it includes the scaled box in the earlier definition of the
Near procedure. However, it makes too many connections,
almost all of which are unnecessary.

In the experimental study, the proposed algorithm is com-
pared with the naive algorithm outlined above, in Monte-
Carlo simulations where each algorithm is run 50 times
independently. The results are shown in Figure 3. In Fig-
ure 3.(a), we compare the number of connections made
by each algorithm. More precisely, the average number of
connections per iterations is divided by log(n), where n is
the number of iterations. From Theorem 6, we expect that
this quantity is a constant for the proposed algorithm, since
the number of connections should be order log n, which
can be seen in the plot. However, in the naive algorithm,
the same quantity is clearly an increasing function of n. In
fact, the excess number of connections lead to substantial
computational overhead in the planning process as seen in
Figure 3.(b), where we plot the average computation time to
reach a particular iteration for both algorithms. Yet, most of
the excess connection attempts are indeed unsuccessful. As
seen from Figure 3.(c), the difference in the quality of the
solution provided by the two algorithms is negligible, despite
the substantial difference in computational costs.

VII. CONCLUSION

We have proposed an extension of the RRT∗ that can han-
dle a large class of non-holonomic dynamical systems. The
enabling idea behind this extension is to seek connections
within a scaled box, the dimensions and the orientation of
which is dictated by the ball-box theorem of sub-Riemannian
geometry. We have shown that the proposed algorithm guar-
antees asymptotic optimality, without sacrificing computa-
tional efficiency. We have evaluated the proposed algorithm,
in Monte-Carlo computational experiments, when compared
to a naive algorithm that seeks connections in a hypercube
large enough to guarantee asymptotic optimality. The results
indicate that the proposed approach provides significant
savings in computation time with almost no sacrifice in the
quality of the solution, when compared to the naive solution.

There are many directions for future work. In particular,
our work in this paper assumes the existence of a steering
function that can join two (close enough) states with a dy-
namically feasible trajectory. This often requires the solution
of a boundary value problem. Avoiding this problem would
be an important step towards general-purpose sampling-
based algorithms that guarantee asymptotic optimality.
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