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Abstract— In this paper, we present a factor graph frame-
work to solve both estimation and deterministic optimal control
problems, and apply it to an obstacle avoidance task on Un-
manned Aerial Vehicles (UAVs). We show that factor graphs al-
low us to consistently use the same optimization method, system
dynamics, uncertainty models and other internal and external
parameters, which potentially improves the UAV performance
as a whole. To this end, we extended the modeling capabilities of
factor graphs to represent nonlinear dynamics using constraint
factors. For inference, we reformulate Sequential Quadratic
Programming as an optimization algorithm on a factor graph
with nonlinear constraints. We demonstrate our framework on
a simulated quadrotor in an obstacle avoidance application.

I. INTRODUCTION

In this paper we propose factor graphs [23] as a unified
representation framework and computational tool for both
estimation and control problems, and apply it to an obstacle
avoidance task on Unmanned Aerial Vehicles (UAVs). Over
the years, factor graphs have established themselves as a
useful tool for large-scale estimation problems with hetero-
geneous, multi-rate and asynchronous sensing data [7], [16],
[13]. The key to their success lies in their expressiveness abil-
ity to represent large-scale problems in a natural and human-
readable graphical language, but also is due to the availability
of many efficient inference algorithms on graphical models,
exploiting the locality, sparsity and tree-like structures of the
graphs for efficient computation [6]. The message-passing
schemes for loopy belief propagation in factor graphs, first
proposed by Judea Pearl in [28], have had a profound impact
on various difficult perception problems [10], [37]. The basic
variable-elimination scheme for inference on factor graphs
generalizes over many standard estimation algorithms such
as the Extended Kalman Filter, dynamic programming on
Hidden Markov Models, etc. [21], leading to substantial im-
provements in state- of-the-art estimation systems, especially
for large-scale SLAM and structure-from-motion [15], [26].

While factor graphs have been used primarily for estima-
tion problems, they have remained largely unused for solving
control problems, let alone for simultaneous estimation and
control. Although the duality between linear estimation and
control has been established early in 1960 by Kalman [17],
these two problems have been developed independently
into their own subfields for several decades. The standard
practice in robotics community is to treat these two problems
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separately, leading to vastly different models, formulations
and optimization tools in each subfields, concealing the fact
that both problems stem from a closely related principle of
optimality [32], [33], [36]. Graphical models and inference
methodologies have been applied to the optimal control
problem, however. Toussaint reformulated stochastic optimal
control problems in graphical models and applied a message-
passing inference scheme basing on the well-known Expec-
tation Propagation algorithm [34]. The latest developments
in this direction involve inference techniques to iteratively
obtain a better control policy at every step, by minimizing
its KL-divergence with the nominal policy from the previous
step [29]. As another example, the work of Broek et al. [19],
[35] laid the foundation for applications of sampling-based
inference techniques in stochastic optimal control, which
leads to Theodorou’s well-known path-integral method [30].
Many researchers have realized this potential and leverage
approximate inference techniques on graphical models to
solve stochastic optimal control problems under a Planning-
as-Inference paradigm [2]. However, the development of
graphical models for control problems is still limited. To the
best of our knowledge, no work exists that exploits graphical
model representation and inference techniques for determin-
istic optimal control. On the other hand, several schemes
have been proposed to apply graphical model inference to
stochastic optimal control, but their formulations and results
are either limited to linear cases [34], or impractical due to
the lack of system dynamics in their final solutions [18].

In the paper we explore factor graphs as a unified
framework for estimation and deterministic optimal control
problems in the context of Unmanned Aerial Vehicles, which
are examples of systems with nonlinear system dynamics
and kinematics. We argue that using the same representation
and computational framework is useful in this context, as
it will exploit the inherent duality of estimation and con-
trol in theory, and also improve the system performance
significantly in practice. A unified framework allows the
knowledge of the system dynamics, external disturbances,
and uncertainty models to be shared consistently in both
estimation and control processes. This will lead to significant
improvements in coherence, stability and robustness of the
system as a whole. While such a unified framework is still
largely missing, Todorov [33] generalizes Kalman’s results
and established the duality between estimation and control
for other general cases, opening a huge potential to apply
formulations and techniques of one field for solving difficult
problems in the other field.



II. ESTIMATION AND CONTROL IN FACTOR GRAPHS

A. General Problem Formulation

At the current time tc, a UAV has to solve two optimization
problems for estimation and control. Let x(t) ∈ G be the
UAV state at time t, u(t) ∈ U its control inputs, w(t) ∈
Rl dynamics noise process, l1:K external landmarks in the
environment, and ρint a static variable related to all unknown
or uncertain parameters of the system such as kinematic,
dynamic and calibration terms which we wish to estimate
and use to compute optimal control policy. At each point
ti in the time-horizon of interest [t0, tf ], the UAV might
observe a new measurement zij of some landmarks lj with
noise vij . The complete process is as follows:

ẋ(t) = f(x(t), u(t), w(t), ρint, t) (dynamics) (1)
zij = hij(x(ti), lj) + vij (measurements) (2)

u(t) ∈ U , x(t) ∈ G (constraints) (3)

where f and hij are nonlinear dynamics and measurement
functions respectively.

For numerical purposes, we focus on a discrete time
version of this process with time discretization points
{t0, t1, . . . , tN}, discrete states x0:N = {x0, x1, . . . , xN}
and controls u0:N−1 = {u0, u1, . . . , uN−1}, where tN = tf ,
ui ≈ u(ti), and

xi ≈ x(ti) (4)

which needs to be approximated by integrating (1) on the
state manifold G, as detailed later in Section III.

The estimation process minimizes a cost function Jest to
obtain the optimal estimate of all landmarks lj , the past
trajectory x0:c during [t0, tc], the internal parameters ρint,
and the past process noises w0:c. As standard in the literature
[24], [31], [9], the cost function Jest is the negative log
of the posterior p(x0:c, w0:c, l1:K , ρint|{zij}, u0:c−1), which
provides the maximum a-posteriori (MAP) estimate. Under
the common assumption that the states and parameters
have a Gaussian prior, i.e. x0 ∼ N (x̂0, P

−1
x ) and ρint ∼

N (ρ̂int, P
−1
ρint), and that uncertainties are Gaussian, i.e. wi ∼

N (0, P−1
wi ) and vij ∼ N (0, P−1

vij ), Jest has the following
form, subject to the dynamic constraint in (1):

Jest = ||x0 − x̂0||2Px + ||ρint − ρ̂int||
2
Pρint

+ ||wi||2Pwi +
∑
ij

||hij(xi, lj)− zij ||2Pvij
(5)

The control process minimizes another cost function Jmpc
to compute the optimal control policy uc:N−1 and the
corresponding future trajectory xc+1:N , also subject to the
dynamic constraint in (1):

Jmpc = ϕ(xN ) +

N−1∑
i=c

Li(xi, ui, l1:K , ρint) (6)

where ϕ(xN ) and Li(·) are the terminal cost and stage-wise
cost functions respectively.
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Fig. 1. The proposed factor graph framework for both estimation and
control problems. The past estimation part is in blue, the future control part
in green, and red color denotes the current state. Classic Gaussian motion
models in estimation are now replaced with constrained dynamics factors.

B. Factor Graph Representation

We propose to use factor graphs [7] as a common frame-
work to represent both estimation and control problems. Fig.
1 shows an example of our factor graph that includes both
the past estimation part and the future control part.

The estimation part of the graph (blue color) includes
unary factors on x0, ρint and wi, encoding the corresponding
unary terms in (5), and binary factors between (xi, lj), en-
coding the measurement terms ||hij(xi, lj)−zij ||2Pvij . Due to
the dynamics constraint in (1) that needs to be satisfied while
minimizing Jest, we introduce new dynamics constrained
factors, shown as crosses in Fig. 1, connecting the states
xi, xi+1 and control ui to a common time-independent static
parameter ρint and a time-dependent noise variable wi.

Unlike traditional factor graphs for estimation [7], our
graph has the general constrained dynamics factors, replaced
for the traditional Gaussian motion models. These nonlinear
constrained dynamics factors are detailed later in Section
III. They expand the capability of factor graphs to represent
general dynamics and kinematics, e.g. under-actuated dy-
namics with possibly multiplicative noise. With the dynamics
model explicitly introduced into the graph, our estimates are
expected to be better constrained and more accurate than
the traditional estimation formulation. Furthermore, beside
the usual state and landmark estimates, we can also obtain
estimates for the internal parameters ρint and other time-
dependent disturbances wi in the environment.

In the control graph (green color), we leverage the current
optimal estimates of landmarks and dynamics parameters
to infer the optimal control subject to the deterministic
dynamics constraints. Stage-wise cost functions Li(·) to
optimize in (6) are binary factors between corresponding
states and landmarks, whereas the final cost function ϕ(xN )
is a unary factor on the final state xN . We optimize this
graph to obtain one step model-predictive-control solution,
together with the predicted future trajectory. After executing
the first control and receiving new estimates from optimizing
the estimation graph, we extend the time horizon one step
further and repeat the whole process.



C. Inference as Optimization on Factor Graphs

Traditional techniques to solve nonlinear factor graphs
without nonlinear constrained factors typically apply non-
linear optimization methods such as the Newton’s method,
or, for least-squares factors such as in (5), Gauss-Newton
iterations or the Levenberg-Marquardt algorithm [27]. Simi-
lar to the extended Kalman filter [31], at each iteration these
methods linearize the nonlinear factor graph, solve the linear
graph using variable elimination algorithm [21], [6], [7] to
obtain the δ-updates, i.e. δxi or δlj , of the corresponding
variables, then update the original variables according to:

xi ← xi + δxi

and lj ← lj + δlj . (7)

However, with the existence of nonlinear constrained
factors, these standard unconstrained optimization methods
cannot be applied anymore. Hence, we have to use nonlinear
constrained optimization methods on factor graphs, which
will be detailed in Section IV.

Furthermore, when the domains of states and landmark
variables are not vector spaces but Lie-group manifolds, e.g.
the Special Orthogonal group of rotations SO3 or the Special
Euclidean group of rigid-body poses SE3 commonly used in
robotics, the subtract operators between two group elements
in the Mahalanobis distances in (5) are undefined. We instead
replace ||x − x̂||2Σ with ||logmap(x−1x̂)||2Σ. The logmap
operator maps the group-element x−1x̂, as the difference
between x and x̂, to its corresponding Lie-algebra, where
the Mahalanobis distance || · ||2Σ is well-defined. Similarly,
we compute derivatives of functions on Lie-group manifolds
[5] to linearize the motion and measurement models. The δ-
updates are now elements in the corresponding Lie-algebras,
and the update equations in (7) for vector spaces are gen-
eralized for Lie-group manifolds using the left-trivialization
operator with the exponential map:

xi ← xi exp(δxi),
and lj ← lj exp(δlj). (8)

III. NONLINEAR CONSTRAINED FACTORS FOR GENERAL
SYSTEM DYNAMICS AND KINEMATICS

The traditional factor graph formulation for estimation is
limited to fully-actuated dynamics motion models with addi-
tive noise, due to its Gaussian assumption. In this section, we
expand its capabilities to represent more general dynamics
and kinematics in (1), e.g. under-actuated dynamics with
possibly multiplicative noise.

A. Dynamics and Integration on Lie-group Manifolds

We follow the formulation in [14] and represent the
general dynamics and kinematics in (1) as a differential
equation over the state Lie-group manifold:

ẋ = xF̂ (x, u) (9)

where x ∈ G is a state Lie-group element, ẋ ∈ TxG is a
tangent vector at x, u ∈ Rm is the control input, x(0) = x0

is the initial condition, and F : G × Rm → Rn defines

the dynamics directly in the vector space Rn isomorphic to
the Lie algebra g. The isomorphism between g and Rn is
identified by a bijective hat operator map ̂: Rn → g, and
its inverse “vee” map ∨ : g→ Rn.

To obtain the state discretization approximation in (4), we
need to integrate the dynamics equation on the manifold G.
If G is a vector space, (9) reduces to ẋ = F (x, u), which we
can integrate forward with any suitable integration scheme.
However, the main challenge is that classical integration
methods on vector spaces do not work for manifolds.

We summarize here the main ideas of Runge-Kutta
Munthe-Kaas (RK-MK) technique for integration on Lie-
group manifolds [14]. We apply a change of variables as
follows:

x(t) = x0 exp ξ̂(t) (10)

where ξ ∈ Rn are the exponential coordinates of the first
kind, and ξ(t) is the trajectory in exponential coordinates
corresponding to x(t), which satisfies the differential equa-
tion

ξ̇ = f(ξ, u) (11)

starting from ξ(0) = 0. Here f : Rn × Rm → Rn specifies
the dynamics directly in exponential coordinates, where the
integration to obtain ξ(t) can be done easily with standard
methods on vector spaces. After ξ(t) is computed, x(t) can
be obtained trivially from (10).

The final missing piece is an expression for f(ξ, u) from
F (x, u). To obtain that, we first take the derivative of (10)
with respect to time:

ẋ = x0
d

dt
exp ξ̂(t) (12)

The time derivative d
dt exp ξ̂(t) is caused by an instantaneous

change ξ̇ of ξ ∈ g. But, as exp ξ̂(t) is an element of G,
d
dt exp ξ̂(t) is also a tangent vector in T

exp ξ̂(t)
G, which is

associated with another Lie-algebra element ω̂ ∈ g through
the left-trivialization:

d

dt
exp ξ̂(t) = exp ξ̂(t)ω̂. (13)

The relationship between ω and ξ̇ is linear:

ω = dexpξ ξ̇ = dexpξf(ξ, u) (14)

where dexpξ(·) : g → g is the linear map mapping ξ̇ to
ω̂ (through d

dt exp ξ̂(t) !). Its inverse dexp−1
ξ (·), mapping ω̂

back to ξ̇, can be computed from formula (4.5) in [12], pg.
84 and is also documented in [4], [14].

After some manipulation of (12), (13) and (14), we finally
obtain the following formula, which can be used to integrate
ξ(t) from (11):

f(ξ, u) = dexp−1
ξ F (x, u) = dexp−1

ξ F (x0 exp(ξ̂), u) (15)
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Fig. 2. A nonlinear constrained factor graph (left), and its SQP primal (center) and dual (right) linear graphs.

B. Dynamics Constrained Factors

We represent the general dynamics and kinematics (9) in
factor graphs as constrained factors Fi(xi, ui, xi+1) at every
time step i as shown in Fig. 1. To derive that constraint,
we integrate the system dynamics (9) from time ti to ti+1

over the state manifold using the above RK-MK technique.
According to (10), we have xi+1 = xi exp(ξ̂i), hence,

ξi = logv(x−1
i xi+1) (16)

where logv is the logmap operator composed with the ∨ map.
According to (11) and (15), ξi can be computed by

integrating ξ in the following differential equation from 0
to h = ti+1 − ti, with ξ(0) = 0:

ξ̇ = f(ξ, ui) = dexp−1
ξ F (xi exp(ξ̂), ui) (17)

Our constrained factor Fi(xi, ui, xi+1) depends on the
specific scheme we use to integrate (17). To arrive at the
constraint on xi, ui, and xi+1 only, we have to remove ξi
from the picture. Essentially, we use (16) to replace every
instance of ξi = ξ(h) in the specific integration formula. For
example, using the implicit trapezoidal scheme, the solution
for ξi = ξ(h) is given by:

ξi = ξ(h) = ξ(0) +
h

2
(f(ξ(0), ui) + f(ξ(h), ui))

=
h

2

(
dexp−1

ξ(0)F (xi exp(ξ̂(0)), ui)

+ dexp−1
ξ(h)F (xi exp(ξ̂(h)), ui)

)
=

h

2

(
F (xi, ui) + dexp−1

ξi
F (xi+1, ui)

)
Using (16) to replace ξi, we have the following constraint

logv(x−1
i xi+1) =

h

2

(
F (xi, ui)

+ dexp−1

logv(x−1
i xi+1)

F (xi+1, ui)
)

We simplify the constraint by applying an approximation:
ξi = ξ(h) ≈ ξ(0) = 0. With this approximation, we have
dexp−1

ξi
≈ I and arrive at the following constraint, which

turn out to be similar to the implicit trapezoidal integration
scheme on vector spaces:

xi+1 = xi exp
h

2

(
̂F (xi, ui) + ̂F (xi+1, ui)

)
IV. SEQUENTIAL QUADRATIC PROGRAMMING FOR
NONLINEAR CONSTRAINTS ON FACTOR GRAPHS

As discussed in Section II-C, the standard Gauss-Newton
and Levenberg-Marquardt methods cannot be used to opti-
mize our graph due to the existence of nonlinear constrained

factors. Hence, we need to derive other constrained opti-
mization methods on factor graphs, while maintaining the
locality and sparsity properties of the graph for efficient
computation. We present here the factor graph version of
Sequential Quadratic Programming (SQP), a well-known
nonlinear optimization method used in many nonlinear opti-
mization packages for optimal control [1].

Whereas the Gauss-Newton and Levenberg-Marquardt
methods in factor graphs is straightforward, SQP is more
involved with the introduction of dual variables. Let our gen-
eral objective function be factorized as J(x) =

∑
i Li(xi)

and the constraints be Fj(xj) = 0, j = 1..Nc, where
xi,xj ⊂ x are sets of variables in the cost functions
Li and the constraints Fj respectively. At kth iteration,
SQP solves the following quadratic program with linear
constraints, derived from applying Newton method on the
Karush–Kuhn–Tucker conditions of the Lagrangian function
L(x, λ1:Nc) =

∑
i Li(xi) +

∑
j λjFj(xj) (see e.g. [27] for

more details):

min
δx

∑
i

(
1
2δx

T
i ∇2

xixiL
(k)
i δxi + δxTi ∇xiL

(k)
i

)
+
∑
j

1
2λ

(k)
j δxTj ∇2

xjxjF
(k)
j δxj

s.t. ∇xjF
(k)T
j δxj + F

(k)
j = 0, ∀j = 1..Nc (18)

where λ1:Nc are the dual variables.
We represent problem (18) in a primal linear fac-

tor graph. As usual, it contains linear factors encoding(
1
2δx

T
i ∇2

xixiL
(k)
i δxi + δxTi ∇xiL

(k)
i

)
and ∇xjF

(k)T
j δxj +

F
(k)
j = 0 in (18), which are the linearized versions of

the original nonlinear factors Li(xi) and the nonlinear con-
straint factors Fj(xj) = 0 respectively. Besides, it also
includes new unconstrained factors on constrained variables,
1
2λ

(k)
j δxTj ∇2

xjxjF
(k)
j δxj , which involves the current esti-

mate λ
(k)
j of the corresponding dual term. An example of

our primal linear SQP graph for a simple control problem is
shown in Fig. 2, where crosses denote constraints and dash
lines connect constrained variables to the new factors. We
solve this linear constrained graph using variable elimination
with a special version of QR factorization which enforces
linear constraints when eliminating constrained variables.

After solving for δX , we update the variables as usual
following (8), and compute the next values λ(k+1)

1:Nc
for the

dual variables by solving the following linear system [27]:∑
j

∇xF
(k)
j λ

(k+1)
j =

∑
i

(
∇2

xxL
(k)
i δx+∇xL

(k)
i

)
+
∑
j

λ
(k)
j ∇

2
xxF

(k)
j δx. (19)



While (19) has a global form involving all variables, we
maintain the locality and sparsity by creating a new dual
linear factor graph, which can be proved to be equivalent
to (19). In our dual graph, each dual variable corresponds
to a constrained factor in the primal linear graph, and each
dual factor corresponds to a primal variable involving in the
constraints. The Jacobian of a dual factor is the gradients
of its corresponding constrained factors in the primal graph,
∇xjF

(k)
j , and its error term is computed from the gradients

of all primal unconstrained factors of the corresponding
constrained variables. An example of the dual graph for our
control problem is shown in Fig. 2. We again solve this graph
by variable elimination.

V. EXPERIMENTS

A. Optimal Control for Obstacle Avoidance

We first apply our factor graph framework to solve an
optimal control problem for obstacle avoidance on a simu-
lated quadrotor. Fig. 3 shows the top view (left) and a 3D
view (right) of our test environment, which includes a target
point (the dark red circle), three wall obstacles (grey) and
a cylinder obstacle (blue). The quadrotor (four red circles)
starts at a certain point on the ground, and needs to get to the
target after a predefined number of time steps while avoiding
the obstacles. Each row in Fig. 3 shows an iteration of our
SQP optimization process to compute the optimal control and
trajectory, where the last row shows the final optimal solution
and the quadrotor optimal state along the trajectory. As can
be seen in the figure, the trajectory solution is improved at
each step, i.e. the cost is decreasing at every step and the
final state of the trajectory at the time horizon is closer to
the goal, while not colliding to the obstacles.

The quadrotor state variable used in our experiments is
x = {p,R, v}, where p ∈ R3 is the drone position, R ∈ SO3
its rotation, and v ∈ R3 its velocity in the world frame. For
our outer loop controller, we use the drone body angular
rate ωb ∈ R3 and total thrust T ∈ R as control inputs u =
{ωb, T}, assuming that a fast inner loop controller to control
wb and T is available, as common in practice [3].

Our kinematics model of the quadrotor is as follows

ṗ = v

Ṙ = R(wb)∨

v̇ = − T
m
Re3 + g

where m is the drone’s mass, g the gravity constant, and
e3 the unit vector [0, 0, 1]T such that r3 = Re3 is the
third column of R, encoding up direction of the drone for
the total thrust force in the world frame. Consequently, our
Lie-algebra kinematics function F (x, u), as required in (9),
returns [v, wb,− T

mRe3 + g]T as its outputs.
For the final and stage-wise cost functions, we use

potential-field types of functions for obstacle avoidance as
common in the literature [8], [20]. More specifically, we use
a cost function Lig = ||pi − lg||2 to encourage the drone
at position pi getting closer to the target at lg . To enforce
the drone at state xi not to collide to an obstacle lj , we use

Fig. 4. 3D views of our combined estimation-control experiment. Blue:
estimated trajectories. Green: optimal control trajectories. The wall to the
right of the drone is omitted for clarity.

a cost function Lij = 1/d(xi, lj), where d(xi, lj) computes
the 2D ground-plane distance between the drone xi and the
object lj . Furthermore, we also use unary control cost factors
to minimize the control effort, and unary state cost factors to
keep the drone always nearly leveled, and avoid undesirable
states. To compute the Hessians of our factors for SQP, we
use the finite difference method [1].

We vary the positions of the obstacles to study the
robustness of our system. Our experiments show that the
drone often manages to get to the target while avoiding
the obstacles. However, for certain configuration of the
environment and the cost function parameters, the drone
might get stuck at a local minimum solution. Nevertheless,
this is a well-known problem of using potential-field cost
functions for obstacle avoidance in practice [22], [11].

B. Combined Estimation and MPC for Obstacle Avoidance

We apply our unified framework for estimation and control
problems to drive a simulated quad-rotor flying toward a
target while avoiding obstacles at the same time. As shown
in Fig. 5 and 4, our simulated quad-rotor is equipped with a
bearing-range sensor (magenta circles) to detect obstacles in
the environment, which includes two parallel walls and ten
randomly generated vertical cylinders. We assume that the
quadrotor can observe obstacles within a predefined range.

At each time step, after executing the first optimal control
previously computed, the quadrotor estimates its state and the
current map of the environment, then solves an MPC problem
to get to the target while avoiding the known obstacles. Fig.
5 shows several steps of the entire process. The estimated
past trajectories are shown in blue, while the optimal future
trajectories are in green. As shown in the figure, the future
trajectories adaptively change as the quadrotor moves and
detects new objects obstructing its previously optimized path.



Fig. 3. Results of several SQP iterations on a factor graph to obtain the optimal control and trajectory for an obstacle avoidance problem



Fig. 5. Top views of our combined estimation-control experiment for
obstacle avoidance on a quadrotor. Blue: estimated past trajectories. Green:
future trajectories from optimal control. The future control trajectories are
adaptively changed as the drone moves and observes new obstacles.

VI. CONCLUSION AND FUTURE WORK

We have discussed a factor graph framework to solve
both estimation and control problems, and applied it to solve
an obstacle avoidance task on a quadrotor. Our framework
potentially improves the system consistency, adaptiveness,
robustness and agility in practice, because the same system
dynamics, uncertainty models, internal dynamics parameters
and external landmarks are utilized consistently between the
two estimation and control processes. To meet that goal,
we have extended the representation power of factor graphs
to incorporate new system dynamics constrained factors by
using RK-MK method to integrate over the state Lie-group
manifolds. We have also developed factor-graph version of
SQP, a common nonlinear constrained optimization method,
to solve our new graphs with nonlinear constrained factors.

Our future work is to further extend the capabilities of
factor graphs to deal with other types of constraints, e.g.
inequality constraints and discrete constraints for determin-
istic optimal control problems. We also plan to generalize
the framework for stochastic control problems, overcoming
limitations of the state-of-the-art formulations in the field
[34], [18]. Furthermore, the question of which practical ben-
efits we can gain from combining estimation and control into
the same framework is worth explored separately by itself
to enhance our understanding about autonomous systems
as a whole and further improve the system performance.
An immediate benefit we expect to gain from explicitly
modeling the dynamics in our new estimation framework is
to obtain better constrained and more accurate estimates than
traditional methods without dynamics modeling. Moreover,
by formulating control problems in factor graphs, we are now
ready to leverage advanced techniques in real-time [16] and
large-scale estimation problems [25], [26], [15] to improve
the performance of optimal control in complicated environ-
ments, e.g. with a large number of external landmarks for
obstacle avoidance applications (Section V).
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