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Abstract. Computational models of visual attention have attracted
strong interest by accurately predicting how humans deploy attention.
However, little research has utilized these models to detect clinical pop-
ulations whose attention control has been affected by neurological dis-
orders. We designed a framework to decypher disorders from the joint
analysis of video and patients’ natural eye movement behaviors (watch
television for 5 minutes). We employ convolutional deep neural networks
to extract visual features in real-time at the point of gaze, followed by
SVM and Adaboost to classify typically developing children vs. children
with fetal alcohol spectrum disorder (FASD), who exhibit impaired at-
tentional control. The classifier achieved 74.1% accuracy (ROC: 0.82).
Our results demonstrate that there is substantial information about at-
tentional control in even very short recordings of natural viewing behav-
ior. Our new method could lead to high-throughput, low-cost screening
tools for identifying individuals with deficits in attentional control.
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1 Introduction

Attention enables us to interact with complex environments by selecting rele-
vant information to be processed in the brain. Eye movements have served as
a probe for visual attention in a wide range of conditions, because both are
strongly coupled in our everyday life [8]. A large brain network is recruited by
attention, which makes attention control susceptible to neurological disorders
[1]. Thus, psychologists have designed eye-tracking experiments with simple ar-
tificial stimuli to characterize the influence of these disorders on eye movement
metrics and to assist diagnosis [8].

In the past decades, computational models of visual attention have shown
significant ability to predict human eye movement while people view complex
natural scenes and perform complex tasks. The success of these attention models,
combined with eye tracking data, allows us to assess how neurological disorders
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impact attention under a more natural scenario, compared to traditional psy-
chophysical experiments with artificial stimuli. Previous research has utilized
attention models to assess autism [2] and agnosia [11, 3], however, without much
success (null or inconsistent results). This is possibly due to the complexity of
natural scenes and natural viewing eye traces, especially when the differences
between patients and controls are subtle.

In this study, we propose a novel method that allows us to use only 5 minutes
of natural viewing eye traces to identify children with FASD. FASD is caused
by prenatal exposure to alcohol, which impacts the brain globally and impairs
attentional control. Our new method computes “attention traces” by collect-
ing the predictions of attention models (saliency values) along recorded human
eye movement traces. To represent these complex attention traces, we utilize
a convolutional deep neural network [9] to learn their sparse representation in
an unsupervised manner, and to discover the features that best capture varia-
tions in attention traces; we then differentiate children with FASD from typically
developing children by classifying these features over time.

2 Methods

2.1 Paradigm overview

Participants’ eye movements were recorded while they watched five 1-minute
videos, and they were instructed to “watch and enjoy the clips”. These clips were
composed of content-unrelated clip snippets of 2-4 seconds each (a few were 7-8
seconds). This design attempted to reset the observers’ attention status with
each new snippet (Fig. 1A). For each video frame, Itti’s visual attention model
was used to compute a saliency map that predicts visually conspicuous locations
from low-level visual attributes of the video frame. The normalized map values
were extracted along the eye trace (attention trace). To extract features from the
attention traces, a convolutional deep neural network was utilized to discover 256
bases from the attention traces of control young adults. Next, we applied these
bases on the child data and obtained a sparse representation of their attention
traces. This representation was input to a L1-regularized logistic SVM classifier
after initial filter feature selection. We built a weak classifier from each clip
snippet independently, and used Adaboost to construct a strong classifier for
the final prediction.

2.2 Computational model of visual attention

To evaluate an observer’s bottom-up attention, we used the popular Itti et al.
saliency model [7, 6, 10] to identify visually salient locations that may capture
attention in natural videos. Itti’s model was biologically inspired to mimic early
visual processing in humans.

To estimate visual salience in a scene, the saliency model (Fig. 1B) first ap-
plied a linear filter for each of several visual attributes (e.g., color, intensity)
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Fig. 1. Evaluating attention deployment. (A) To extract an attention trace, observers’
eye movements were recorded (red curve) during free viewing of videos of natural scenes.
For each corresponding video frame, ten different types of saliency maps were generated.
Brighter intensity in a map indicates locations of the video frame with stronger feature
contrast. The normalized map values at every gaze location were extracted to yield
the attention trace. (B) Architecture of Itti’s computational model of visual attention,
extended here to contain many more feature channels than the original implementation.
C, color; I, intensity; O, orientation; F, flicker; M, motion; J, line junction.

on a video frame, at several scales to generate multi-scale (i.e., fine to coarse)
filtered maps. Fine filtered maps were then subtracted from coarse filtered maps
to simulate center-surround operations in human vision and to produce feature
maps. Next, these multi-scale feature maps were normalized and combined to-
gether to generate conspicuity maps in a manner that favors feature maps with
sparse peak responses. Finally, conspicuity maps of different features were lin-
early summed together to form a saliency map, if multiple visual attributes were
evaluated together. Equations of these linear filters were described in [7, 6, 10].

Ten types of maps used in this study provided information on attention
control. Nine saliency maps of different visual attributes estimate bottom-up,
stimulus-driven attention, and one top-down map, generated by instantaneous
gaze positions of 19 normative young adults, provides information on voluntary,
top-down attention control in addition to bottom-up attention. Out of the 9
saliency maps, 7 were individual visual attributes (color, intensity, orientation,
flicker, motion, line junction, and texture [10, 12]), and 2 were combination of
multiple visual attributes (CIOFM and CIOFMJ; Fig. 1B for abbreviations). For
each map, we quantified the agreement between eye movement traces and the
map, and such agreement over time yielded attention traces (see Supplementary
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Methods1). With the ten maps, ten attention traces were obtained. While eye
movements were recorded at 500Hz, attention traces were resampled to 125Hz
to reduce the computational load. Next, the 10 attention traces were whitened
by principal component analysis (PCA), and the first 7 principal components
were kept to maintain 97.5% of the information.

2.3 Convolutional Deep Neural Network

We chose a two-layer convolutional deep neural network (CDNN) [9] to dis-
cover the sparse representation of the attention traces. The sparse representation
had several advantages in representing input signals, and the one which bene-
fited classification the most was denoising, because signals and noise were likely
to be separated by different components of the representation. Each layer of
the CDNN was a topographic independent component analysis (TICA) network
(Fig. 2) [5]. TICA discovers components (bases) from unlabelled data in a way
similar to independent component analysis (ICA). However, TICA features a
loosened independence constraint between neighboring components so that sim-
ilar components were next to each other, which gave rise to a more stable set of
independent components [5].

Our TICA network was composed of three components: input, simple, and
pooling nodes (Fig. 2A). Given an input pattern x(t), each pooling node was

activated as pi(x
(t);W,V ) =

√

∑m

k=1 Vik(
∑n

j=1 Wkjx
(t)
j )2, where n was the local

receptive field size (size of the input) and m was the number of simple units.
The weights V ∈ R

m×m between the simple and pooling nodes were fixed (Vij =
0 or 1) to represent to topographical structure. The weights W ∈ R

m×n between
the input and simple nodes were the sparse bases to be learned by TICA. The
TICA learned the weights W by solving

argmin
W

T
∑

t=1

m
∑

i=1

pi(x
(t);W,V ), subject to WWT = I (1)

where input patterns {x(t)}Tt=1 were whitened attention traces. This objective
function minimized the sum of activities from all pooling nodes to reduce redun-
dancies between them, and the constraintWWT = I ensured sparseness between
bases. This objective function corresponded to classic ICA if each pooling node
pi was connected to exactly one simple node hi.

The sparse representation of children’s attention traces was simply obtained
by propagating their whitened traces through the CDNN pretrained from the
young adult controls. The children’s attention traces were whitened by the same
principal components that young adult controls used. These whitened traces then
propagated through the CDNN composed of two TICA networks. For each TICA
network, the output of each basis along the whole attention trace was called a
“trace-map”, and all the trace-maps together should cover the entire attention

1 available at http://ilab.usc.edu/publications/doc/tseng etal13idealsupp.pdf
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Fig. 2. One TICA layer (itself consisting of 3 layers) of the convolutional deep neural
network, where the simple units are the squared weighted sum of the receptive field,
and the pooling units compute the square root of the sum of adjacent simple units.

trace. We concatenated all the trace-maps into one large vector that sparsely
represented the saliency traces and would be the features used for classification
(see Supplementary Methods for detail).

2.4 Classification Procedures

A weak support vector machine (SVM) classifier was built per clip snippet, and
a strong classifier was constructed by Adaboost [4], from the weak classifiers that

performed better than the chance level (max(ni)∑
ni

, ni: number of participants of

group i). For each weak classifier, the feature dimension (all the trace-maps) was
much higher than the number of training samples, e.g., a clip snippet of 3.129
seconds yields 17,408 features. To reduce feature dimensions, a combination of
filter and wrapper methods was used in selecting features that discriminated
patients from controls in the training data set. For the filter method, we used
a two-tail t-test to filter features whose p-value ≤ 0.05 after Bonferroni correc-
tion within each trace-map. Once the filter method selected a set of features,
an L1-regularized logistic support vector machine (SVM) was used to perform
another feature selection and classification simultaneously, and resulted in our
weak classifier, which used 33 out of the 17,408 features of this 3.129 second clip
snippet. A 5-fold cross validation was used on the training dataset to determine
the cost value (10, 1, 0.1, 0.0001) of the SVM.

Within the training dataset, we performed a leave-one-out cross validation
(LOOCV) to estimate the generalizability of each weak classifier to different
training data, and to estimate the consistency of predictions on test data. The
LOOCV left one participant per group out. A weak classifier would be recruited
in the Adaboost strong classifier if it met 2 criteria: (1) the weak classifier per-
formed above chance level in the training dataset (generalizability), and (2) the
testing data were predicted consistently during the LOOCV. To estimate the
consistency, we took the median of the predicted class probability throughout
the LOOCV. If the median was higher than 0.7 or below 0.3, then the weak
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classifier was considered consistent. Moreover, the median predicted class label
was the prediction that served as the input of the strong Adaboost classifier.

LOOCV was also used to test the performance of the strong classifier. We
first left one participant out. With the remaining participants, we performed
the filter feature selection, trained the L1-regularized SVM, selected the weak
classifiers based on their generalizability, and trained the adaboost classifier.
Finally, the learned classifier was used on the participant who was left out at the
beginning. The LOOCV was repeated 10 times with different fold structures.
Note that we did not balance the number of participants in each group because
our data were only slightly unbalanced (53 controls vs. 47 patients).

3 Experimental Evaluation

3.1 Data

The results reported in this study included 53 control children (11.11±3.31 yr)
and 47 children with FASD (12.21±3.32 yr). An additional nineteen young adult
controls (20.74±1.33 yr) were recruited to collect data to train the sparse rep-
resentation of the attention trace by CDNN. The participants watched high-
definition (1280×1024 pixels) continuous natural scene videos whose content
changed every 2-4 seconds (61 snippets) or 7-8 seconds (9 snippets). Each video
(about 1 minute) included 13 to 15 snippets. Participants were instructed to
“watch and enjoy the clips”, and their right eye was tracked at 500Hz when they
watched the videos (see Supplementary Experiment for detail).

3.2 Results

We compared the classification performance of the classifier using either (1)
the gaze positions in screen coordinates, (2) the 10 raw attention traces, or
(3) the attention traces in sparse representations. All 3 test cases used a t-test
filter, L1-regularized SVM, and the adaboost classifier. They only differed in the
representation of the eye traces. These classifiers achieved accuracies of 49.3%,
53.4%, and 74.1% respectively (Fig. 3A). Wilcoxon signed-rank tests showed that
the classifier using the sparsely represented attention traces outperformed the
classifiers using gaze positions and raw attention traces (p<0.01). Furthermore,
the classifier using raw attention traces performed slightly better than that using
gaze positions (p=0.04). The confusion matrix of the classifier with sparsely
represented attention traces (Fig. 3B) showed precision 73.9%, recall (sensitivity)
69.4%, and specificity 78.3% on average.

To perform receiver operating characteristic (ROC) analysis, decision values
of the Adaboost classifier were normalized and converted to probabilities based
on Bayes rules. The ROC analysis showed that the classifier with sparse attention
traces (area under the curve, AUC=0.82) outperformed the classifiers with gaze
positions (AUC=0.49) and with raw attention traces (AUC=0.56) (p<0.01).
Moreover, the classifier with raw attention traces performed better than the
classifier using gaze positions (p=0.02).
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Fig. 3. (A) Classification accuracies of the classifiers using the gaze positions (gaze), the
raw attention traces (raw), and the attention traces in sparse representation learned by
convolutional deep neural network (cdnn). *, p<0.05; **, p<0.01 (B) Confusion matrix
of the classifier using the sparsely represented attention traces. (c) ROC analysis. The
numbers inside parentheses are area under the curve for each classifier.

3.3 Comparisons

Diagnosing FASD currently is a complex and time-consuming process. Several
studies have attempted to assist diagnosis by building classification rules that are
based on objective measures on how FASD influences children’s brain structure
and behaviors. However, most of such studies used the same dataset to train and
test their classifier, and some studies used the same dataset to select features
and to train the classifier (double-dipping) (see Supplementary Comparisons).
Therefore, their classification performance may be overestimated.

One fair comparison is the study done by Tseng et al. [12]. Similar to our
study, they investigated 15 minutes of natural viewing behavior combined with
Itti’s computational model of visual attention to classify children with FASD
from controls. They reported 79.2% classification accuracy by leave-one-out cross
validation, which was comparable to our results. However, their work was based
on only one type of eye movement, saccades, which occured only ∼1.5 times
per second on average for children. The low saccade frequency may limit their
method to be further shortened, because small numbers of saccades may not
provide reliable statistics to describe attention deployment. In fact, we used
their algorithm (provided by the authors) on our 5 minutes of data, and the
classification accuracy was 54.1%, which was lower than ours (74.1%).

4 Conclusions and Future Work

This study demonstrates that substantial information about the state of one’s
attention control exists in one’s natural viewing behavior. By combining compu-
tational models of visual attention and convolutional deep neural networks, such
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information can be successfully decoded. With such a short experiment and the
low cost of eye trackers, this method shows potential to be used as a screening
tool that can be broadly deployed (unlike, e.g., MRI).

This study serves as the first step in decoding attention control status from
natural behavior, and several extensions of this work can be explored. For exam-
ple, video stimuli can be designed and mined to specifically discriminate different
populations or disorders. Different representations of the attention traces can be
investigated, and each attention trace for each feature can be separately classi-
fied to give rise to a multi-dimensional diagnostic profile (biometric signature).
Correlating the classifier to standard behavioral tests and functional/structural
imaging data can advance our understanding of what the discriminative infor-
mation is which the classifier learned. The underlying generating processes of
attentional control can be modelled to better understand attentional control. In
summary, this study opens up a new research area that is exciting to explore.
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