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Abstract—This paper presents a new approach to semi-
autonomous vehicle hazard avoidance and stability control, 
based on the design and selective enforcement of constraints. 
This differs from traditional approaches that rely on the 
planning and tracking of paths. This emphasis on constraints 
facilitates “minimally-invasive” control for human-machine 
systems; instead of forcing a human operator to follow an 
automation-determined path, the constraint-based approach 
identifies safe homotopies, and allows the operator to navigate 
freely within them, introducing control action only as 
necessary to ensure that the vehicle does not violate safety 
constraints. The method evaluates candidate homotopies based 
on “restrictiveness”, rather than traditional measures of path 
goodness, and designs and enforces requisite constraints on the 
human’s control commands to ensure that the vehicle never 
leaves the controllable subset of a desired homotopy. 
Identification of these homotopic classes in off-road 
environments is performed using geometric constructs. The 
goodness of competing homotopies and their associated 
constraints is then characterized using geometric heuristics.  
Finally, input limits satisfying homotopy and vehicle dynamic 
constraints are enforced using threat-based feedback 
mechanisms to ensure that the vehicle avoids collisions and 
instability while preserving the human operator’s situational 
awareness and mental models.  The methods developed in this 
work are shown in simulation and experimentally 
demonstrated in safe, high-speed teleoperation of an 
unmanned ground vehicle. 

Keywords—Semi-Autonomous control, shared adaptive 
control, planning, obstacle avoidance, unmanned ground 
vehicles, teleoperation, human-machine interaction 

I.  INTRODUCTION 
Humans make mistakes.  When humans control dynamic 

systems, the rate and ramifications of those mistakes 
increase. Whether it occurs while driving a car, controlling 
industrial machinery, or teleoperating an unmanned vehicle, 
human error can lead to costly and often deadly 
consequences. In 2010, over 32,000 people were killed and 
another 2.2 million injured in motor vehicle accidents in the 
United States alone [1]. The U.S. military is also strongly 
affected by human error, with vehicle crashes representing 
the leading cause of non-hostile deaths in Operation Iraqi 
Freedom [2]. Even unmanned ground vehicles are 
susceptible, as operators must not only cope with the 
challenges inherent to the manned driving task, but must 
perform many of the same functions with a restricted field of 
view, limited depth perception, potentially disorienting 

camera viewpoints, and significant time delays [3]. Remotely 
operating a ground vehicle under these conditions while 
monitoring the vehicle’s health status, the status of the 
mission/tasks, and the condition of the environment leads to 
high failure rates, with many of today’s UGV’s failing 
before having completed even one full shift [4]. 

Semi-autonomous control offers a unique opportunity to 
improve human performance through the exploitation of 
human-automation synergies. As originally published in 
1951 [5] and widely discussed since, humans and automation 
are uniquely well suited to specific types of tasks [6]. 
Whereas automation excels at responding quickly and 
precisely to well-defined or repetitive control objectives, 
humans tend to make more mistakes as the frequency and 
complexity of the control task increase. Conversely, humans 
have the unique ability to detect and contextualize patterns 
and new information, reason inductively, and adapt to new 
modes of operation, whereas automation typically struggles 
at these tasks. The goal of semi-autonomy is to exploit 
synergies in the abilities of humans and automation to 
improve planning and control performance of the combined 
system and – where possible – the actors therein. 

A. Previous Work 
Research to date in vehicle control has left a significant 

gap between fully-autonomous planning and control 
frameworks, which neither account for nor provide an 
effective means of cooperating with the human operator, and 
driver assistance systems which are limited to local, one-
dimensional support. While these classes of system are 
distinct in their intended outcomes, their inability to 
effectively share control with a human driver has its root in a 
common, basic building block: each relies on specific, 
planned paths.  

In the context of autonomous control, many methods 
exist for planning this path. Common path planning tools 
include rapidly-exploring random trees [7], graph search 
methods [8], potential fields analysis [9], and neural 
optimization techniques [10]. Control laws routinely used to 
track these reference paths include PID schemes, linear-
quadratic regulators, and nonlinear fuzzy controllers. While 
many variations of this planning-then-control approach have 
proven effective in autonomous implementations [11], their 
reliance on a specific reference path (which is in many cases 
arbitrary, non-intuitive, and over-restrictive to a human 
operator), and consequent inability to account for the 
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planning preferences and control inputs of a human operator 
make them ill-suited for human-in-the-loop or “semi-
autonomous” control. 

At the other end of the vehicle safety community, with an 
eye on nearer-term, industry-driven objectives, researchers 
have developed systems that assist the human operator in 
avoiding collisions and loss of stability. These “active safety 
systems” traditionally fall into one of two categories: 
reactive safety systems, such as antilock brakes, traction 
controllers, electronic stability controllers, and lane-assist 
approaches monitor the current state of the vehicle and apply 
low-level control actions to meet some safety-critical criteria 
[12]. Predictive safety systems, on the other hand, consider 
not only the current state of the ego vehicle, but also the 
predicted state evolution of the vehicle and environmental 
hazards. These systems then preemptively assist the driver in 
identifying, assessing the threat posed by, and in some cases 
avoiding an impending hazard. Recent work in predictive 
safety has resulted in systems that use audible warnings [13], 
haptic alerts [14] and steering torque overlays [15] to help 
the driver avoid collisions [16], instability [17], or lane 
departure [18]. Similar to autonomous systems, the path-
based prediction metrics used by these systems limits their 
ability to provide more than local, one-dimensional support. 

Between the strategic, multidimensional capabilities of 
autonomous planning and control systems and the more 
tactical, one-dimensional focus of driver-assistance systems 
lies a significant need for truly semi-autonomous navigation; 
planning and control techniques capable of both strategic 
planning and intuitive, “intention-preserving” control 
support. We posit that such a system should be designed to 
accommodate the field-based planning and control technique 
humans have long been shown to exhibit [19]. Rather than 
obsessively planning and tracking a single path, humans tend 
instead to identify a field of safe travel – one that contains an 
infinite number of continuously deformable (“homotopic”) 
paths – and control the vehicle within it. This homotopy 
selection arguably represents the highest level of human 
reasoning employed in the navigation task and reduces the 
subsequent burden of calculating and applying appropriate 
control inputs to that of simply remaining within the desired 
homotopy. On an open roadway, for example, the preferred 
homotopy often contains many acceptable paths traversing a 
desired lane. In off-road environments, the desired homotopy 
may not be as clearly delineated, though vehicle dynamic 
constraints require that it exclude any region through which 
the vehicle cannot travel without colliding with obstacle(s). 
Figure 1 illustrates three prominent homotopies in a cluttered 
environment as they might be perceived by a human 
operator. 

 
Figure 1. Visualization of prominent homotopies available to a human 

operator (image best viewed in color). 

Instead of planning a path and restricting the human 
operator to that path, we propose a constraint-based semi-
autonomous system that strategically limits the range of 
available inputs to ensure that the operator retains as much 
control freedom as possible without risking collision with 
obstacles or dynamic instability. 

B. Paper Outline 
This paper introduces a new approach to semi-

autonomous control; one in which homotopies and their 
associated constraints are identified, characterized, planned, 
and enforced to ensure that the controlled system (an off-
road ground vehicle in this case) avoids hazards and loss of 
stability without unduly restricting the control freedom of a 
human operator. Section II describes the methods used to 
plan and characterize constraints on the vehicle position. 
Section III then describes one method for converting those 
constraints into semi-autonomously enforceable constraints 
on the operator’s control commands. These methods are 
demonstrated in simulated control of a ground vehicle 
through an obstacle field (Section IV) and semi-autonomous 
teleoperation of a Kawasaki Mule through a similar field 
(Section V). The paper then closes with general conclusions. 

II. CONSTRAINT PLANNING 
Similar to its path-based counterpart, planning in 

constraint or “homotopy space” requires the identification of 
homotopies and an evaluation of their goodness. However, 
because the constraints bounding a path homotopy admit an 
infinite number of paths, identifying and evaluating the 
“goodness” of these constraints requires a new set of 
evaluation criterion from those commonly used in path 
planning. Whereas the goodness or “optimality” of a specific 
path is well-defined using metrics such as length, curvature, 
robustness, and dynamic feasibility, corresponding measures 
lose their traditional meaning when applied to a set of 
constraints and the many paths they admit. Further, planning 
methods typically used to design paths, such as grid-based 
search, potential fields, and sampling-based algorithms, will 
not necessarily work to plan constraints since the latter must 
be designed to circumscribe – rather than simply remain 
within – a safe operating region. In light of this inherent 
difficulty, a method is presented here based on the 
Constrained Delaunay Triangulation, which provides a 
useful physical boundary to, and heuristic evaluation of the 
many distinct paths existing within a given homotopy. 

A. Homotopy Identification 
As illustrated in Figure 1, any environment bifurcated by 

obstacles or impassible regions admits multiple path 
homotopies. A path homotopy is a set of paths that can be 
continuously deformed into one another without crossing 
infeasible regions. If a particular homotopy can be identified, 
vehicle position constraints may be designed at its edges to 
circumscribe the set of paths it contains and thereby ensure 
that the vehicle remains safely within it (avoiding collisions 
with obstacles).  

In this work, we identify homotopies by decomposing 
two-dimensional configuration space C! R2 into a 
complete set of constrained Delaunay Triangles. The dual 
graph of this triangulation provides a search space through 
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which homotopies may be planned. That is, any feasible 
homotopy containing the vehicle’s current position X0, and 
the position of the goal location, XG, may be defined as a 
sequence Hn of adjacent triangles T0…Tn extending from the 
triangle circumscribing the vehicle’s current position (T0 in 
Figure 2) to that containing the goal location(s). This goal 
may be described by a single point or by a given region of 
R2, such as the distal edge of the local sensing window 
illustrated in red in Figure 2. 

B. Homotopy Evaluation 
In order to plan a set of constraints circumscribing a 

desired homotopy, metrics describing homotopy goodness 
must be defined and ascribed to individual triangles and 
transitions between them. We here propose two distinct 
heuristics for evaluating homotopy goodness: an estimate of 
the average “distance” traveled by paths within it, and an 
estimate of the control freedom available to an operator 
within a homotopy. 

In this formulation, any path belonging to a particular 
homotopy Hn = T0!T1!…!Tn  will pass through each 
triangle Tk in Hn, where k=1…n. A path enters Tk through 
the edge it shares with Tk-1 (Ek-1, k) and exits through Ek, k+1 
into Tk+1. Thus, the average “distance” traveled by all 
triangle-monotonic (passing through each edge at most once) 
paths belonging to a given homotopy as it crosses Tk may be 
heuristically described as the distance from the midpoint of 
Ek-1,k to that of Ek,k+1. As Figure 2 illustrates, the dual graph 
embodying this heuristic closely resembles the Generalized 
Voronoi Diagram (GVD). 

 
Figure 2. Illustration of triangulated environment showing homotopy 

selection and dual graph for length heuristic  

While the average “length” of paths belonging to a 
particular homotopy may be described by the distance metric 
above, the “restrictiveness” and dynamic feasibility of the 
constraints bounding this homotopy require heuristic 
evaluations of the range of motion and control freedom they 
admit. To incorporate these considerations into the 
constraint-planning problem, we observe the following: 

1. The dynamic feasibility of any path followed by a 
vehicle with Dubins constraints and friction-limited tires 
may be characterized by the lateral acceleration it 
requires. 

2. This lateral acceleration is directly proportional to the 
square of vehicle velocity and inversely proportional to 
the radius of curvature of the path it follows. 

3. In any homotopy Hn, the maximum radius of curvature 
of any of the constant-velocity paths belonging to Hn is 
limited by the “width” wk, or minimum pass-through 
clearance of the Delaunay Triangles comprising the 
homotopy. As illustrated in Figure 3, wk is calculated as 
the perpendicular distance from the constrained edge of 
the triangle to the apex opposite the constrained edge. 
The blue dashed line in Figure 3 illustrates the maximal 
radius path belonging to this homotopy. 

4. This maximal curvature is also affected by the relative 
orientation of adjacent constrained edges, or 
equivalently, the difference in orientation ϕk-1,k for 
adjacent line segments Lk-1 and Lk of the dual graph 
used to calculate “length” (these being parallel to the 
constrained edge). 

 
Figure 3. Illustration of a triangulated channel and the heuristics used to 

describe constraint restrictiveness and dynamic feasibility 

With heuristics Lk, wk, and ϕk thus calculated, a graph 
search (Dijkstra’s algorithm is used here) may be performed 
to calculate the optimal path homotopy (a “channel” made of 
adjacent triangles) and its associated constraints. In the 
results shown in this paper, the objective function is defined 
as 
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This objective function incorporates an estimate of 
average homotopy “length” with an approximation of the 
control freedom and dynamic stability available to the 
vehicle as it traverses the homotopy. 

III. CONSTRAINT ENFORCEMENT 
In the previous section, an objective function was defined 

to assess the goodness of a given homotopy. Once a desired 
homotopy has been identified, vehicle position constraints 
circumscribing the homotopy must be converted into semi-
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autonomously enforceable constraints on the human 
operator’s control inputs as the vehicle traverses the 
constrained region.  

To calculate these limits, a finite-horizon model 
predictive (MPC) controller is used to predict the vehicle 
state evolution within the desired homotopy under a stability-
optimal control input sequence. The nearness of the 
predicted trajectory to stability limits is then used to compute 
the steering constraint applied at the vehicle and the torque 
feedback provided to the operator. These steps are briefly 
described below. 

The MPC controller bases its predictions on a 4-wheeled 
vehicle model with slip and yaw dynamics. Defining vehicle 
states, outputs, inputs, and disturbances by x, y, u, and v, 
respectively, discrete plant dynamics are described by 

kvkukk vBuBAxx ++=+1
 (3) 

kvkk vDCxy += . (4) 
A quadratic objective function over a prediction horizon 

of p sampling intervals is defined as 
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where Ry, Ru, and R∆u represent diagonal weighting 
matrices penalizing deviations from yi = ui = !ui = 0 , ρε 
represents the penalty on constraint violations, n denotes the 
number of free control moves, and ε represents the 
maximum constraint violation over the prediction horizon p. 
Inequality constraints on vehicle position (y), inputs (u), and 
input rates (Δu) are then defined as: 
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where the vector ∆u represents the change in input from one 
sampling instant to the next, the superscript “(●)j ” 
represents the jth component of a vector, k represents the 
current time, and the notation (●)j(k+i|k) denotes the value 
predicted for time k+i based on the information available at 
time k. The vector V allows for variable constraint softening 
over the prediction horizon, p, when ε is included in the 
objective function. The vectors yy

min and yy
max are sampled 

from the edges of the constrained channel Hn. Also note that 
input constraints enforced in the MPC calculation are 
simply those imposed by available actuation. 

The state trajectory !x predicted by the MPC solution 
represents the state evolution of maximum stability that can 
be achieved given the vehicle’s current position, dynamics, 
and homotopy constraints (imposed by Hn). As such, the 
nearness of this prediction’s stability-critical states to their 
physical limits provides a useful indication of the need for 
intervention and a natural boundary for the current vehicle 
input. Here, we define by “threat”, Φ, the maximum 
predicted value of a stability-critical state (front wheel 

sideslip in this case). We then adjust the steering command 
seen by the vehicle to  

( ) ( )( ) driverMPCvehicle uKuKu Φ−+Φ= 1 , (7) 

where K ! [0 1]  is computed using a piecewise linear 
function which ensures that at low threat, the vehicle closely 
matches operator commands and at high threat – when the 
safest maneuver satisfying homotopy constraints approaches 
the limit of vehicle stability – the vehicle steering command 
tracks the optimal command predicted by the MPC 
controller. For a complete treatment of the threat assessment 
and the shared control method used in (7), the reader is 
referred to the authors’ previous work in [20]. 

In addition to the constraint imposed on (or adjustment 
made to) the vehicle steering (which is transparent to the 
human operator), experimental tests also fed back a tactile 
set of “soft” constraints on the position of the steering wheel. 
This feedback provides a greater situational awareness to the 
human operator, particularly in teleoperation scenarios, as it 
indicates not only where the input constraints lie, but also 
how urgently they must be satisfied in order to avoid 
collision or loss of control. The resistance torque applied to 
the operator’s steering wheel is calculated as  

! = kmaxK !driver "!MPC  (8) 

where kmax represents the maximum available steering wheel 
torque and is used to re-dimensionalize K. Figure 4 illustrates 
the (hypothetical) response of the torque restoring function to 
increasingly threatening MPC predictions. 

 
 

 
Figure 4. Scenario illustration showing the response of the restoring torque 

function as a vehicle successively approaches a hazard from behind 

Notice that as time progresses (denoted by ti labels on the 
host vehicle), the threat posed by the optimal maneuver 
prediction increases in severity. Additionally, the immediate 
steering command required to track this optimal trajectory 
begins to drift leftward. The combined effect of an 
increasingly-urgent, and progressively-leftward uMPC 
recommendation increases ks and shifts the torque resistance 
trough. In the limiting case for which only the optimal 
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steering command can reasonably be expected to avoid both 
the hazard and loss of control (sometime shortly after t4), the 
controller exerts the maximum available torque on the 
operator’s steering wheel, essentially ensuring that the 
operator not only cedes to the requirements of the controller, 
but is also aware of exactly what steering action is being 
taken by the vehicle. 

IV. SIMULATION TESTING 
The constraint-based semi-autonomous controller was 

simulated using a nonlinear ADAMS model of a generic 
light truck. The MPC controller ran at 20 Hz. Its prediction 
and control horizons were calculated over 60 and 40 
timesteps, respectively. Parameters in the MPC model were 
configured to closely match those of the ADAMS plant, 
vehicle velocity was set at a constant 20 m/s, and simulated 
driver steering input was set to 0 degrees for generality. 
Figure 5 shows the path homotopy and associated position 
constraints designed by the path planner (green channel) as 
well as the control constraint imposed on the vehicle steering 
input (colorbar). Note that given the vehicle’s initial position 
at (0,-2) [m], a shortest-path homotopy would have passed 
under the obstacles. Because this path is more tortuous and 
offers less control freedom to the human operator, the 
objective function described in (1) instead chooses the wider 
and less dynamically-challenging homotopy passing above 
the obstacles. Input constraints are initially large in order to 
avoid the impending hazard, but quickly relax as the vehicle 
enters a less restricted region of the homotopy above the 
obstacles. Finally, we note that the “ricochet” off the upper 
obstacle occurs because the simulated “human” input 
remains at zero for the entire maneuver. In practice, the 
significant control freedom offered by the relaxed constraints 
between x=40 and 80 meters allows the human operator to 
straighten out of desired. 

 
Figure 5. Simulation results demonstrating constraint-based semi-

autonomous control through an obstacle field  

V. EXPERIMENTAL TESTING 
Experimental testing was performed on a Kawasaki 4010 

Mule fitted with steering and braking actuators, an 
omnidirectional video head, Velodyne LIDAR, NavCom 
GPS, and a triaxial IMU. An onboard Linux PC ran 
controller code and transmitted video and other data to a 
teleoperator control station over an 802.11g wireless link. At 
the remote control station, a teleoperator received video and 

state feedback data on a computer monitor and issued 
steering commands through a Logitech G27 steering wheel. 
Torque constraints were applied to the steering wheel via its 
dual-motor force feedback mechanism capable of applying 
0-3.1 N-m of torque in either direction. Barrels were 
arranged on an open field as obstacles and the teleoperator 
was instructed to navigate the vehicle from a start to a goal 
location without hitting them. 

 
(a) 

 
(b) 

Figure 6. Experimental setup (a) and overlay of constraints (cyan) and 
MPC prediction (red) on video and LIDAR feed (b) 

In order to simulate periodic loss of vision caused by 
random occurrences such as camera obfuscation, sensor 
outages, and loss of communication, the camera feed seen by 
the teleoperator was blanked at random intervals for up to 2 
seconds at a time as he navigated the obstacle course at an 
average speed of 13 km/hr. A successful run was defined as 
one in which the vehicle crossed the obstacle field without 
colliding with any obstacles (verified by onboard safety 
personnel). Figure 7 shows the result of one of the ten 
experiments conducted with this configuration. In this run, 
control intervention from the semi-autonomous controller 
prevented the vehicle from colliding with obstacles when the 
driver’s inputs were considered unsafe. Note that the drift 
observed in obstacle locations (and apparent overlap between 
obstacles and the vehicle path) is the result of a sub-par IMU. 

In all, ten trials without any semi-autonomous assistance 
and ten trials with assistance were tested. Without assistance, 
the teleoperator collided with an obstacle 10 out of 10 times 
(0% success rate). With it, only 3 runs resulted in collision 
(70% success rate). This was achieved while maintaining an 
average constraint enforcement (K) value across all semi-
autonomous runs of just 25% and an RMS steering wheel 
resistance torque of just 1.5 N-m. The three failures observed 
under semi-autonomous control were due to sensing 
limitations; in regions with high obstacle density, the 3m x 
3m blind spot of the Velodyne sensor lost track of obstacles, 
resulting in constraints that did not preclude their position. 
When constraint positions were predicted and imposed in 
software (to simulate perfect sensing), collisions did not 
occur. It is expected that upgrading the inertial navigation 
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hardware will allow the sensing algorithm to maintain 
obstacle locations in a global frame and thereby avoid 
failures like these.  

 
Figure 7. Data from an experimental run through an obstacle field 

VI. CONCLUSIONS 
Semi-autonomous navigation requires planning and 

control methods capable of identifying desirable path 
homotopies and ensuring that the controlled system remains 
within them. This paper has illustrated one method for 
achieving minimally-restrictive, homotopy-based control 
through the planning and enforcement of constraints – rather 
than reference paths – on the states and control inputs of the 
vehicle. This method has been shown in simulation and 
experiment to effectively assist a human driver in avoiding 
collisions while navigating a vehicle through an obstacle 
field. Finally, while the results shown here are promising, 
further work studying the feasibility and “goodness” of path 
homotopies and the effects of various input constraint 
enforcement techniques on the performance and situational 
awareness of human drivers remain to be conducted. 
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