
Solving Shortest Path Problems with Curvature

Constraints Using Beamlets

Oktay Arslan, Panagiotis Tsiotras and Xiaoming Huo

Abstract— A new graph representation of a 2D environ-
ment is proposed in order to solve path planning problems
with curvature constraints. We construct a graph such that
the vertices correspond to feasible beamlets and the edges
between beamlets capture not only distance information but
directionality as well. The A* algorithm incorporated with
new heuristic and cost function is implemented such that the
curvature of the computed path can be constrained a priori.
The proposed Beamlet* algorithm allows us to find paths with
more strict feasibility guarantees, compared to other competing
approaches, such as Basic Theta* or A* with post-smooth
processing.

I. INTRODUCTION

Planning a path for an autonomous vehicle in a 2D or 3D

environment has been studied for many years [1], [2] and

many algorithms have been developed to solve this problem

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

to name just a few. From a system-theoretic view point, the

path planning problem is to find a control input that will drive

the state of the vehicle from a given initial state to a given

goal state, while minimizing a cost function and satisfying

the state and vehicle dynamic constraints. This is a complex

problem since it requires searching a solution in an infinite

dimensional space. One of the most common approach to

overcome this difficulty is to decompose the original problem

into two subproblems which address the geometric and

dynamic parts separately. However, the feasibility of the

computed path in the geometric level does not always imply

that the computed path can be followed by the vehicle.

Since the geometric level planner does not have any prior

information about the dynamic envelope of the vehicle, this

approach may lead to either a suboptimal or a dynamically

infeasible path. Generation of dynamically infeasible paths

can be avoided by coupling the geometric and dynamic

level planners via passing information about the allowable

dynamic envelope of the vehicle during the geometric search.

One simple approach to capture the vehicle’s dynamic en-

velope is to bound the curvature of the allowable paths, and

pass this information to the geometric level planner [15].

Path planning algorithms that solve the problem at the

geometric level can find obstacle-free paths (no kinematic

Oktay Arslan is a graduate student in the D. Guggenheim School
of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA, email: oktay@gatech.edu

Professor Panagiotis Tsiotras is with the D. Guggenheim School of
Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA, email: tsiotras@gatech.edu

Professor Xiaoming Huo is with the H. Milton Stewart School of
Industrial and System Engineering, Georgia Institute of Technology, Atlanta,
GA, 30332-0250, USA, email: huo@gatech.edu

Fig. 1: Solution of the problem may be a self-intersecting curve
due to constraints

and dynamic constraints) very easily. These algorithms usu-

ally search on a graph which is generated by discretizing

the continuous environment into cells that are either blocked

(black) or unblocked (white). A common decomposition

is a grid-like partitioning to square cells. The corners of

these cells and the links among them correspond to vertices

and edges of the search graph, respectively. As a result of

this abstraction, paths which are formed by grid edges are

not smooth since the possible headings at each vertex are

artificially constrained; furthermore, the graph formed by the

grid is insufficient to express all possible paths which are

embedded in the environment. For instance, consider a path

planning problem for the vehicle shown in Figure 1, where

the destination is shown with the cross and the vehicle can

turn only to the left due to a malfunction of its actuators.

It is obvious that the trajectory of the vehicle should be a

self-intersecting path, as shown in Figure 1. But this path

cannot be computed by any search algorithm (Dijkstra, A*

or any variants) at this level of abstraction (i.e., one that

searches on the graph formed by the topological grid of

the environment [16], [17]). This occurs because these algo-

rithms do not allow for self-intersecting paths. One solution

to avoid such problems is to increase the graph dimension

to also account for extra states (such as velocity) at each

graph vertex, however this increases the dimensionality of

the problem. Here we follow an alternative approach. We still

perform the path-planning in the physical space (where the

obstacles are more naturally described), but we also encode

local directionality of the path in an efficient manner. It turns

out that this is possible using beamlets [18]. Beamlets are

small line segments connecting points at the boundary of

cells in a dyadic partitioning of the environment, organized

in a hierarchical structure. They provide an efficient encoding

of all smooth curves in the plane with an error that is no

larger than the underlying resolution, in terms of Hausdorff

distance [18, Lemma 1]. In other words, they offer sparse

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 3533

approximate representations of smooth curves in the plane; in

a certain sense, they are optimally sparse. As shown in [18],

the library of all beamlets is of order O(n2 log2 n), whereas

all possible segments connecting the O(n2) vertices in the

grid (i.e., the beams) are of order O(n4). The latter order of

complexity is prohibitive for the development of an efficient

algorithm. The reduced cardinality of beamlets, on the other

hand, allows us to develop algorithms that have complexity

only logarithmically larger than the given data. It follows

that exhaustive searches through the collection of beamlets

can be implemented much faster than exhaustive searches

through the collection of beams.

In this paper we use the previous remarkable property

of beamlets, to efficiently connect points between empty

spaces in the plane1, and−most importantly−to include

directionality information along the ensuing path. This will

allow us to easily incorporate curvature constraints along

the path. Such curvature constraints are meant to provide

a “dynamic signature” for the resulting path so that can be

followed by the actual vehicle.

II. RELATED WORK

Several different algorithms have been proposed to find

smooth trajectories in a continuous environment, notably

among them are the A* with Post Smoothed Paths [19] and

the Basic Theta* [20]. Both A* with Post Smoothed Paths

(A* PS) and the Basic Theta* algorithms perform some extra

operations (line-of-sight check) in order to remove redundant

vertices from the optimal path. The A* PS algorithm first

computes the shortest path using the classical A* search

algorithm, and then it performs a post-processing operation

to smooth the computed path. During the post-processing

operation, a vertex is removed from the computed path if

its successor vertex is in the line-of-sight of its predecessor

vertex. Its successor vertex is then assigned as the parent of

its predecessor vertex. On the other hand, the Basic Theta*

algorithm performs a line-of-sight check during the update

procedure of the each vertex. It assigns the parent of the

current vertex as the parent of the neighbor vertex if the

neighbor vertex is in the line-of-sight of the parent of the

current vertex. Although both A* PS and Basic Theta* can

find smooth paths, they perform the smoothing operation

and the removal of the redundant vertices only around a

neighborhood of the optimal shortest path found by A*.

They cannot apply curvature constraints during the search

and expansion of the vertices. The proposed approach, on

the other hand, uses a new representation of the information

of the environment in a way such that a priori curvature

constraints can be imposed directly during each step of

the search. Therefore, it can find smoother paths with a

guaranteed curvature bound.

III. APPROACH

The path planning problem we are interested in is to find

a curvature bounded path from a start point (pstart) to a goal

1While two vertices in the nearest-neighbor graph corresponding to
vertices at opposite sides of the environment can only be connected by
a path with O(n) edges, no two vertices in the beamlet graph are ever more
than 4log2(n)+1 edges apart.

point (pgoal) while minimizing a predefined cost function. It

is assumed that the spatial information about the environment

is given as an n×n square image, where n = 2smax and smax

is a positive integer. There are several key elements which

play an important role in the formation of the beamlet graph.

Their definition is given below.

Beamlets is a collection of line segments which are defined

between certain points in the environment, selected from the

boundaries of dyadic squares [18], [21]. Unlike the points

on the grid, beamlets may not necessarily have uniform

properties and they occupy different scales and orientation

on a given image as shown in Figure 2(a). A beamlet is

feasible if all cells it passes through are unblocked. A dyadic

square (d-square) is a set of points in the environment

forming a square region. Each dyadic square is characterized

by a 3-tuple (scale s and position (x,y)). Formally, it is

defined as q(s;x,y) = {(i, j) : 2s(x−1)≤ i≤ 2sx,2s(y−1)≤
j ≤ 2sy}. Furthermore, q(s;x,y) can be rewritten as the

union of four sub-d-squares of scale s− 1; i.e., we have

q(s;x,y) = q(s−1;2x−1,2y−1)∪q(s−1;2x−1,2y)∪q(s−
1;2x,2y− 1) ∪ q(s− 1;2x,2y). This property of d-squares

leads to a recursive partitioning scheme which is called

dyadic partitioning.

(a) (b)

Fig. 2: Sample of feasible beamlets on a 8×8 square image and the
corresponding quadtree representation.

Due to the recursive nature of the d-squares, the set of

all d-squares of a given dyadic partition can be stored as

a quadtree [22]. Figure 2(b) illustrates the corresponding

quadtree of the dyadic partition given in Figure 2(a).

A. Multiresolution Representation of the Environment

A quadtree decomposition is used to obtain a multiresolu-

tion representation of the environment, as shown in Figure 3.

The algorithm basically counts the number of obstacles in

each dyadic square in an efficient manner. If the counted

number of obstacles is in the interval [1+α(2s−1− 1),2s−
1 − α(2s−1 − 1)], where s and α are the scale of the

dyadic square and tuning parameter, respectively, it divides

the current dyadic square further. This algorithm continues

partitioning until there are no dyadic square which can be

divided any further.

3534

(a) α = 0.25 (b) α = 0.75

Fig. 3: Quadtree decomposition of the environment for two different
values of obstacle distribution.

Typically, the nodes of the quadtree are labeled as white

(free of obstacles), black (full of obstacles), or gray (mixture

of both free cells and obstacles), and the leaves of the

quadtree are allowed to be only either white or black. In our

implementation, this condition is relaxed and the quadtree is

allowed to have gray leaves. The tendency of the quadtree

to have gray leaves is controlled by the parameter α ∈ [0,1].
The greater the value of α , the more the tendency to have

gray leaves in the quadtree. The algorithm creates a quadtree

with no gray leaves if α = 0; the quadtree has only the root

node if α = 1.

B. Construction of the Beamlet Graph

The beamlet graph BG , (V ,E) is defined such that

each element in the set of vertices V corresponds to a

feasible beamlet. Two beamlets are geometrically connected

if they share a common point. The beamlet neighborhood of a

given beamlet i includes all beamlets which are geometrically

connected to the end points of beamlet i, as shown in

Figure 4. The edge set E ⊂ V × V consists of all pairs

(i, j) where i, j ∈ V , such that the beamlets i and j are

geometrically connected. Each edge ei j ∈ E in BG includes

two types of information: the length of the beamlet j and

the angle between the two beamlets as shown in Figure 5.

Fig. 4: Beamlet connectivity.

Fig. 5: Edge between beamlets

After a multiresolution representation of the environment

is given, we find the set of all feasible beamlets that are

geometrically attached to one of the end points of a given

beamlet b. First, the algorithm finds the set of dyadic squares

which include one of the end points of the beamlet b.

The black dyadic squares are ignored since they are full

of obstacles and do not include any feasible beamlets. For

each boundary point of a white dyadic square, a beamlet

emanating from one of the related end points of the beamlet b

is created. There is no need to check its feasibility, since there

are no obstacles in a white dyadic square. For gray dyadic

squares, in addition to the creation of the corresponding

beamlets, a feasibility check is required since the dyadic

square is mixture of free and blocked cells. This algorithm

helps to build the beamlet graph incrementally as needed

during the search.

C. Description of Search Algorithm

Several functions are defined in order to apply the search

algorithm on the beamlet graph. An edge cost function D :

E →R+× [−π ,π] maps each edge in the beamlet graph to

a pair of distance and an angle (ℓ,θ). A path-cost function

G : V →R+×R+× [0,π] maps each vertex to a cost vector

whose components are (∑ℓ, ∑ |θ |, |θ |max). ∑ℓ is the sum

of the length of all beamlets corresponding to the path from

the start vertex to the current vertex, ∑ |θ | is the sum of the

absolute value of the angles between the beamlets of the path,

and |θ |max is the maximum of the absolute values of those

angles. A path-cost function add(c,d) updates the path-cost

vector c with the given edge cost d. It adds the edge cost

d = (ℓ,θ) to the current value of the path-cost information

c = (∑ℓ,∑ |θ |, |θ |max) and updates |θ |max if |θ | is greater

than its current value. This function is given in Algorithm 2.

Since the path-cost information is a vector, the function g(s)
is defined in line 11 of Algorithm 2 in order to compare

the “goodness” of different path-cost vectors. The function

g maps each path-cost vector to a single non-negative cost

value. The cost value is a linear combination of the distance

ℓ and angle θ , scaled appropriately.

The precedence relation ≺ (c′,c) between two path-cost

vectors c and c′ is defined as follows: c′ precedes c if and

only if gscore of c′ is smaller than gscore of c. Finally, a

heuristic h : V → R+ is defined in line 7 in Algorithm 2

to guide the search over the beamlet graph. The heuristic is

admissible since it considers the cost information (ℓ,θ) of a

beamlet formed by the second point of the current beamlet

sp2
and the goal point pgoal. Simple geometry ensures that

these cost value contributions will never overestimate the

actual ones.

The A* search algorithm with Fibonacci heap [23], [24]

as priority queue is used to search for the optimal path

on the beamlet graph. For any given start and goal points

(pstart,pgoal), the algorithm first calls Initialize(pstart, pgoal) in

line 4 in Algorithm 1 to compute a multiresolution represen-

tation of the environment and initialize internally used data

structures. Then, the ComputeBeamletsEmanating(BG, p)
function is called at lines 5 and 6 to create a set of start

and goal vertices in the beamlet graph. This function first

3535

Algorithm 1: Beamlet*

1 Beamlet*(pstart ,pgoal,|θ |max)

2 f rontier← /0

3 explored← /0

4 BG← Initialize(pstart , pgoal)
5 sstart ← ComputeBeamletsEmanating(BG, pstart)
6 sgoal ← ComputeBeamletsEmanating(BG, pgoal)
7 foreach s′ ∈ sstart do

8 parent(s′)← null

9 c′
∑ℓ← ‖s′p2

− s′p1
‖

10 c′
∑ |θ |← c′|θ |max

← 0

11 G(s′)← c′

12 f rontier.insert(s′,g(s′)+ h(s′))

13 while f rontier 6= /0 do

14 s← f rontier.pop()
15 if s ∈ sgoal then

16 return “path f ound”

17 explored.insert(s)
18 foreach s′ ∈ neighbor(s) do

19 if s′ 6∈ explored then

20 d←D(edge(s,s′))
21 if |dθ | ≤ |θ |max then

22 if s′ 6∈ f rontier then

23 g(s′)← ∞

24 UpdateState(s,s′)

25 UpdateState(s,s′)
26 d← D(edge(s,s′))
27 c← G(s)

28 c′← G(s′)

29 cnew← add(c,d)

30 if cnew ≺ c′ then

31 parent(s′)← s

32 G(s′)← cnew

33 if s′ ∈ f rontier then

34 f rontier.remove(s′)

35 f rontier.insert(s′,g(s′)+ h(s′))

finds the set of dyadic squares which include the point p by

traversing the quadtree and it then computes a set of feasible

beamlets by attaching the point p to the points located at

the boundary of the dyadic squares. The path-cost vector

and parent of the each vertex in the set of start vertices

sstart are initialized in line 7 to 11. The first and second

points of a given beamlet s′ are represented by s′p1
and s′p2

,

respectively in line 9. Those vertices are inserted into the

f rontier heap. The rest of the search procedure is the same as

in the A* algorithm, except that during the vertex expansion

step, the algorithm checks whether the transition violates

the given curvature constraint before updating a neighbor

vertex at line 23. If the angle value θ of the edge cost d is

greater than |θ |max, then that neighbor vertex is ignored. As a

result, although two vertices are geometrically connected, the

transition between them is not allowed due to the violation

of the curvature constraint.

Algorithm 2: Heuristic, Cost and Other Functions

1 add(c,d)

2 c∑ℓ← c∑ℓ+ dℓ
3 c∑ |θ |← c∑ |θ |+ |dθ |
4 if c|θ |max

< |dθ | then

5 c|θ |max
← |dθ |

6 return c

7 h(s)

8 s′← Beamlet(sp2
, pgoal)

9 d← D(edge(s,s′))
10 return β ∗ dℓ ∗ nℓ+(1−β)∗ |dθ| ∗ nθ

11 g(s)

12 c← G(s)
13 gscore← β ∗ c∑ℓ ∗ nℓ+(1−β)∗ c∑|θ | ∗ nθ

14 return gscore

15 ≺≺≺(c′,c)

16 g′score← β ∗ c′
∑ℓ ∗ nℓ+(1−β)∗ c′

∑|θ | ∗ nθ

17 gscore← β ∗ c∑ℓ ∗ nℓ+(1−β)∗ c∑|θ | ∗ nθ

18 return g′score < gscore

IV. COMPARISON WITH EXISTING METHODS

We compared the proposed Beamlet* algorithm with the

A*, the A* with Post Smoothed Paths (A* PS) and the

Basic Theta* algorithms on several graphs formed by an

eight-neighbor square grid. All search algorithms were im-

plemented in C++ on a 2.5 GHz Core 2 with 3 GB of RAM

laptop. All algorithms solved the same problems on several

artificially created 2D cluttered environments which are

characterized by two different grid sizes and 4 different per-

centages of occurrence of obstacles. For a given percentage

of obstacles, some cells in the environment were randomly

blocked in order to create a cluttered environment. For each

environment, 100 path planning problems were created by

choosing the start and goal points randomly. The computed

paths were compared with respect to the following criteria,

averaged over 100 path planning problems: the length of the

computed path ℓ, the absolute value of maximum heading

angle |θ |max, the execution time of the search algorithm te,

the number of expanded vertices during the search nexp, and

the number of heading changes along the path nhc. We used

quadtree decompositions where α = 0 for all cases, that is,

there are no gray leaves in the final quadtree. Finally, the

values of β , nℓ, and nθ were set to 1.0,
√

2n, and π , where n

is the dimension of the square which represents environment,

respectively. We tried to find the shortest possible path which

satisfies the given heading angle constraint.

First, Beamlet* was used to solve a path planning problem

whose only possible solution is a self-intersecting curve

owing to a constraint on the heading angle along the path.

This is shown in Figure 6, where only left turns (positive

heading angles) are allowed along the path. For this problem,

3536

the start and goal points are the top-left and bottom-right

green points, respectively, as shown in Figure 6. None of

the A*, A* PS and Basic Theta* algorithms can find the

solution for this problem. This is due to the fact that these

algorithms will start expanding all vertices at the top-left area

of the map from the start point, but will never reach the goal

point after all vertices are expanded. Since each vertex which

corresponds to a point in the graph is never re-expanded once

it has been inserted in the explored list, the path computed

by A*, A* PS and Basic Theta* algorithms will never pass

through the same point twice.

Fig. 6: Beamlet* searches over a larger space of curves and can
find self-intersecting paths.

The comparison of these algorithms with respect to the

path length and the maximum heading angle is summarized

in Table I. Other metrics related to the computed paths are

illustrated in Figures 7-9. Figure 7 shows the number of

heading changes along the corresponding paths, Figure 8

shows the number of expanded vertices, and Figure 9 shows

the execution times of the search algorithms.

As seen in Table I, Beamlet* can find smoother paths than

Basic Theta* and the other algorithms for all cases tested,

as expected. This is owing to the fact that Beamlet* allows

us to explicitly constraint the upper and lower bounds of the

heading changes along the path. Therefore, although a vertex

in the beamlet graph has too many geometrically connected

neighbor vertices, only the ones that have an edge which does

not violate the heading angle bounds are updated during the

search.

Fig. 7: Heading Changes (grid size: 256x256)

The number of heading changes on the paths computed

by Beamlet* is usually larger than those computed by other

algorithms, as shown in Figure 7. The reason is that

Beamlet* computes multiple soft maneuvers instead of a

single sharp maneuver due to the constraint on the maximum

absolute value of the heading angle. Also, it is obvious

that the number of heading changes on a path depends on

how cluttered the environment is, and how the obstacles

are distributed inside the environment. Therefore, in our

numerical comparison, the constraint on the heading angle

was relaxed on more cluttered environments in order to

increase the chance of finding a path. We constrained |θ |max

to 15◦, 20◦, 25◦ and 30◦ when executing the Beamlet*

algorithm for path planning problems in the environments

of 5%, 10%, 20%, and 30% obstacles, respectively.

Fig. 8: Vertex Expansions (grid size: 256×256)

The Beamlet* algorithm usually expands more vertices

than the Basic Theta* algorithm, as shown in Figure 8. There

are two main reasons for this overexpansion of vertices:

First, the beamlet graph is larger than a graph formed by

just the grid points, in terms of both the number of vertices

and the number of edges. Second, although, the start and

goal points may be spatially very close to each other in a

path planning problem, and perhaps there exists a short path

between the two, the solution path will be naturally longer if

one imposes additional constraints on the allowable heading

angle changes along the path. Computing such a longer path

over a larger graph will inevitably require a larger number

of vertex expansions during the search.

Fig. 9: Execution Time (grid size: 256x256)

Despite the large number of vertex expansions in the

Beamlet* algorithm, the execution time of Beamlet* is

reasonable, and sometimes even better than the Basic Theta*

if the environment is less cluttered, as seen in Figure 9. This

is because Beamlet* and Basic Theta* use different vertex

update procedures during the search. Basic Theta* requires

line-of-sight checking for each neighbor vertex of the current

3537

Maps
A∗ A∗ PS Basic Theta∗ Beamlet∗

ℓ |θ |max ℓ |θ |max ℓ |θ |max ℓ |θ |max

1
2
8
x
1
2
8 %5 Obstacle 114.521 47.701 109.895 25.919 108.643 13.518 114.191 9.503

%10 Obstacle 113.443 52.202 108.906 36.491 107.618 25.354 112.886 13.492

%20 Obstacle 112.905 55.352 108.298 39.914 107.380 33.994 121.778 14.788

%30 Obstacle 107.509 90.253 102.601 73.511 101.373 70.507 105.544 26.771
2
5
6
x
2
5
6 %5 Obstacle 231.993 52.652 224.841 37.849 220.310 22.445 225.348 12.191

%10 Obstacle 231.341 56.702 224.023 44.627 219.430 33.305 236.584 13.182

%20 Obstacle 234.551 82.352 225.681 63.228 222.767 54.608 232.998 21.739

%30 Obstacle 241.613 92.253 231.788 71.666 228.910 61.383 230.576 27.240

TABLE I: Beamlet* computes smoother paths than Theta* as seen in |θ |max column.

vertex during vertex expansion step. This extra operation

contributes a significant portion to the total execution time.

On the other hand, Beamlet* only requires to check the

feasibility of a beamlet if it is included by a gray dyadic

square.

V. CONCLUSIONS

We have proposed a new algorithm (called Beamlet*)

to compute shortest paths on a graph such that curvature

constraints along the path can be easily incorporated. Such

local curvature constraints serve as dynamic information

surrogates to obtain feasible trajectories, and thus can bridge

the gap between the geometric path-planning and feasible

trajectory generation levels in the motion planning hierarchy.

Compared to other similar approaches, the most important

advantage of Beamlet* is that it guarantees an a priori upper

bound of the heading angle changes along the resulting

path. This tends to result in smoother paths. On the other

hand, the result of the Beamlet* algorithm is dependent on

the multiresolution representation of the environment, and

the algorithm may not find a solution given a bad dyadic

partition. In this work, only a simple heuristic based on the

Euclidean distance was used, and a one-directional A* search

algorithm was implemented. Significant improvements in

performance can be achieved by incorporating different types

of heuristics (e.g., landmark [25] and search algorithms (e.g.,

bidirectional [8], [26], [27]. These refinements of Beamlet*

can increase its numerical efficiency. Finally, the proposed

approach can be easily extended to path planning problems in

the 3D world. In this case, the multiresolution representation

of the environment will consist of dyadic cubes (instead

of squares) of different scales, and the computed feasible

beamlets will be stored in an octree (instead of an quadtree)

data structure.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Springer Verlag, 1990.
[2] S. M. LaValle, Planning Algorithms. Cambridge Univ Pr, 2006.
[3] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-based path-

planning algorithm for a mobile robot,” Journal of Robotic Systems,
vol. 7, no. 4, pp. 555–574, 1990.

[4] C. Warren, “Fast path planning using modified a* method,” in Robotics
and Automation, 1993. Proceedings., 1993 IEEE International Con-
ference on. IEEE, 1993, pp. 662–667.

[5] A. Yahja, A. Stentz, S. Singh, and B. Brumitt, “Framed-quadtree
path planning for mobile robots operating in sparse environments,” in
Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, vol. 1. IEEE, 1998, pp. 650–655.

[6] M. Jansen and M. Buro, “Hpa* enhancements,” in Third Artificial
Intelligence and Interactive Digital Entertainment Conference. Stan-
ford, CA: The AAAI Press, June 2007, pp. 84–87.

[7] R. Holte, M. Perez, R. Zimmer, and A. MacDonald, “Hierarchical a*:
Searching abstraction hierarchies efficiently,” in Proceedings of the
National Conference on Artificial Intelligence. Citeseer, 1996, pp.
530–535.

[8] A. Goldberg and C. Harrelson, “Computing the shortest path: A search
meets graph theory,” in Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2005, pp. 156–165.

[9] A. Goldberg, H. Kaplan, and R. Werneck, “Reach for a*: Efficient
point-to-point shortest path algorithms,” in Proceedings of the eighth
Workshop on Algorithm Engineering and Experiments and the third
Workshop on Analytic Algorithmics and Combinatorics, vol. 123.
Society for Industrial Mathematics, 2006, p. 129.

[10] S. Koenig and M. Likhachev, “Dˆ* lite,” in Proceedings of the National
Conference on Artificial Intelligence. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2002, pp. 476–483.

[11] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[12] S. M. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, p. 378,
2001.

[13] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” in American Control Conference,
2001. Proceedings of the 2001, vol. 1. IEEE, 2002, pp. 43–49.

[14] D. Ferguson and A. Stentz, “The field d* algorithm for improved
path planning and replanning in uniform and non-uniform cost envi-
ronments,” Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-05-19, 2005.

[15] R. V. Cowlagi and P. Tsiotras, “Shortest distance problems in graphs
using history-dependent transition costs with application to kinody-
namic path planning,” in American Control Conference, 2009. ACC’09.
IEEE, 2009, pp. 414–419.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[18] D. L. Donoho and X. Huo, “Beamlets and multiscale image process-
ing,” Multiscale and Multiresolution Methods, vol. 20, pp. 149–196,
2001.

[19] C. Thorpe and L. Matthies, “Path relaxation: Path planning for a
mobile robot,” in OCEANS 1984. IEEE, 1984, pp. 576–581.

[20] A. Nash, K. Daniel, S. Koenig, and A. Felner, “Theta*: Any-Angle
Path Planning on Grids,” in Proceedings of the National Conference
on Artificial Intelligence, vol. 22, no. 2. Citeseer, 2007, p. 1177.

[21] D. L. Donoho and X. Huo, “Beamlet pyramids: A new form of
multiresolution analysis, suited for extracting lines, curves, and objects
from very noisy image data,” Proceedings of SPIE, vol. 4119, pp. 434–
444, 2000.

[22] H. Samet, “The quadtree and related hierarchical data structures,” ACM
Computing Surveys (CSUR), vol. 16, no. 2, pp. 187–260, 1984.

[23] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM
(JACM), vol. 34, no. 3, pp. 596–615, 1987.

[24] T. H. Cormen, Introduction to Algorithms. The MIT press, 2001.
[25] A. Felner, N. Sturtevant, and J. Schaeffer, “Abstraction-based heuris-

tics with true distance computations,” in Proceedings of SARA, vol. 9,
2009.

[26] D. de Champeaux and L. Sint, “An improved bidirectional heuristic
search algorithm,” J. ACM, vol. 24, no. 2, pp. 177–191, 1977.

[27] I. Pohl, “Bi-directional search,” Machine Intelligence, vol. 6, pp. 127–
140, 1971.

3538

