
Multi-Scale LPA* with Low Worst-Case Complexity Guarantees

Yibiao Lu, Xiaoming Huo, Oktay Arslan, and Panagiotis Tsiotras

Abstract— In this paper we consider dynamic shortest path-
planning problems on a graph with a single endpoint pair
and with potentially changing edge weights over time. Sev-
eral incremental algorithms exist in the literature that solve
this problem, notably among them the Lifelong Planning A*
(LPA*) algorithm. Although, in most cases, the LPA* algorithm
requires a relatively small number of updates, in some other
cases the amount of work required by the LPA* to find the
optimal path can be overwhelming. To address this issue, in this
paper we propose an extension of the baseline LPA* algorithm,
by making efficient use of a multiscale representation of the
environment.

I. INTRODUCTION

Dynamic path-planning deals with the solution of shortest-
path problems on a graph, when the edge weights in the
graph change over time. The Lifelong Planning A* algorithm
(or LPA* for short) [1] is a well-known algorithm, widely
used to solve dynamic path-planning problems, especially in
mobile robotic applications. In numerical experiments it was
observed however that LPA* exhibits unfavorable worst case
performance. That is, the number of vertex updates can vary
widely, depending on the location of the updated vertex in the
graph. Ideally, one would like the number of expansions to
be relatively immune to the location of the updated vertices.
Our objective is to introduce a modification of the LPA*
that keeps the number of expanded vertices approximately
constant (compared to the classical LPA* implementation),
regardless of the location of the updated vertex.

The main idea of the proposed multiscale LPA* (m-
LPA*) algorithm is to utilize pre-computed multiscale in-
formation of the environment to formulate an associated
search graph of smaller size, therefore reducing the computa-
tional complexity. The m-LPA* algorithm takes advantage of
multiscale information extracted from the environment and
therefore reduces the computational complexity in both the
initial planning and replanning steps simultaneously. This is
achieved by making extensive use of a beamlet-like graph
structure, which is based on a suitably pruned quadtree
representation of the environment (called in the sequel the
path finding reduced recursive dyadic partitioning, or PFR-
RDP for short). The PFR-RDP encodes the information of

Y. Lu is a Ph.D. candidate in the H. Milton Stewart School of Industrial
and System Engineering, Georgia Institute of Technology, Atlanta, GA,
USA, Email: ylv3@gatech.edu

X. Huo is with the faculty of the H. Milton Stewart School of Industrial
and System Engineering, Georgia Institute of Technology, Atlanta, GA,
USA, Email: huo@gatech.edu

O. Arslan is a Ph.D. candidate in the D. Guggenheim School of
Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA,
Email: oktay@gatech.edu

P. Tsiotras is with the faculty of D. Guggenheim School of Aerospace
Engineering, Georgia Institute of Technology, Atlanta, GA, Email:
tsiotras@gatech.edu

the environment in a hierarchical, multiscale fashion, keeping
track of “long-range” interactions between the vertices in
the underlying beamlet graph. The theoretical analysis of
the associated computational complexity reveals that, in the
worst case, the proposed algorithm has a lower order of
complexity than the LPA* algorithm.

The proposed algorithm belongs to the general class
of multiscale/multiresolution, dynamic path-planning algo-
rithms. Multiresolution decomposition techniques for path-
planning have been used extensively in the literature. See, for
example, [2], [3], [4], [5], [6] and, more recently, Refs. [7]
and [8], [9] where wavelets are used to create several levels
of abstraction for the environment. The paper also uses ideas
similar to those appeared in [10], [11], where boundary
cells in a cell decomposition as used to encode information
about the environment and also on ideas of state and map
abstractions [12], [13], [14], [15], whose aim is to repeatedly
cluster information about the environment in a hierarchy of
coarsening levels in order to enable fast post-processing.
However, the paper takes the current state-of-the-art one step
further by providing a systematic way to store and process
information at multiple levels via a “bottom-up” recursive fu-
sion algorithm. It should be noted that incremental heuristic
search algorithms have been used extensively in many real-
world applications, particularly in robotics. Map abstraction
techniques, on the other hand, are currently widely utilized
in the computer game industry. However, there is only a
limited number publications that combine the principles of
incremental search with map abstraction to achieve better
runtime efficiency. In that respect, the paper aims at bridging
a research gap in incremental search and map abstraction
techniques.

II. PROBLEM FORMULATION

We consider a path-planning problem in a dynamically
changing 2-D environment. Without loss of generality, it is
assumed that the environment can be represented by an n-
by-n square image, where n is dyadic, i.e., n = 2J and
J is a positive integer. As usual, it is assumed that the
image contains two types of pixels: gray pixels (representing
non-traversable obstacles) and white pixels (representing
traversable free cells). The path-planning problem is to
find the shortest path between a given pair of source and
destination pixels. Under this binary image assumption, a
change in the environment is formulated as a change in the
traversability properties between certain cells1.

1A cell is defined to be a collection of pixels in the environment. In
this article, since we consider the highest resolution, cell and pixels are
equivalent.

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 3507

Among the several existing replanning algorithms [1],
[16], [17], [18], [19], [20], [21], [22], in this paper we focus
on LPA*, one of the most efficient replanning methods.
The LPA* is an incremental search algorithm that replans
the initial path when a vertex update occurs owing to a
change in the environment. It is reminded that LPA* operates
essentially the same as the well-known A* algorithm in the
initial planning step but, in addition, it utilizes the concept
of “local inconsistency” of vertices to control the size of the
priority queue and hence the number of vertex expansions.

III. THE MULTISCALE A* AND LIFELONG PLANNING A*
ALGORITHMS

A. The Multiscale A* (m-A*) Algorithm

The classical A* algorithm searches through all free cells
in the environment, which can be overwhelmingly redundant.
The motivation behind the multiscale-A* (m-A*) algorithm
is to construct a smaller size search graph, on which the
computational complexity of searching for the shortest path
is significantly reduced. The m-A* algorithm is based on
the following key elements, summarized below. For a more
in-depth description of m-A*, see [23].

(i) The Recursive Dyadic Partition (RDP) and its
extension, the Path-Finding Reduced RDP (PFR-
RDP). The elements of (PFR-)RDP are the dyadic
d-squares, parameterized by scale and location. For
the single-pair, shortest path-planning problem, the
PFR-RDP is first constructed, and all free cells
on the boundaries of each d-square in the PFR-
RDP are selected as the vertices in the search
graph. Figure 1 shows the d-squares for the shown
partition, along with the additional boundary cells
used as vertices in the search graph.

(ii) The idea of beamlet-like connectivity. This provides
an extension of connectivity between a pair of non-
adjacent free cells. Within each d-square, besides
the assumption of 4-nearest-neighbor connectivity,
we further consider any pair of free boundary cells
to be connected if there exists an obstacle-free path
between the two, which lies within that d-square.
This shortest path is called a beamlet. Readers may
notice that this is a generalization of the beamlet
concept introduced in [24]. Therein, the beamlets
are defined as straight line segments of variable
length, scale and angle, connecting boundary cells
of d-squares. They have been applied successfully
to image processing applications (i.e., edge de-
tection). Please see [25], [26], and [27] for more
details. The beamlet graph is defined to be the
search graph with these two types of connectivity.

(iii) The bottom-up fusion algorithm designed to obtain
the edge weights of the search graph from different
scale dyadic squares. The algorithm is a recursive
method that employs the RDP in each d-square
from the PFR-RDP, in order to compute the inter-
distances between the free boundary cells for all
d-squares in the environment. The main idea of the

algorithm is based on the observation that if we
know the inter-distances between the free boundary
cells within each of the smaller d-squares, and by
considering the connectivity of the free boundary
cells that belong to neighboring d-squares, we can
treat all free boundary cells of the four d-squares
at the next scale as vertices in a “fused” graph.
The distance between free cells from neighboring
d-squares can be defined by direct neighbors. The
pseudo-code of the bottom-up fusion algorithm is
given in Algorithm 1.

Algorithm 1 BottomUpFusion (For each d-square)
1: Read the parameters of each d-square: s (scale), a, b

(location);
2: if s = log2 n− 1 then
3: Compute the free boundary cells as vertices (Trivial

case: only four cells in the d-square)
4: Calculate the four nearest neighbor connectivity

(edges) within each d-square
5: Run Johnson’s algorithm on the resulting graph to

obtain all pairs of shortest paths: cgraph and pathList.
6: end if
7: if s > 1 then
8: [graph1, path1] = BottomUpFusion(s+1, 2a−1, 2b−

1)
9: [graph2, path2] = BottomUpFusion(s+1, 2a, 2b− 1)

10: [graph3, path3] = BottomUpFusion(s+1, 2a− 1, 2b)
11: [graph4, path4] = BottomUpFusion(s+ 1, 2a, 2b)
12: Merge graph1, ..., graph4 into Graph by adding the

connected edges between neighboring d-squares
13: Run Johnson’s algorithm on Graph and get cgraph

and tmpPathList
14: Insert the missing parts of paths in tmpPathList from

path1,..., path4 to obtain pathList
15: return cgraph, pathlist (i.e., the beamlet graph)
16: end if

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 1. Illustration of the Path-Finding Reduced Recursive Dyadic Partition
(PFR-RDP) on a 32 × 32 image. The black cells are the source and
destination. The red circles denote the free boundary cells, i.e., the vertices
in the beamlet graph. The green arrows show the edge weights between
two free cells constructed via the bottom-up fusion algorithm across several
scales in the PFR-RDP.

3508

The combination of beamlet-like connectivity and mul-
tiscale decomposition in m-A* can reduce the depth of
the search tree from O(n) roughly to O(log n), without
increasing the branching factor in each layer [23]. The
beamlet graph thus has O(n) vertices and O(n2) edges. The
worst-case complexity of running A* on the beamlet graph
is therefore O(n2), compared to O(n2 log n) when using the
4-nearest-neighbor graph.

B. Incremental Search Algorithm: LPA*
The Lifelong Planning A* (LPA*) in [1] can be viewed

as an incremental version of the A* algorithm, the latter
being a heuristic enhancement of the well-known Dijkstra
algorithm. The LPA* repeatedly finds shortest paths from a
given source to a given destination, while the edge weights of
the graph change, or while vertices are added or deleted. The
first search of LPA* is the same as that of the classical A*
algorithm. Subsequently, the algorithm breaks ties in favor
of vertices with a smaller g-value (i.e., the current estimated
distance from the start vertex) and many of the subsequent
searches are potentially faster, because the algorithm reuses
those parts of the previous search graph that are identical to
the new one.

The LPA* algorithm uses two estimates of the start dis-
tance, namely, g(v) and rhs(v). The rhs-values are the one-
step lookahead values based on the g-values for each vertex,
and thus they are potentially better informed than the g-value.
Specifically, rhs(v) = minv′∈Pred(v)(g(v

′) + c(v′, v)). A
vertex is defined to be locally consistent if and only if
g(v) = rhs(v); otherwise it is said to be locally inconsistent.
The priority of vertices in the queue is based on the key
value, which is defined to be k(v) = [k1(v), k2(v)], where
k1(v) = min(g(v), rhs(v)) + h(v, vgoal), and k2(v) =
min(g(v), rhs(v)). The keys of the vertices in the priority
queue roughly correspond to the f -values used by A*. LPA*
always recalculates the g-value of the vertex (i.e., expands
the vertex) in the priority queue with the smallest key. LPA*
keeps expanding the vertices until vgoal is locally consistent
and the key of the vertex to be expanded next is no less
than the key of vgoal. Note that LPA* does not make every
cell locally consistent. Instead, it uses an informed heuristic
to focus the search and the subsequent updates only on the
vertices whose g-values are relevant for finding the shortest
path. This is the main principle behind LPA*, and this is
what makes LPA* a very efficient replanning algorithm.

IV. MULTISCALE STRATEGY IN DYNAMIC PATH
PLANNING: M-LPA*

A. Dynamic Path-Finding Reduced Recursive Dyadic Parti-
tion

We define two types of recursive dyadic partitions (RDP),
namely, the complete RDP and the path-finding reduced RDP
(PFR-RDP). The PFR-RDP is a partial recursive partition in
the sense that not all d-squares are partitioned to the finest
level. Figure 1 shows an example of a PFR-RDP on a 32-
by-32 image.

In order to make efficient use of the multiscale information
in a dynamically changing environment, we extend this

Algorithm 2 DPFR-RDP (Dynamic Path-finding Reduced
Recursive Dyadic Partition)

1: Set the largest scale to J = log2 n, where the image size
is n by n.

2: Initialize the list dptree = [1, 1, 1]–the d-square at the
coarsest level.

3: for s = 2 : J − 1 do
4: For d-square at scale s in dptree
5: if vs (source) or ve (destination) is in this d-square

then
6: In dptree, remove the line corresponding to this d-

square;
7: Partition into four equal, smaller d-squares, and

insert them as new lines in dptree
8: end if
9: end for

10: if v′ (update) 6= ∅ then
11: Locate the d-square in PFR-RDP where v′ locates,

denoted as [sv′ , av′ , bv′]
12: Conduct PFR-RDP on [sv′ , av′ , bv′] by setting vs=

ve= v′

13: end if
14: return dptree

recursive dyadic partition to obtain a dynamic version of
PFR-RDP: the Dynamic PFR-RDP (DPFR-RDP). This is just
one more step in the construction of the PFR-RDP, in the
sense that when a certain cell in the gridworld suffers from
a traversability change, we first identify the d-square in the
PFR-RDP in which this candidate cell is located, and then
we conduct a further partial dyadic partition (only) in this
candidate d-square. Figure 2 shows the DPFR-RDP for a 64-
by-64 image. The pseudo code for the DPFR-RDP is given
in Algorithm 2.

10 20 30 40 50 60

10

20

30

40

50

60

(a)
35 40 45 50 55 60

5

10

15

20

25

30

(b)

Fig. 2. (a) Illustration of the DPFR-RDP. The red grid shows the original
PFR-RDP before any vertex update; the dashed red grid stands for the further
partitioning after the green cell has been updated. The blue frame encloses
the candidate d-square that is selected for further dyadic partitioning. (b)
Magnified upper-right candidate d-square in (a). The free boundary cells
are indicated by red circles. Except for one of the smallest newly-generated
d-squares, all other d-squares contain the same inter-distance information
as before, which is obtained through the bottom-up fusion process.

3509

B. Update of Multiscale Information in the Beamlet Graph

In order to update the edge weights in the beamlet graph
that were influenced by the updated cell, it would be far
more redundant if we were to recalculate from scratch the
inter-distances between all free boundary cells. In fact, this
information has already been obtained during the bottom-up
fusion process when we run m-A* at the initialization step
(later on we show that LPA* runs exactly the same way as
m-A* before the updates).

Thus, by taking advantage of the hierarchical inter-
distance structure via the bottom-up fusion algorithm, the
edge weights in the beamlet graph can be updated promptly.
For instance, in Fig. 2(b), except for the smallest d-square
where the green cell is located, no change of edge weights
happens in any other d-square. Only the updates of the edge
weights in the smallest d-square that contains the updated cell
need to be recalculated, which is trivial, given the fact that
the finest scale d-square contains only four cells. The main
effort thus involves running an all-shortest path algorithm on
the graph constructed from all the free boundary cells of the
newly added d-squares during the further partitioning. More
generally, multiple updates at the same time can be processed
the same way.

When any cell is updated by some event, the dynamic
PFR-RDP is constructed, and the multiscale inter-distance
information obtained from the bottom-up fusion algorithm
during the first step is used to update the vertices and edge
weights in the beamlet graph. The final step is to run the
LPA* algorithm on the updated beamlet graph. The whole
algorithm is summarized in Algorithm 3.

V. WORST-CASE COMPLEXITY ANALYSIS

In order to investigate the complexity of the replanning
step, and without loss of generality, we assume that only
one vertex update occurs every single time. Let us denote
the number of vertex expansions as Ve.

Theorem 1: In the worst case, |Ve| = O(n2) on the
nearest neighbor graph, and |Ve| = O(n) on the beamlet
graph.

Proof. In the worst case, the complexity of replanning has
the same order as the initial path-planning [1], and hence
|V NNG

e | = O(n2), where |V NNG
e | denotes the number of

vertex expansions for the nearest neighbor graph.
In the replanning part, multiscale information has already

been obtained via the bottom-up fusion algorithm. There are
two scale-1 d-squares and six scale-s d-squares when s ≥ 2.
Furthermore, for a d-square at scale s, there are at most
n22−s free boundary pixels. Therefore, the initial beamlet
graph has |V1| ≤ 2 × 2n + 6 × n + 6 × n

2 + 6 × n
4 + ... =

4n + 6n + 3n + 3
2n + ... ≤ 16n vertices. Furthermore, the

number of vertices added during the replanning step has an
upper bound of |V2| ≤ 3×n+3×n

2+3×n
4+· · · = 6n. This is

because during further partitioning of the d-square where the
update of a vertex takes place, we have three new d-squares
at each scale (see Fig. 1 for an example). Hence, the total
number of vertices during replanning is |V | = |V1| + |V2|,
which is bounded by |V | ≤ 22n. Thus, in the worst case,

Algorithm 3 Multiscale Lifelong A* (m-LPA*)
1: procedure Key(v)
2: return [g(v) ∧ rhs(v) + h(vs, v); g(v) ∧ rhs(v)]

3: procedure Initialize()
4: OPEN = ∅;
5: for all v ∈ V rhs(v) = g(v) =∞;
6: rhs(vs)=0;
7: insert vs with Key(vs) into OPEN

8: procedure UpdateState(v)
9: if v 6= vs then

10: rhs(v) = minv′∈Pred(v)(c(v, v
′) + g(v′))

11: end if
12: if v ∈ OPEN then
13: remove v from OPEN
14: end if
15: if g(v) 6= rhs(v) then
16: insert v into OPEN with Key(v)
17: end if

18: procedure ComputeShortestPath()
19: while minv∈OPEN(key(v)) < key(vgoal)||rhs(vgoal) 6=

g(vgoal) do
20: remove state v with min key from OPEN;
21: if g(v) > rhs(v) then
22: g(v) = rhs(v);
23: for all v′ ∈ Succ(v) UpdateState(v′);
24: else
25: g(v) =∞;
26: for all v′ ∈ Succ(v) ∪ {v} UpdateState(v′);
27: end if
28: end while

29: procedure Main()
30: Initialize img, vs, ve;
31: Conduct PFR-RDP and obtain dptree
32: Run the Bottom-Up Fusion algorithm on each d-square

in dptree and get beamlet graph
33: for ever do
34: ComputeShortestPath();
35: Wait for changes in edge costs;
36: quadtree = FurtherPartition();
37: Update beamlet graph via Bottom-up Fusion;
38: for all directed edges (u,w) with changed cost do
39: Update edge cost c(u,w);
40: UpdateState(u);
41: end for
42: end for

3510

the number of vertex expansions in the replanning for the
beamlet graph is of order O(n). 2

A Fibonacci heap is used in m-LPA* to maintain the
priority queue, instead of a binomial heap (used in [1]),
because the Fibonacci heap has a better amortized running
time than the binomial heap. In particular, the core com-
ponent of m-LPA* is the beamlet graph obtained from the
preprocessed multiscale information, which has a reduced
number of vertices, but an increased number of insertion
operations, due to the generalization of connectivity between
non-adjacent cells. As a result, the complexity of m-LPA* is
dominated by insertion operations, which is approximately
of order O(1), compared to that O(log n) of LPA*, when a
Fibonacci heap is used [28]. Hence, the overall complexity
of the algorithm is dominated by the number of vertex
expansions, hence it is of order O(n).

VI. SIMULATION STUDIES

Several numerical examples were conducted to validate the
performance of m-LPA* and compare it to the performance
of LPA*. Owing to page limitations, in this section we
provide the results from the numerical experiments from
one of the scenarios tested, but the results are representative
for all other cases. A large-scale gridworld based on actual
topographic data (i.e., an elevation map) of a certain area in
the US, as shown in Fig. 3, was used as the environment.
The black cells in this figure are the source and destination.
The gray cells indicate obstacles.

On this map, we run both the standard LPA* and the
m-LPA* algorithms. The total number of vertex expansions
(i.e., the number of updates of the g-value of the vertices)
was used as the metric to compare the efficiency of the two
algorithms. We did not use heap percolation or CPU time,
because CPU time is a machine-dependent metric, and heap
percolation is of order O(1), as a direct result of using both a
Fibonacci heap and a beamlet graph (see Section V above).
Based on the intuition that when the updated vertex does
not belong to the shortest path identified by either the LPA*
or the m-LPA* algorithm, the number of vertex expansions
tends to be small, we imposed that the blocking vertex be
from the set of vertices of the initial shortest path, except
for the source and destination vertices. Hence, for each
experiment, the updated vertices were on the initial shortest
path and they were updated one-at-a-time sequentially.

The difference in the number of expanded vertices for the
two cases, is clearly shown in Fig. 3. The solid blue dot
denote the cell that changed its status and is not traversable in
this particular case. The red dashed line identifies the original
path during the first step of LPA* (essentially A*), and the
green dashed line indicates the updated shortest path obtained
from the replanning part of LPA*. The yellow crosses
denote the expanded vertices during replanning. As shown
in Fig. 3(b), the blocking of the vertex in the gridworld
occurs near the start point and induces a local “dead-end.”
As a result, all the g-values afterwards are recalculated.
Figure 4(a) provides a magnified version of Fig. 3(a) around
the replanning area so that it can be seen clearly how the
replanned path avoids the blocked vertex.

Figure 4(b) shows the pattern of the number of vertex
expansions for LPA* and m-LPA*, respectively. As seen
in this plot, the number of expanded vertices during the
initial planning step using the beamlet graph is much smaller
than the one using the nearest neighbor graph. Multiscale
information used in the initial step of planning significantly
reduces the number of vertex expansions, and because of the
use of Fibonacci heaps, the number of vertex expansions is
the only step that is time-consuming.

The following observations are evident from Fig. 4(b):
1) The number of vertex expansions during replanning in

LPA* varies dramatically from case to case. Specifi-
cally, when the updated vertex is closer to the source,
or when the update generates a “local dead-end,” a
huge number of g-values may need to be recalculated.

2) The number of vertex expansions in m-LPA* is rela-
tively insensitive with respect to the location of the
updated vertices. The use of multiscale information
reduces the number of vertex expansions when the
blocking happens near the source; on the other hand,
there will be a somewhat larger number of vertex
expansions than that of LPA* when the update happens
in the largest d-square in the dynamically recursive
dyadic partition tree, because in this case more ver-
tices will be added to the beamlet graph during the
replanning step.

50 100 150 200 250

50

100

150

200

250

(a)
50 100 150 200 250

50

100

150

200

250

(b)

Fig. 3. Comparison between LPA* and m-LPA* for a large map with
real topographic data. Gray pixels indicate obstacles and white pixels are
free. (a) The blocking happens near the source and hence all the g-values
afterwards are recalculated. (b) The updated shortest path obtained from
m-LPA* in the beamlet graph.

As a general rule, a larger number of free boundary cells
is added to the beamlet graph as new vertices, following the
recursive dyadic partitioning induced by the modified vertex.
If the increased computational burden due to the newly-added
vertices outperforms the gain from the multiscale structure
of the beamlet graph, the number of vertex expansions can
be higher than that of the LPA* implementation.

VII. CONCLUSIONS

We have presented a new extension of the well-known
Lifelong Planning A* (LPA*) algorithm based on a mul-
tiscale decomposition of the environment. The proposed
algorithm may be viewed as an extension of both the classical

3511

200 210 220 230 240 250

10

20

30

40

50

60

(a) Magnified Area in Fig. 3
0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

(b) Example of Fig. 3

Fig. 4. (a) Magnified replanning area of the simulation shows the
correctness of the m-LPA*; (b) Comparison of vertex expansions for both
LPA* and m-LPA*. The blue curve and the red curve denote the number
of vertex expansions for these two methods, respectively.

LPA* algorithm and the recently proposed multiscale A*
(m-A*) algorithm. The proposed multiscale LPA* algorithm
(m-LPA*) provides a significant reduction in terms of vertex
expansions over the original LPA* algorithm at worst case.
Extensions of the proposed multiscale algorithm that adapts
to a moving source, as well as extensions to higher dimen-
sions are possible, and are currently under investigation.

REFERENCES

[1] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence Journal, vol. 155, no. 1-2, pp. 93–146, 2004.

[2] S. Kambhampati and L. S. Davis, “Multiresolution path planning for
mobile robots,” IEEE Journal of Robotics and Automation, vol. 2,
no. 3, pp. 135–145, 1986.

[3] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path
planning by path graph optimization,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 33, no. 1, pp. 121–127, January 2003.

[4] S. Behnke, Local Multiresolutin Path Planning, ser. Lecture Notes in
Computer Science. Berlin: Springer, 2004, vol. 3020, pp. 332–343.

[5] C.-T. Kim and J.-J. Lee, “Mobile robot navigation using multi-
resolution electrostatic potential field,” in 32nd Annual Conference
of IEEE Industrial Electronics Society, 2005, IECON 2005, 2005.

[6] B. Sinopoli, M. Micheli, G. Donato, and T. J. Koo, “Vision based
navigation for an unmanned aerial vehicle,” in Proceedings of 2001
IEEE Conference on Robotics and Automation, 2001, pp. 1757–64.

[7] D. Pai and L.-M. Reissell, “Multiresolution rough terrain motion
planning,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 1, pp. 19–33, 1998.

[8] P. Tsiotras and E. Bakolas, “A hierarchical on-line path-planning
scheme using wavelets,” European Control Conference, July 2-5 2007.

[9] R. Cowlagi and P. Tsiotras, “Multiresolution path planning with
wavelets: A local replanning approach,” in American Control Con-
ference, Seattle, WA, June 1-13 2008, pp. 1220–1225.

[10] A. Yahja, A. Stentz, S. Singh, and B. L. Brumit, “Framed-quadtree
path planning for mobile robots operating in sparse environments,” in
Proceedings of the 1998 IEEE International Conference on Robotics
& Automation. Leuven, Belgium: IEEE, May 1998, pp. 650–655.

[11] M. Goldenberg, A. Felner, N. Sturtevant, and J. Schaeffer, “Portal-
Based True-Distance Heuristics for Path Finding,” in Third Annual
Symposium on Combinatorial Search, 2010.

[12] A. Botea, M. Muller, and J. Schaeffer, “Near-optimal hierarchical
pathfinding,” Journal of Game Development, vol. 1, pp. 1–30, 2004.

[13] M. R. Jansen and M. Buro, “HPA* enhancements,” in Proceedings of
the Third Artificial Intelligence and Interactive Digital Entertainment
Conference. Stanford, CA: The AAAI Press, June 2007, pp. 84–87.

[14] A. Felner, N. Sturtevant, and J. Schaeffer, “Abstraction-based heuris-
tics with true distance computations,” Proceedings of the Eighth
Symposium on Abstraction, Reformulatoin, and Approximation, 2009.

[15] N. Sturtevant and M. Buro, “Partial pathfinding using map abstrac-
tion and refinement,” in Proceedings of the National Conference on
Artificial Intelligence, vol. 20, no. 3, 2005, p. 1392.

[16] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuris-
tic search in artificial intelligence,” Artificial Intelligence Magazine,
vol. 25, no. 2, pp. 99–112, 2004.

[17] S. Koenig and M. Likhachev, “D* lite,” Proceedings of the AAAI
Conference of Artificial Intelligence (AAAI), pp. 476–483, 2002.

[18] A. Stentz, “Optimal and efficient path planning for unknown and dy-
namic environments,” International Journal of Robotics & Automation,
vol. 10, no. 3, pp. 89–100, 1995.

[19] D. Ferguson, M. Likhachev, and T. Stentz, “A guide to heuristic-
based path planning,” in Proceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systems, International
Conference on Automated Planning and Scheduling (ICAPS), June
2005.

[20] D. Ferguson and T. Stentz, “The field D* algorithm for improved
path planning and replanning in uniform and non-uniform cost envi-
ronments,” Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-05-19, June 2005.

[21] A. Nash, K. Daniel, S. Koenig, and A. Felner, “Theta*: Any-angle
path planning on grids,” in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2007, pp. 1177–1183.

[22] R. Cowlagi and P. Tsiotras, “Shortest distance problems in graphs us-
ing history-dependent transition costs with application to kinodynamic
path planning,” in American Control Conference, St. Louis, MO, June
10–12, 2009, pp. 414–419.

[23] Y. Lu, X. Huo, and P. Tsiotras, “Beamlet-like data processing for accel-
erated path-planning using multiscale information of the environment,”
in The 49th IEEE Conference on Decision and Control, Hilton Atlanta
Hotel, Atlanta, GA, USA, Dec 2010.

[24] D. Donoho and X. Huo, Multiscale and Multiresolution Methods.
Spring, 2002, vol. 20, ch. Beamlets and multiscale image analysis,
pp. 149–196.

[25] ——, “Beamlets pyramids: A new form of multiresolution analysis,
suited for extracting lines, curves and objects from very noise image
data,” in Proceedings of SPIE, vol. 4119, no. 1, July 2000, pp. 434–
444.

[26] ——, “Applications of beamlets to detection and extraction of lines,
curves, and objects in very noisy images,” in Proceedings of Nonlinear
Signal and Image Processing, June 2001.

[27] ——, “Beamlab and reproducible research,” International Journal of
Wavelets, Multiresolution and Information Processing, vol. 2, no. 4,
pp. 391–414, 2004.

[28] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” Journal of the ACM
(JACM), vol. 34, no. 3, pp. 596–615, 1987.

3512

