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Abstract— We present a robust plane finding algorithm that
when combined with plane-based frame-to-frame registration
gives accurate real-time pose estimation. Our plane extraction
is capable of handling large and sparse datasets such as
those generated from spinning multi-laser sensors such as the
Velodyne HDL-32E LiDAR. We test our algorithm on frame-
to-frame registration in a closed-loop indoor path comprising
827 successive 3D laser scans (over 57 million points), using no
additional information (e.g., odometry, IMU). Our algorithm
outperforms, in both accuracy and time, three state-of-the-art
methods, based on iterative closest point (ICP), plane-based
randomized Hough transform, and planar region growing.

I. INTRODUCTION

Although significant progress has been made in recent
years towards 6D simultaneous localization and mapping
(SLAM) for point cloud data [1] [2] [3], frame-to-frame reg-
istration, a critical step in many SLAM algorithms, remains
both a challenge and a significant bottleneck for real-time
implementations. The typical approach of using some variant
of iterative closest point (ICP) to solve for the transformation
between successive frames lacks speed as the number of
points increases and lacks accuracy as the density decreases.
We propose a 3D plane extraction algorithm, capable of
working on large sparse point clouds, that when combined
with a plane-to-plane based registration method, provides
accurate real-time frame-to-frame registration.

Such registration becomes particularly important when
odometry is either inaccurate or unavailable, such as when
the sensor is mounted on a bipedal robot or carried by a hu-
man. In this paper, we perform registration on data captured
from a Velodyne HDL-32E LiDAR sensor, which provides
distance measurements 360◦ horizontally and 40◦ vertically
(using 32 lasers rotating around a vertical axis). Velodyne
sensors have marked a turning point in many robotics
applications by providing 3D point cloud data at a high
refresh rate (10-15 Hz) and long range (50-120 meters). They
have been successfully deployed in landmark events such
as the DARPA Grand Challenge [4] and Urban Challenge
[5], and are now used on a growing variety of autonomous
vehicles and robots [6]. However, because the point cloud
data generated by these sensors is only dense along the
azimuthal direction (figure 1), it has proven difficult to
apply standard point cloud registration algorithms, which
usually assume uniformly dense data. Hence, thus far, many
applications have required that Velodyne data be assisted
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Fig. 1: An example of data captured using a spinning multi-
laser sensor (in this case a Velodyne HDL-32E). Note the
rapidly increasing sparsity of points as distance from the
origin increases.

with odometry to guide frame-to-frame alignment, which is
problematic for humanoid robotics. Here, we carry the sensor
on a backpack, and we show that our new algorithm can
perform frame-to-frame registration with speed and accuracy
beyond the state-of-the-art.

Our main contribution is to derive a novel Hough-based
voting scheme for finding planes in 3D point clouds. Cor-
respondence between extracted planes from frame to frame
is then computed using a simple thresholded nearest plane
algorithm. The affine transform between two successive sets
of corresponding planes is computed using a decoupled op-
timization, where the translation component is approximated
in the least squares sense, and the rotation is determined via
Davenport’s Q-method. Testing on a large dataset suggests
superior performance compared to three state-of-the-art ap-
proaches.

II. PREVIOUS WORK

Substantial previous work has been described on the
problems of both frame-to-frame registration as well as 3D
plane extraction. Two approaches of particular interest to our
discussion are ICP-based methods and plane-to-plane based
methods. We describe the challenges which these existing
methods face when dealing with data from sensors such as
the Velodyne HDL-32E.

A. ICP Approaches

Possibly the most prevalent method for performing frame-
to-frame correspondence in point clouds is ICP [7]. Origi-
nally designed to register dense point sets between two scans
of an object, the ICP algorithm aligns two sets of points iter-
atively, where each iteration consists of first finding the best



point-to-point correspondences, and then computing a rigid
transformation between all corresponding pairs of points.
Some variations on point-to-point ICP include point-to-plane
[8], which minimizes error along local surface normals, and
Generalized ICP [9], which exploits local planar patches in
both the source and target scans.

When dealing with large numbers of points, it is common
for ICP algorithms to take either a random subsampling of
points or to voxelize the data to reduce the computational
burden. This can come at a cost of decreased accuracy,
as fewer points are used to constrain the transformation
between pairs of clouds. There has also been considerable
effort to speed up ICP-based approaches through hardware
optimization, such as GPGPU acceleration [10] [11] [12],
multithreading [13], and sophisticated data structures [14].

Very few ICP-based solutions have been shown to work
(without the aid of odometry or other additional guidance) on
data acquired from Velodyne-style sensors, where the point
clouds are very sparse in at least one dimension. A major
issue with point-to-point ICP approaches is that sparse scan-
lines on horizontal planes may not reflect the same physical
points from one scan to the next. The spacing between
scan-lines increases dramatically as distance from origin
increases, making it very unlikely that a meaningful point
correspondence can be made on these scan-lines from frame
to frame. Although the region near the origin is considerably
more dense, it is often the case that it does not cover enough
physical area to properly constrain registration. With point-
to-plane approaches, an additional difficulty lies in accurately
and rapidly estimating normals from the sparse data.

B. Plane Approaches

There is an expanding literature on plane finding algo-
rithms for point clouds, which, when coupled with frame-to-
frame techniques such as that presented in [15], can provide
accurate pose estimation. These plane finding techniques can
coarsely be categorized into Hough-based, region growing,
or RANSAC-based approaches.

Hough-based methods utilize a buffer in which votes for
candidate planes are accumulated. An excellent comparison
of many such methods is available in [16]. The randomized
Hough transform (RHT) method for plane extraction is
one of the most efficient, working iteratively by randomly
selecting three points in a cloud, fitting a plane to them,
and voting for that plane in the accumulator. When the
sum of accumulated votes for a particular plane passes
some threshold, all points that lie close to that plane are
removed from the cloud, reducing the search space for future
iterations. While this approach works well with dense point
clouds, as the samples on planes become more sparse, the
probability of detecting these planes decreases.

Region growing approaches [17] [18] exploit the structure
of the sensor’s raw data by working on range images or on
rasterized versions of the point cloud. By starting at a given
point and expanding outwards (often along scan-lines), plane
parameter estimates are updated until adding new points
would violate the online estimate. Here again sparsity in

one dimension is problematic, especially for rasterization.
In addition, these approaches are not directly applicable
to Velodyne data because of the underlying assumption
that scan-lines on planes produce linear segments, whereas
Velodyne scan-lines are conics (figure 2).

Finally, RANSAC [19] based methods either attempt to
directly fit planes [20], or merge higher-level analysis to
find better fits [21] [22]. Sparseness in one direction is also
a challenge for these methods, which additionally suffer in
real-time applications because of their high computational
cost.

III. FINDING PLANES

Our plane finding algorithm exploits knowledge about the
sensor to first, on a scan-line basis, find and group all points
that arise from planar surfaces. Each of these groups of points
then casts weighted votes in a Hough accumulator for all
possible planes that could explain them. The planes that pass
thresholding the accumulator are refined in a final filtering
step. We utilize the following notations:

n, ~n, ~̂n, a scalar, a vector, a unit vector
M , M+ a matrix, its Moore-Penrose pseudo-inverse
p, pn, ps a plane, its normal form, its spherical form

Here, pn
4
= [ ~̂n ρ ], where ~̂n is the plane normal, and ρ is

distance from the plane to the origin along ~̂n. ps
4
= [ θ φ ρ ]

where θ is the azimuthal angle in the x-y plane, and φ is the
inclination angle.

A. The Sensor

Before discussing how we find points on planar surfaces,
it is useful to know the structure of data captured by rotating
multi-laser sensors. The Velodyne HDL-32E LiDAR sensor
consists of 32 lasers in inclinations ranging from +10.67◦ to
-30.67◦ (approximately 1.33◦ angular resolution), which
rotate a full 360◦ (approximately 0.16◦ angular resolution)
at 10Hz to provide depth measurements from one to seventy
meters away. The sensor generates 700,000 points per sec-
ond, which corresponds to 70,000 points per full revolution,
or close to 2,200 points per laser.

As the sensor head spins, each laser gives a high horizontal
density of points, but the spacing between successive laser
scan lines causes an increasing sparsity of information as
distance from the sensor increases. Although there is also an
increase in sparsity in single laser scans as depth increases
(adjacent points become farther apart), it is much less severe
than that caused by the low vertical angular resolution of
the sensor. As mentioned above, this inequality in angular
resolution causes many traditional point cloud registration
algorithms to work poorly on data generated from rotating
multi-laser sensors.

B. Finding Points on Planes

The first step in the plane extraction algorithm is to find
all points in the point cloud which originate from planar
surfaces. To do this, we look at each laser scan independently
and exploit some simple geometry: the intersection of any
single rotating laser, which forms a cone in space, with any



(a) Perspective view of laser cones (red and blue) intersecting
an actual, physical vertical plane (green).

(b) Frontal view (through
plane) of laser scan-lines
(black) intersecting the
physical plane (green).

(c) Side view of laser intersec-
tion (black) through physical
plane (green) with error bars
(red) for depth measurement.
Purple shaded area shows pos-
sible plane parameterizations
for each laser that could gen-
erate the physical plane given
the sensor noise.

Fig. 2: The physical design of the sensor causes it to create
virtual laser cones as it sweeps each of its lasers through θ
(2a). When a plane intersects one of these cones, it generates
a conic section of varying curvature depending upon the
inclination angle of the sensor and the relative orientation of
the plane. (2b). Since the variance of depth measurements, σ,
is known, sections of higher curvature lead to more certainty
in detected orientation of the plane (2c).

possible plane in the world, forms a conic section (figures 2a
and 2b). This conic can be seen by looking at the 1D signal
corresponding to depth measurements from an individual
laser.

An ideal solution would be to find and fit all possible
conics to this signal - conic sections with higher curvature
correspond to more confident evidence of planes with a
particular orientation, and those with lower or no curvature
have much greater uncertainty about the possible planes
that generated them (figure 2c). Unfortunately, finding and
fitting general conics to unpartitioned data is neither easy
nor fast when dealing with thousands of points [23]. As a
fast approximation, we look for regions in the signal which
correspond to smoothly varying segments that could possibly
belong to a conic.

1) Finding Breaks: Approximate conic sections in each
laser’s 1D signal, dφ(θ), are found by detecting points that
break the signal into smooth and non-smooth groups of
measurements. This is done using simple filtering operations:

a Gaussian kernel smoothes the input signal, and a gradient
filter takes several spatial derivatives: dφ(θ)′, dφ(θ)′′, and
dφ(θ)

′′′. The Gaussian is parameterized by:

G(x) =
1

σ
√
2π
e−x

2/2σ2

(1)

where we choose σ = 2 cm to match the variance of our
sensor. For computing the gradient we use a simple gradient
filter: ∇ = [−1 1 ].

Breakpoints are placed at zero crossings of dφ(θ)′ and
zero crossings of dφ(θ)′′′ that have sufficiently high dφ(θ)′′.
Many corners caused by distinct planes feature a nearly
smooth transition of depth values, but will be caught as a
local extrema in dφ(θ)

′. Although noisy, zero crossings in
dφ(θ)

′′′ can be used to find points where the difference in
depth changes abruptly, corresponding to different surfaces
in the world. We utilize a threshold parameter, td′′ , to enforce
that only zero crossings of the the third derivative that had a
second derivative value greater than td′′ are considered break
points. This helps compensate for the sensor noise amplified
by taking dφ(θ)′′′. In practice this parameter does not need
to be adjusted and we have used a value of td′′ = 0.01 for all
data. As a general rule, we aim to over-segment the signal
since under-segmentation leads to overly confident incorrect
initial plane estimates.

2) Creating Groups: Once breakpoints are extracted from
each laser scan, we place points into groups such that the
set of planes to which each group could belong can be
calculated. A collection of points between two breakpoints is
considered a valid group if it contains at least some minimum
number of points, #p, which we set to 15 (an angular
resolution of 2.4◦). This constraint enforces a minimum size
of planar segments and prevents overly noisy (outlier) points
from being considered. This constraint also gives stability
to the group centroid, ~c, which is used during the voting
procedure.

For each group, we find its principal components through
the eigenvector decomposition of its points’ covariance ma-
trix. From this decomposition, we define the following:

~̂v3 the principal eigenvector
~̂v1 the eigenvector corresponding to the smallest

eigenvalue
c the curvature of the group
λi the eigenvalues of the decomposition
~̂v3 corresponds to the dominant direction of the group of

points, which by convention we enforce to point in a clock-
wise direction relative to the sensor origin. ~̂v1 corresponds
to the direction of least variation amongst the points, which
we expect to correspond to the plane normal of the actual
surface generating these points. However, when the curvature
c
4
= λ1+λ2

λ1+λ2+λ3
is low, our uncertainty over ~̂v1 becomes high.

Groups that are close to each other within a small distance
threshold tg and pointing similar directions ( ~̂v3i · ~̂v3j < td)
are merged and their decomposition is re-evaluated. In the
next step, we use these values to vote for plane distributions
for each group.



Fig. 3: A set of planes through the blue line (drawn here
coming out of the page) as derived from equation 2.

C. Accumulator

To robustly detect planes, we use an accumulator frame-
work similar to that utilized in the randomized Hough
transform. During the accumulation step, we represent planes
p with their spherical representation ps. This representation
is more compact than the pn form, although this comes at
the price of singularities when φ is equal to ±π2 . These sin-
gularities can be handled by ensuring that all possible plane
parameterizations, which span the unit sphere, are equally
accounted for in the accumulator. This is accomplished by
using the ball accumulator of [16], which varies the number
of θ bins depending on the angle φ such that the bins are
uniformly sized. The accumulator is parameterized by the
maximum number of bins per dimension, #θ, #φ, and #ρ.

D. Voting

For each group in a scan, we need to find a parameteri-
zation for the set of all planes that contain that group (see
figure 3 for an illustration). This is done by finding all planes
that could cause the vector ~v3 centered at the group centroid
~c. To ensure that we do not double vote for any particular
plane given our accumulator quantization, we need to solve
for the θ and φ parameters of each plane as we step through
the most dense dimension of the accumulator, ρ. To do so,
we arrange the following under-constrained linear equation
using the pn parameterization:[

cx cy cz
v3x v3y v3z

]
︸ ︷︷ ︸

A

 nx
ny
nz


︸ ︷︷ ︸

~x

=

[
−ρ
0

]
︸ ︷︷ ︸

~b

(2)

where ~c is the centroid of the group.
Any solution to this equation will be of the form

~n =
{
α~j + ~k : ~j ∈ Null(A), A~k = ~b

}
(3)

and so we solve for ~n by first finding any solution to equation
2 by using the Moore-Penrose pseudo-inverse of A:

~k = A+ +
(
I −A+A

)
~w (4)
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Fig. 4: Voting strength as a function of group curvature and
normal similarity. The x axis denotes normal similarity, while
the y axis denotes vote strength. The various colored curves
represent different levels of curvature.

where ~w is any vector. We need only unit length normals,
and so we solve for α with the following quadratic equation:

1 =
∥∥∥~j + α~k

∥∥∥
2

(5)

which gives the following two solutions:

~̂n(ρ)± =

~j · ~k ±

√
(~j · ~k)2 −

∥∥∥~k∥∥∥2(∥∥∥~j∥∥∥2 − 1

)
∥∥∥~k∥∥∥2 (6)

Once we have two solutions, we find corresponding θ and
φ by converting ~̂n(ρ)± into spherical coordinates.

We then vote in the accumulator for these two planes,
weighting the votes according to group’s curvature c, its
smallest eigenvector ~̂v1, and the calculated ~̂n(ρ)±. When the
curvature is high, we trust that the group’s ~̂v1 accurately
describes the normal of the physical plane generating the
group (figure 2); thus we form a weighting function such
that in cases where curvature is high, we penalize normals
that are not similar to ~̂v1, whereas in cases where curvature
is low, we give all possible normals equal weight (figure
4). We model this relationship using a linear combination
of a line and a sigmoid (here we use a Kumaraswamy CDF
[24] because of its convenient parameterization), where the
mixing is defined by the curvature of the segment:

s = c(1− (1− (~̂v1 · ~̂n(ρ)±)2)3)+
(1− c)(c(~̂v1 · ~̂n(ρ)±) + 0.85− c)

(7)

E. Peripheral Planes

When an initial plane detection arises from points belong-
ing to a planar patch that is far away from the sensor and not
tangent to any laser, small perturbations in depth give rise to
large changes in the estimated normal. This is because of our
plane parameterization and the choice to use infinite planes.
Since the plane normal vector always connects the origin
with the closest point on the infinite plane, small angular
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Fig. 5: An illustration of the perturbation of some vector ~v3
to account for noise. O is the sensor origin and C is the
centroid of the group. ~v3 is the dominant eigenvector of the
group, which generates a normal of length ρ with the origin.
Rotating ~v3 about the global Z axis creates a new vector ~v3R.
We seek this rotation amount given the new desired distance
for the normal connecting the origin and ~v3R, denoted by ρi.

changes in the plane become large distances when occurring
at the periphery.

We compensate for this error by making small rotational
perturbations to a group’s ~v3 vector about the global Z axis
up to some maximum amount, ±η, dependent on the sensor
noise model. Rotating the vector about the Z axis captures
most of the variation caused by noisy depth readings (since
the variance of LiDAR measurements is usually dominated
by the depth measurement, we consider the worst case
rotational difference to ~v3 two adjacent point measurements
can cause when perturbed in depth).

After each of these perturbations is made, the entire
voting process is repeated with the new ~v3R. This additional
voting, which creates entries in the accumulator around the
original vector’s entries, makes it more likely groups on
the same distant peripheral plane share votes. Without this
step small perturbations to groups arising from the same
planar patch can cause them to vote for entirely different
bins in the accumulator. See figure 5 for an illustration of
the perturbation.

Much like during voting, we would like to be able to step
through our ρ dimension as we rotate the original ~v3. Given
this desired ρi, we must solve for the amount of rotation, ηi,
that would generate a vector ~v3R with a normal of length
ρi. To solve for this, we can take advantage of the definition
of the dot product:

cos(ω) = Rz (ηi) ~̂v3 · ~̂c (8)

where Rz (ηi) is a rotation about the global Z axis by ηi and
we have observed that ~v3R = Rz (ηi)~v3. cos (ω) is known
since we know all lengths of the right triangle created by ~c,
~v3R, and their normal vector (which has length ρi).

Simplifying this equation yields:

sin(ηi)α+ cos(ηi)β = γ (9)

where α = ĉy v̂3x − ĉxv̂3y, β = ĉxv̂3x + ĉy v̂3y, and γ =

ĉz v̂3z. The ĉi and v̂3i refer to specific components of ~̂c and

~̂v3. This gives four possible solutions for ηi; if any one of
these solutions results in a rotation within the bounds of ±η,
we perform full voting on the resultant ~v3R. Once we have
exceeded ±η by both increasing and decreasing ρi, we move
on to another group.

F. Filtering and Refitting

Once all groups have voted for their possible planes, we
threshold the accumulator by keeping all bins which pass
some value, ta, and discarding the others. This reduces the
potential number of planes (depending upon environment
- usually on the order of 100,000) to a significantly more
manageable amount (on the order of 100 or 1,000). These
remaining planes fall into two categories: 1) clusters of good
planes, and 2) false positives. The vast majority of these
planes will be clusters of good planes, with the size of the
clusters depending upon ta, which is kept as small as possible
to permit planes with weak evidence to form clusters. In an
ideal case of no noise, these clusters would collapse onto the
true planes and the accumulator threshold would be sufficient
to filter out false positives. Since real data is noisy, a small
amount of empirically derived filtering is necessary to reduce
the number of planes down to the correct amount (usually
on the order of 10).

We filter these remaining planes to simultaneously com-
bine clusters and remove erroneous detections by performing
the following in order:

1) Linearity Filtering: All candidate planes that were
voted for by less than two rows are removed. This prevents
any single laser from defining a candidate plane and is
designed to remove purely erroneous plane detections that
survive the accumulator threshold (e.g. consider the same
low curvature scan-line as it goes along a corner - there will
be more evidence for a false horizontal plane than for either
of the vertical planes).

2) Splitting: Individual planes are split apart by finding
clusters of groups within the set of all groups that voted
for the plane. A cluster is defined by the set of all groups
whose ~̂v3 vectors’ dot products is greater than zero and
whose points are at most tsplit apart. The former constraint
prevents groups from forming on opposite sides of the sensor
(keeping in mind our clockwise convention of section III-
B.2), while the latter creates distinct planar patches for
coplanar surfaces. Once clusters are formed, planes are re-
fit to their corresponding points. Clusters that do not meet
a minimum number of groups, #split, are discarded. This
splitting procedure removes planes with insufficient support
and causes the remaining planes to have spatially localized
groups.

3) Merging: After splitting apart groups, we perform a
merging of similar planes. For each group, we go through
all of the planes that it voted for and try to find the maximal
mode for the distribution of normals. We then remove any
planes that are too far from this mode (normal dot product
less than tmerge). We next merge planes that are nearby by
finding those that voted for the same set of groups. To do so,
we formulate a graph with nodes representing each candidate



Parameter Category Value
tg Creating Groups (III-B.2) 3.0 cm
td Creating Groups (III-B.2) 0.8
#θ Accumulator (III-C) 180
#φ Accumulator (III-C) 90
#φ Accumulator (III-C) 600
η Peripheral Planes (III-E) 2◦
ta Filtering (III-F) 1.0

tsplit Splitting (III-F.2) 0.9
#split Splitting (III-F.2) 2
tmerge Merging (III-F.3) 0.9
tdist Registration (IV) 2.0 cm
tdot Registration (IV) 0.5

TABLE I: List of parameters (and the locations of their
descriptions) used during our evaluation. Although the al-
gorithm has many parameters, in practice these are quite
stable for different environments and can be reasoned about
intuitively (e.g. dot products thresholds can be though of as
similarity ratios).

plane. Two nodes are connected with an edge if any given
group voted for both planes. Once the graph is formed, all
connected components within it are computed, and all planes
in each component are replaced by a single plane fit to the
union of all points covered by the groups in that component.

4) Growing: As a final refinement step, we grow regions
over the points in each plane outwards until either the
distance between consecutive points is too great, or the
distance from the point to the plane is too high. Once
this new set of points is found, a final least squares fit is
performed according to the formulation of [25] to find the
final plane parameters, as well as the covariance and Hessian
of the plane. Region growing is merely a refinement step that
allows us to consider points which were excluded during
group formation.

IV. REGISTRATION

For plane registration we utilize the frame-to-frame ap-
proach described in [25]. This approach decouples the solu-
tions for rotation and translation, and computes them using
efficient closed-form solutions. However, because the data
rate of our sensor is very high and our relative translation
between scans is low, we use a much less complex correspon-
dence solver. To find correspondences between planes, we
simply find the planes pna and pnb such that ‖ρa~̂na−ρb~̂nb‖
is minimized, and the following two constraint equations are
satisfied:

~̂na · ~̂nb > tdot (10)

|ρa − ρb|
(ρa + ρb)

< tdist (11)

which enforce that matched planes are close together and
nearly parallel to each other.

V. EVALUATION

We evaluate our plane finding algorithm within the con-
text of a pure frame-to-frame registration problem with
no odometry or IMU assistance. Plane-to-plane registration
requires well estimated planes to achieve good results; not
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Fig. 6: Paths generated by frame-to-frame registration using
our approach (blue) and ICP (red) as the sensor was walked
on a backpack rig around an indoor 11m per side square
hallway (green).

having enough planes to constrain rotation or translation, or
having consistent erroneous planes, quickly leads to massive
errors in pose estimation. We compare against the Slam6D
ICP implementation in 3DTK [26] as well as two other
plane extraction algorithms plugged into our plane to plane
registration framework: randomized hough transform [16],
and a region growing approach [17]. Parameters used during
evaluation can be seen in table I.

A. Dataset

We evaluate all algorithms on a dataset collected from
an indoor office environment. A perfectly square (11.1m2)
closed path through a hallway is taken by a human walking at
a normal pace through the environment. Though the sensor
is rigidly affixed to the backpack, its high center of mass
causes it to sway during movement, exacerbating the motion
induced by walking. The sensor is mounted at a 10◦ tilt,
such that the forward viewing angle goes from +0◦ to -40◦,
and the rear viewing angle from +40◦ to -0◦ in the vertical
direction.

Results for the path reconstruction are shown in figure
6. Although the RHT and region growing approaches were
occasionally able to achieve accurate frame-to-frame regis-
tration over small segments, they had so many catastrophic
registration failures that their paths are not shown in the
figure. In the case of RHT, these failures occurred due to
lack of constraint by missing important planes in front of



(a) Our algorithm (b) Randomized Hough Transform (c) Region Growing

Fig. 7: An example frame from our dataset which shows the weaknesses of two popular plane extraction algorithms compared
to our approach. Note that while the Randomized Hough Transform (b) does a good job of detecting the side walls and
floors, it misses the ends of the hallway which leads to an under-constrained registration problem. While region growing (c)
finds more planes than RHT, it struggles with the disparate sparsity of the data, ultimately leading to poor plane estimation
and under-constrained registration.

Method Frame Time (ms) Distance Traveled (m) Final Error (m)
Ideal 100 44 0

Our Method 46 44.228 0.625
ICP 463 / 192 24.072 3.398

Randomized Hough Transform 535 / 86 85.631 5.461
Region Growing 157 86.319 5.025

TABLE II: Evaluation metrics from the discussed data set. For each method, we show the average frame time, the total
distance traveled, and the final error between the start point and end point. For reference, the first row shows the ideal values
for each metric. Note that both ICP and the Randomized Hough Transform rows have two frame times listed. The first ICP
time was recorded using a single thread, while the second was recorded while using all 12 cores of the test machine. The
first Randomized Hough Transform time was recorded with the stock algorithm from 3DTK [26], while the second version
uses a custom vectorized random number generator.

and behind the sensor, at the far ends of hallways (figure
7b). In the case of region growing, the approach found many
erroneous planes due to its inability to cope with the conic
nature of scan-lines captured by the sensor (figure 7c). Our
plane finding algorithm produced no false planes on this
dataset and missed sufficiently few planes that accurate path
reconstruction was achieved (figure 7a).

ICP had fairly good rotation estimation largely due to the
high horizontal density of points collected from our sensor.
However, the increasing sparsity of scan-lines as distance
from the origin increases gave ICP some trouble estimating
accurate translations. The overall drift in rotation for ICP is
quite small, but the translation is off by a significant amount.

The overall results for all algorithms is presented in table
II. Timing was evaluated on an Intel Core i7 X990 with
12Gb of memory. All algorithms were single-threaded unless
denoted otherwise.

VI. DISCUSSION AND CONCLUSION

The proposed approach was developed to directly exploit
the particular structure present in point clouds generated by
rotating multi-laser sensors. As mentioned in the introduc-
tion, these sensors have become very popular in recent years,
thanks to their ability to capture the entire 3D surroundings

of a robot at a high frame rate. However, until now robust and
efficient algorithms for frame-to-frame registration without
assistance of odometry or other sensors has not been avail-
able. We believe that our success in designing and validating
a plane-based approach that exploits rather than suffers from
the geometry of the sensor opens promising new research
and application opportunities in robotics.

In testing, we found that the algorithm was successful in
detecting many small planar regions accurately and reliably.
This is critical for frame-to-frame registration. Future ex-
tensions of this algorithm include integrating it into a real-
time SLAM framework. This would consider each planar
patch found by our algorithm as probabilistic evidence for
a real physical structure in the world, which should help
address any merging not handled by the filtering, as the
SLAM algorithm progressively converges towards a coherent
model of the world. Another interesting future direction is
to explicitly consider the degenerate cases when the frame-
to-frame matching becomes under-constrained, for example
by triggering a helper custom ICP-based matcher along the
degenerate dimensions in these situations. This could help
the algorithm work in less structured environments.



Future evaluations will explore outdoor structured envi-
ronments, though this will require a more rigorous ground
truth scheme. Initial testing in such environments has been
very encouraging.
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hough transform for plane detection in point clouds: A review and a
new accumulator design,” 3D Research, vol. 2, no. 2, pp. 1–13, 2011.

[17] K. Georgiev, R. T. Creed, and R. Lakaemper, “Fast plane extraction
in 3d range data based on line segments,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on, Sept.,
pp. 3808–3815.

[18] G. Vosselman, B. G. Gorte, G. Sithole, and T. Rabbani, “Recognising
structure in laser scanner point clouds,” International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 46, no. 8, pp. 33–38, 2004.

[19] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[20] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

[21] S.-Y. An, L.-K. Lee, and S.-Y. Oh, “Fast incremental 3d plane
extraction from a collection of 2d line segments for 3d mapping,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, Oct., pp. 4530–4537.

[22] O. Gallo, R. Manduchi, and A. Rafii, “Cc-ransac: Fitting planes in
the presence of multiple surfaces in range data,” Pattern Recognition
Letters, vol. 32, no. 3, pp. 403–410, 2011.

[23] X. Yang, “Curve fitting and fairing using conic splines,” Computer-
Aided Design, vol. 36, no. 5, pp. 461 – 472, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010448503001192

[24] “A generalized probability density function for double-bounded
random processes,” Journal of Hydrology, vol. 46, no. 12, pp. 79 –
88, 1980. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0022169480900360

[25] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga, “Fast registration
based on noisy planes with unknown correspondences for 3-d map-
ping,” Robotics, IEEE Transactions on, vol. 26, no. 3, pp. 424–441,
June.

[26] A. G. J. U. Bremen) and K.-B. S. G. U. of Osnabrck), “3dtk - the 3d
toolkit,” Mar. 2012. [Online]. Available: http://slam6d.sourceforge.net

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://www.sciencedirect.com/science/article/pii/S0010448503001192
http://www.sciencedirect.com/science/article/pii/0022169480900360
http://www.sciencedirect.com/science/article/pii/0022169480900360
http://slam6d.sourceforge.net

