
  

  

Abstract—New smartphone technologies are emerging which 
combine head-mounted displays (HMD) with standard 
functions such as receiving phone calls, emails, and helping 
with navigation. This opens new opportunities to explore cyber 
robotics algorithms (robotics sensors and human motor plant). 
To make these devices more adaptive to the environmental 
conditions, user behavior, and user preferences, it is important 
to allow the sensor-equipped devices to efficiently adapt and 
respond to user activities (e.g., disable incoming phone calls in 
an elevator, activate video recording while car driving). This 
paper hence presents a situation awareness system (SAS) for 
head-mounted smartphones.  After collecting data from inertial 
sensors (accelerometers, gyroscopes), and video data (camera), 
SAS performs activity classification in three steps. Step 1 
transforms inertial sensor data into a head orientation-
independent and stable normalized coordinate system. Step 2 
extracts critical features (statistical, physical, GIST). Step 3 
classifies activities (Naive Bayes classifier), distinguishes 
between environments (Support Vector Machine), and finally 
combines both results (Hidden Markov Model) for further 
improvement. SAS has been implemented on a sensor-equipped 
eyeglasses prototype and achieved high accuracy (81.5%) when 
distinguishing between 20 real-world activities. 

 

I. INTRODUCTION 

Head mounted displays (HMDs) embedded in eyeglasses are 
the next innovation along the path of communication 
techniques. Such devices are hand-free systems. Although 
this is not a new idea, currently released and commercially 
available products (such as the Project Glass by Google) 
show the immense potential of this technology. They 
function as stand-alone computers; their light glass frame is 
equipped with a variety of sensors; a projector displays 
images and information onto the eye. While wearing these 
eyeglasses, the user is continuously exposed to the displayed 
information. To avoid bombarding a user with unwanted 
clutter, a management system is required. This management 
system identifies important messages (e.g., phone calls, email 
popups) that are relevant to a user’s situation. To evaluate the 
importance of a message, however, knowledge of the user’s 
activity is essential. Thus the challenge of this paper is to 
present an effective approach to classify activities from 
sensor data of the eyeglass frame. The data is recorded by a 
sensor cluster of IMU sensors (accelerometers, gyroscopes) 
and a camera. Beyond wearable smartphones, the proposed 
algorithms have potential applications for other types of 
embedded and robotics systems (e.g., sensors mounted on a 
robotic vehicle operating over different kinds of terrain). 

Although, the functionality of eyeglasses is similar to that 
of a smartphone, the interaction is often only limited to voice 
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commands. Instead of, e.g., rejecting messages each time via 
voice commands, the management system could 
automatically take over decision control in certain daily 
situations [Fig. 1]. Adapting these settings and filtering 
information will guarantee a high usability of the eyeglasses. 
Furthermore, logging classified activities throughout the day 
allows support for many other fields. One example is 
delivering activity information to health care programs for 
obesity prevention, treatment, or healthy life style 
recommendations [1].  

Figure 1.  Sample decisions of an individual profile of an eyeglass user 

Studies on activity classification have been demonstrated 
with a variety of sensors, mostly inertial sensors 
(accelerometer, gyroscope), but also in combination with 
pressure sensors [1] or a camera [9]. This paper also presents 
a multi-sensor approach that consists of an accelerometer, a 
gyroscope and a camera. 

Research on activity classification has been done by 
placing inertial sensors on various body parts: thigh, hip, 
waist, forearm, chest, lower back, knee, ankle, neck, or foot 
[1], but rarely head [4][5]. Most work claims that placements 
around the waist are the closest to the center of mass and thus 
better represent human motion and activities [5]. Most 
studies for this scenario were performed with small databases 
ranging from five to nine activities. Five activities were 
successfully recognized by a wrist-worn accelerometer 
(94.13 %) [7] and a waist-worn accelerometer (99.5%) [6]. 
Six activities achieved also good results with a pocket-worn 
(91.7 %) [10] and a belt-worn (82.8 %) [2] smartphone 
accelerometer. An IMU placed at the front hip was able to 
differentiate between nine activities (90%) [8]. Activities 
from large databases were performed with distributed inertial 
sensor networks (up to six sensor modules) with sensor data 
simultaneously collected from multiple body parts e.g. hip, 
wrist, arm, ankle, and thigh [5]. The most promising 
distributed sensor networks scored with almost 84% accuracy 
on 20 different activities [4]. An inertial sensor network 
combined with a camera succeeded with 61% on 29 kitchen 
activities [9]. For fewer activities (up to six) most of the 
sensor networks achieved results in the 85-95% range [4]. 
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Head placements are rare for activity classification, and have 
only been used for detecting falls and measuring balance 
during walking [5]. One possible reason is that sensor data is 
strongly affected by variations of head orientation. However, 
when effectively compensated for head movements, sensor 
data from eyeglasses have one significant advantage over 
other body placements: People are wearing eyeglasses with 
only slight position variations. Smartphones, however, can be 
put into the right or left pocket, in a purse or backpack. For 
daily use, sensor-equipped clothes or shoes are less practical 
because they are often changed. Eyeglasses are convenient 
particularly for people wearing prescription eyewear anyway. 
Furthermore, eyeglasses are self-contained and do not need a 
wired or wireless connection to sensors distributed all over 
the body, such as sensor networks do. The approach 
presented in this paper is also an eyeglass solution, but it has 
a set of unique contributions: (1) a face-mounted design of a 
sensor cluster to record sensor data, (2) an effective 
compensation technique for head movements, (3) the 
identification of critical features, (4) a large database with 
previously identified activities, (5) a classification technique 
to use the above ideas to classify and learn future activities in 
a short time. 

II. THE SAS APPROACH 

(1) Placement and design of the sensor cluster 
The head placement has certain benefits when recording data 
with a sensor cluster. From a view point of inertial sensors, 
the head captures full-body motions (e.g. walking, jogging) 
with similar results as other body parts. Part-body motions 
(e.g. washing dishes, eating) can only be captured indirectly. 
When measuring part-body motions, the sensors actually 
record small counter-motions of the head. These counter-
motions appear when the upper body compensates for lower 
body movements (e.g. lifting a hand). This is the reason why 
also part-body motions can be observed with inertial sensors. 
From the view point of a camera, the head is an optimal 
location to collect activity data. The camera is mostly 
directed to where the eyes pay attention to and do not have to 
deal with occlusion problems (such as smartphones in 
backpack, pocket, or purse). From an ergonomic point of 
view, the eyeglasses allow a very comfortable and easy daily 
use. Both IMU sensors and camera are integrated in the left 
earpiece of our prototype IMU+Camera eyeglasses [Fig 2].  

Figure 2.  Design of the eyeglasses. The sensors are attached to the left 
earpiece  

The design of the eyeglasses is reduced to two minimum 
necessary sensors to classify an activity: A Pololu MinIMU-9 
v2 Inertial Measurement Unit captures activities via 
accelerometer and gyroscope. A 160x120 pixels camera 
records images of the environment to put classified activities 
into the right contextual setting (e.g. indoors, outdoors). 

(2) IMU data transformation into stable coordinate system 

One contribution of SAS is to extract features that are not 
affected by the orientation of the head or the exact placement 
of the glasses on the head. When a person performs a head 
movement, the local sensor coordinate system will change 
accordingly. The key idea of the SAS approach is to keep the 
sensor data in a coordinate system that will stay stable even 
when the head moves. Thus the sensor data needs to be 
transformed from its dynamic local sensor coordinate system 
into a normalized coordinate system. This normalized 
coordinate system is defined as the x-axis pointing out of the 
eye, the y-axis points out of the right ear and the z-axis points 
vertically down. The normalized coordinate system 
compensates for any head orientation variation in roll and 
pitch angle, but ignores the yaw angle. The reason for 
ignoring the yaw angle is that the direction in which an 
activity is performed is not relevant. For example, walking 
north-bound (yaw = 0°) should result in the same as walking 
south-bound (yaw = 180°). When variations in roll and pitch 
angle happen, the accelerometer data will be significantly 
affected by gravitational acceleration. One can walk with the 
head facing up, down, or tilted to the side [Fig. 3]. 

 
Figure 3.  Sensor data from any head orientation is transformed in a stable 
normalized coordinate system  

The local sensor coordinate system will change its 
orientation along with the head orientation. Particularly 
accelerometer data will be influenced by different head 
orientations [Fig 4].  

 
Figure 4.  Sequences of walking with different head orientations.  



  

As a result, for example, statistical or physical features, such 
as mean, variance, or energy will show very different results 
for each head orientation. Most likely it will also influence 
the performance of the classifier. The transformation into a 
stable normalized coordinate system will eliminate this 
effect and will compensate for any head orientation changes.  
The physical idea behind the transformation is to use the 
gravity vector (g) as a static reference. This vector always 
points vertically down and aligns with the z-axis of the 
normalized coordinate system. The g-vector can be 
measured via the accelerometer. Furthermore, gyroscope 
input and fusion techniques (DCM Algorithm) are used to 
make the calculation of the g-vector very robust – even 
when measuring fast motion activities (e.g. jogging, 
running). When transforming, the z-axis of the local sensor 
coordinate system is rotated until aligned with the g-vector. 
In other words, it is now aligned with and transformed into 
the normalized coordinate system. As a result, the roll and 
pitch angle of the new coordinate system will be 0° at all 
times independent from the head orientation. Now the sensor 
data is completely invariant from the orientation of the head 
and prepared for feature extraction.  
(3) Identification of critical features 
Feature extraction is separately performed for inertial sensor 
data and video data. 
When extracting features from inertial sensor data, SAS 
differentiates between statistical and physical features. 
Statistical features are purely statistical operations (e.g. 
mean, variance) on sensor data. Physical features, however, 
are calculated from an equation with physical meaning (e.g. 
movement intensity, energy consumption). Previous research 
work uses either pure statistical features [9] or both 
statistical and physical features combined [8]. Feature 
extraction from video data is limited to one feature per 
image. Each feature is a large GIST vector that describes the 
context of a scene. 
(4) Creating an extendable database 
SAS must be trained with activities and types of 
environments in advance to classify them. First, one minute 
of inertial sensor data was recorded for each of the 20 
activities. 22-dimensional feature vectors were extracted 
from six second windows and stored in the activity database. 
Activities that are composed of many different motions (e.g. 
folding clothes) tend to widely spread out. Activities with 
one clearly defined motion (e.g. brushing teeth) mostly 
accumulate in small local areas [Fig.5]. In addition, SAS can  

 
Figure 5.  Dimension-reduced activity features displayed in 2D via 
principal component analysis. Each color represents a different activity 

easily extend the activity database. Each new activity 
requires only one minute of inertial sensor data, to calculate 
sufficient new features for classification. 
Second, 3000 images of video data of two types of 
environments were recorded (2100 indoors, 900 outdoors). 
A 512-dimensional GIST vector was extracted from each 
image and stored in the environment database [Fig. 6]. 

 
Figure 6.  Dimension-reduced environment database in 2D via principal 
component analysis with two classes (inside, outside) 

(5) Classification technique for activities 
First, a Naive Bayes classifier was trained with the activity 
database. It compares incoming activity features with 
database features and outputs a list of probabilities of 
matching activities. Second, a Support-Vector-Machine is 
trained with the environment database. It compares 
incoming environment features with database features and 
outputs the matching type of environment.  

III. THE MEASUREMENT IN DETAIL 

A. Overview 
SAS records IMU data with a frequency of 50 Hz, camera 
images with 2.5 Hz. Furthermore, the architecture can be 
structured in three major processing steps [Fig. 7]. Step 1 
prefilters sensor data and transforms it from a local dynamic 
coordinate system into the stable normalized coordinate 
system. Step 2 handles the feature extraction for both IMU 
and camera data. IMU data is segmented into windows, 
followed by the extraction of statistical and physical features 
from each window. For each image in the camera data, one 
GIST feature is calculated. Step 3 is performing 
classification (activities, environments) by using a network 
of multiple classifiers. The result of SAS is a list of activities 
with assigned probabilities. 

 
Figure 7.  Overview of the system architecture 



  

B. Steps in detail 
Transformation (only for IMU data) 
In the transformation step, the raw sensor data is first pre-
filtered (error-corrected, offset compensated, and resampled 
to a constant 100 Hz). Then, the data is transformed into the 
normalized coordinate system. The transformation is 
accomplished with the following two equations: 
 

 

 
 
 

When recorded in the local coordinate system, acceleration 
data is stored in the 3x1 vector asensor, with ax, ay, az 
representing the acceleration along the sensor axes. 
Gyroscope data is stored in the 3x1 vector !sensor, with !x, !y, 
!z defined as the angular velocities along the sensor axis. 

 
 
 
 
In the normalized coordinate system, transformed 
acceleration data is stored in anormalized with aX, aY, aZ 
representing the acceleration along the normalized 
coordinate axes. Gyroscope data is stored in !normalized with 
!X, !Y, !Z and is equal to the first derivative of the Euler 
Angles roll ", pitch #, and yaw $. 

 
In order to connect the sensor data vectors (asensor, anormalized) 
and (!sensor, !normalized), two transformation matrices Ra and 
R

!
 are required. Both are composed from basic rotation 

matrices: 
 

 
The transformation matrix Ra for transforming accelerometer 
data into normalized coordinates is derived as following: 
 
 

 
 
 
The transformation matrix R

!
 to transform gyroscope data 

into normalized coordinates is derived as following [13]: 
 
 
 
 
 
 
 
 
 
 

Once the transformation into the stable normalized 
coordinate system is performed, features are extracted from 
sensor data. 
Feature Extraction for IMU data 

In total, 22 features are extracted from inertial sensor data 
[Fig. 8]. Seven features (energy, periodicity) are created by 
transforming sensor data into the frequency spectrum via 
FFT (Fast Fourier Transformation). 
Figure 8.  Statistical and Physical Feature distribution 

Mean is used to measure the average acceleration and 
angular velocity for each sensor axis over one window 
length. Mean is larger for activities with strong body 
motions. Variance describes how far acceleration and 
angular velocity are spread out along an axis. Fast and wide 
motions are larger. Movement Intensity (MI) specifies the 

intensity of motions. Mean and variance of MI are calculated 
over one window [8]. Energy describes the motion quantity 
[8]. Ei measures the energy for each axis; E is the energy 
over the entire system. Parameters are N (number of samples 

per window length), Mai (discrete FFT component 
magnitude of acceleration along the axis i), f (frequency), 
and F (maximal frequency of window). Energy 
Expenditure (EE) is also known as the normalized signal 

magnitude area [8] and describes the amount of energy used 
for an activity. T is specified as the time of one window. 
Periodicity (fpeak) detects recurring motions. fpeak determines 

the highest dominant frequency for an axis i. Parameters are 
M

!i (discrete FFT component magnitude of angular velocity 
along the axis i), c (minimum required magnitude threshold) 
to avoid noise peaks. 
 
Feature Extraction for video data 
Camera data is processed with a GIST descriptor for scene 
recognition provided by A. Torralba from MIT [11]. For 
each image, one 512 dimensional GIST feature is calculated.  
 
Classification 



  

SAS uses the extracted features to classify a situation. A 
situation is specified by an activity and an environment. For 
this reason, the classification process is split into three parts. 
First, a Naive Bayes classifier distinguishes activities by 
analyzing inertial data. In parallel, a Support Vector 
Machine (SVM) classifies between environments via video 
data. Finally, both results are combined in a Hidden Markov 
model (HMM) to further improve the activity classification. 
The Naive Bayes Classifier (activity classification) is 
trained with one minute of training data per activity. This 
training data is divided into 10 training windows – each 6 
seconds. A Naive Bayes Classifier only requires a relatively 
small amount of training data to estimate its two internal 
parameters (mean, variance) for classification. The SVM 
(environment classification) is an effective classifier for high 
dimensional data [8][12]. SVM is trained with GIST features 
of 1680 images (1260 indoors and 420 outdoors). The 
HMM combines both classification results (activities, 
environment) and used as observation inputs in the HMM. 
The number of possible observations (40) is the amount of 
activities (20) times the amount of environments (2) [Fig. 9]. 
Furthermore, HMM is used to model transition probabilities 
between activities. Therefore, the matrices with transition 
and emission probabilities were designed based on real-
world behavior: Activity states are more likely to repeat 
themselves than switching into a different activity state. 
Indoor activities are more likely to transfer into indoor 
activities. This applies to outdoor activities accordingly. 
Overall, the walking state is a more likely transfer state, 
because it connects most activities in the real world. 

Figure 9.  HMM architecture (40 observation states, 20 hidden states) 

IV. TEST RESULTS 

A. Performance tests of Naive Bayes and SVM 
Eventually the entire SAS system was tested with data of 6 
seconds long sequences. The training and testing was 
performed on different days by the same subject. Test data 
only included activities which the database was previously 
trained for [Fig. 10]. First, the classification performance for 
activities (Naive Bayes Classifier) was tested with sets of 5, 
10, 15 and 20 activities. Then, the success rate of the SVM 
classifier for environments was measured. Finally, the fusion 
performance of the HMM was determined. 

 
Figure 10.  The 20 daily activities used for testing 
Activity classification with inertial data: The performance 
of SAS was first tested with a small set of 5 basic motion 
activities (lying down, walking, jogging, biking, running). 
Then, 10 activities were tested by adding mainly indoor tasks 
(vacuum cleaning, washing dishes, brushing teeth, taking 
stairs, eating) followed by 15 activities by including hobby 
tasks (playing cello, playing piano, playing table tennis, 
computer work, reading book). Finally, all 20 activities 
were tested by adding complex activities (folding laundry, 
doing laundry, wiping cupboard) or activities (driving car, 
taking elevator) that had a very similar head motion pattern 
to an activity already existing in the database (computer 
work). 

  

 

 

 

 

 

 

 

Figure 11.  Test results of activity sets with pure inertial data 

Results show that pure physical features and all features 
combined show a slightly stronger performance than pure 
statistical features. For large databases (20 activities), pure 
physical features (80.3%) even showed a slightly better 
performance than all features combined (79.3%) [Fig. 11]: It 
turns out that statistical features do not improve the overall 
result of physical features. Therefore, only physical features 
were used for further testing with HMM. 
Environment classification with video data: The SVM 
classifier over GIST data showed a successful performance of 
89.8% correct classification. 
B. Full system testing (including HMM) 
The overall classification performance of SAS was tested. 
For this reason, both outputs of Naive Bayes (activities) and 
SVM (environments) were assigned to the HMM. The HMM 
re-classified activities to take environment information into 
account. The HMM classification performance is shown in a 
confusion matrix (in %) [Fig. 12]. 



  

 
Figure 12.  Hidden Markov Model Results: Correct classification (green), 
wrong classification (red), transition errors (orange), initializing error (blue) 

HMM achieved a classification result of 81.5%. Because of 
the transition probabilities and the SVM input, the activities 
were recognized in a significantly more stable way than only 
using Naive Bayes. This greater temporal stability was the 
main added value of the HMM. However, the classification 
still fails in certain situations. For example, stopping a car at 
an intersection will naturally discontinue the characteristic 
sensor data pattern for “driving car”. When the stop lasts for 
too long, the classified activity is likely to switch from 
“driving car” into a better matching sensor data pattern, e.g. 
“computer work” or “taking elevator” (during constant-speed 
travel, and discounting the initial / final vertical acceleration 
phases) [Fig. 12]. Under certain circumstances, classifying an 
activity can completely fail, if an activity can be performed in 
too many different ways. While “wiping cupboard” in certain 
directions, head counter motions apparently showed a too 
high similarity to “biking” and “taking stairs”. As a result, the 
HMM misclassified it. Furthermore, unstable and frequent 
switching of the Naive Bayes classifier and low HMM 
transition probabilities were further contributing to the 
misclassified state [Fig. 12]. However, SAS shows a very 
stable and promising overall result with most activities being 
classified with 85% and higher success rate. Interestingly, 
this result was obtained when using the physical features 
only, as we found that the contribution from statistical 
features was negligible. A sample video was recorded for all 
20 activities and demonstrates the classification outcomes of 
all three classifiers [see attached video]. 

V. FUTURE IMPROVEMENTS AND CONCLUSION 

Activities without a distinct motion (computer work, taking 
elevator), or with too wide a range of possible submotions 
(wiping cupboard, folding laundry), are easily misclassified. 
Besides extracting physical features, the composition of these 
activities needs to be further studied. If a complex activity 
such as folding clothes can be broken into all submotions, a 
probability distribution (e.g. 40% shaking, 20% vertical 
movement, 40% horizontal movement) could possibly lead to 

a more promising result. When extending the database with 
more activities, the video data need to further be used to 
distinguish between significantly more environments. Often, 
eyeglasses come along with microphones. Additional sensor 
input could also contribute by measuring the surrounding 
noise level (e.g. car noises in street, sound of music 
instruments, pure silence). 
SAS showed that head-mounted sensor systems can be 
successfully used to measure 20 activities with an accuracy 
of 81.5% (15 activities with 91.3%). With the new eyeglass 
devices entering the market of communication technology, 
situation-adapted controlling of system settings guarantees a 
high-usability for daily use. By providing valuable activity 
classification, we hope that SAS made a contribution to the 
development of situation awareness systems for eyeglasses. 
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