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Abstract—This paper presents a new approach to semi-autonomous vehicle hazard avoidance and stability control, 
based on the design and selective enforcement of constraints. This differs from traditional approaches that rely on the 
planning and tracking of paths and facilitates “minimally-invasive” control for human-machine systems. Instead of forc-
ing a human operator to follow an automation-determined path, the constraint-based approach identifies safe homotop-
ies, and allows the operator to navigate freely within them, introducing control action only as necessary to ensure that 
the vehicle does not violate safety constraints. This method evaluates candidate homotopies based on “restrictiveness,” 
rather than traditional measures of path goodness, and designs and enforces requisite constraints on the human’s con-
trol commands to ensure that the vehicle never leaves the controllable subset of a desired homotopy. This paper demon-
strates the approach in simulation and characterizes its effect on human teleoperation of unmanned ground vehicles via 
a 20-user, 600-trial study on an outdoor obstacle course. Aggregated across all drivers and experiments, the constraint-
based control system required an average of 43% of the available control authority to reduce collision frequency by 78% 
relative to traditional teleoperation, increase average speed by 26%, and moderate operator steering commands by 34%.

I. Introduction

H
umans make mistakes. When humans control dynamic systems, the rate and ramifications of those mis-
takes increase. Whether it occurs while driving a car, controlling industrial machinery, or teleoperating 
an unmanned vehicle, human error can lead to costly and often deadly consequences. In 2010, over 32,000 
people were killed and another 2.2 million injured in motor vehicle accidents in the United States alone [1]. 

The U.S. military is also strongly affected by human error, with vehicle crashes representing the leading cause of 
non-hostile deaths in Operation Iraqi Freedom [2]. Even unmanned ground vehicles are susceptible, as operators 
must not only cope with the challenges inherent to the manned driving task, but must perform many of the same 
functions with a restricted field of view, limited depth perception, potentially disorienting camera viewpoints, 
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and significant time delays [3]. Remotely operating a ground 
vehicle under these conditions while monitoring the vehi-
cle’s health status, the status of the mission/tasks, and the 
condition of the environment leads to high failure rates [4].

Semi-autonomous control offers a unique opportunity 
to improve human performance through the exploitation 
of human-automation synergies. As originally published 
in 1951 [5] and widely discussed since, humans and auto-
mation are uniquely well suited to specific types of tasks 
[6]. Whereas automation excels at responding quickly and 
precisely to well-defined or repetitive control objectives, 
humans tend to make more mistakes as the frequency 
and complexity of the control task increase. Conversely, 
humans have the unique ability to detect and contextual-
ize patterns and new information, reason inductively, and 
adapt to new modes of operation, whereas automation typi-
cally struggles at these tasks. The goal of semi-autonomy is 
to exploit synergies in the abilities of humans and automa-
tion to improve planning and control performance of the 
combined system and—where possible—the actors therein.

A. Previous Work
Research to date in vehicle control has left a significant gap 
between fully-autonomous planning and control frame-
works, which neither account for nor provide an effective 
means of cooperating with the human operator, and driver 
assistance systems which are typically limited to local, one-
dimensional support. While these classes of system are dis-
tinct in their intended outcomes, their inability to effectively 
share control with a human driver has its root in a common, 
basic building block: each relies on specific, planned paths. 

In the context of autonomous control, many methods exist 
for planning paths. Common path planning tools include 
rapidly-exploring random trees [7], graph search methods 
[8], potential fields [9], and neural optimization techniques 
[10]. Control laws routinely used to track these reference 
paths include PID schemes, linear-quadratic regulators, 
and nonlinear fuzzy controllers. While many variations of 
this planning-then-control approach have proven effective 
in autonomous implementations [11], their reliance on a 
specific reference path (which is in many cases arbitrary, 
non-intuitive, and over-restrictive to a human operator), and 
consequent inability to account for the planning preferences 
and control inputs of a human operator make them ill-suited 
for human-in-the-loop or “semi-autonomous” control.

At the other end of the vehicle safety community, with an 
eye on nearer-term, industry-driven objectives, research-
ers have developed systems that assist the human opera-
tor in avoiding collisions and loss of stability. These active 
safety systems traditionally fall into one of two categories: 
reactive safety systems, such as antilock brakes, traction 
controllers, electronic stability controllers, and lane-assist 
approaches monitor the current state of the vehicle and 
apply low-level control actions to meet some safety-critical 

criteria [12]. For example, stability controllers monitor  
the lateral acceleration, yaw, and wheel rotational speeds, 
and apply asymmetric torques to the wheels when esti-
mated lateral or longitudinal tire slip exceeds a prespecified 
threshold. In order to avoid collisions, these systems rely on 
the human’s ability to 1) foresee, 2) judge, and 3) respond 
appropriately to impending hazards to trigger intervention. 
This reliance on driver actions renders reactive safety sys-
tems vulnerable to human recognition and decision errors; 
for drivers who do not recognize and correctly respond to 
hazards, these systems can do very little.

Predictive safety systems consider not only the current 
state of the vehicle, but also its predicted state evolution and 
that of environmental hazards. These systems then preemp-
tively assist the driver in identifying, assessing the threat 
posed by, and in some cases avoiding an impending hazard. 
Recent work in predictive safety has resulted in systems that 
use audible warnings [13], haptic alerts [14] and steering 
torque overlays [15] to help the driver avoid collisions [16], 
instability [17], or lane departure [18]. Similar to autono-
mous systems, the path-based prediction metrics used by 
these systems limits their ability to provide more than local, 
one-dimensional support. For instance, lane-keeping sys-
tems monitor only the lateral position of the vehicle relative 
to lane markings and provide driver warnings, additional 
steering torque, or differential brake pressure to assist the 
driver in laterally positioning the vehicle [18]. Similarly, 
adaptive cruise control systems regulate only the longitudi-
nal position and closing speed of the ego vehicle relative to a 
preceding vehicle [19].

Between the strategic, multidimensional capabilities of 
autonomous planning and control systems and the more 
tactical, one-dimensional focus of driver-assistance systems 
lies a significant need for planning and control techniques 
capable of both strategic planning and intuitive, “intention-
preserving” control support. We posit that such a system 
should be designed to accommodate the constraint-based 
planning and control technique humans have long been 
shown to exhibit [20]. Rather than obsessively planning and 
tracking a single path, humans tend instead to identify a 
field of safe travel—one that contains an infinite number of 
continuously deformable (“homotopic”) paths—and control 
the vehicle within it. This homotopy selection arguably rep-
resents the highest level of human reasoning employed in 
the navigation task and reduces the subsequent burden of 
calculating and applying appropriate control inputs to that 
of simply remaining within the desired homotopy. 

On an open roadway, for example, the preferred homo-
topy often contains many acceptable paths traversing a 
desired lane. In off-road environments, the desired homo-
topy may not be as clearly delineated, though vehicle 
dynamic constraints require that it exclude any region 
through which the vehicle cannot travel without collid-
ing with obstacle(s). Figure 1 illustrates three prominent 
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homotopies in a cluttered environment as they might be 
perceived by a human operator.

Instead of planning a path and restricting the human 
operator to that path, we propose a constraint-based semi-
autonomous system that strategically limits the range 
of available inputs to ensure that the operator retains as 
much control freedom as possible without risking collision 
with obstacles or dynamic instability.

B. Paper Outline
This paper introduces a new approach to semi-autonomous 
control; one in which homotopies and their associated con-
straints are identified, characterized, planned, and enforced 
to ensure that the controlled system (an off-road ground 
vehicle in this case) avoids hazards and loss of stability 
without unduly restricting the control freedom of a human 
operator. Section II describes the methods used to plan and 
characterize constraints on the vehicle position. Section III 
then describes one method for converting those constraints 
into semi-autonomously enforceable constraints on the 
operator’s control commands. These methods are demon-
strated in control of a simulated ground vehicle through an 
obstacle field (Section IV) and semi-autonomous teleopera-
tion of a Kawasaki Mule through a similar field (Section V). 
The paper then closes with general conclusions.

II. Constraint Planning 
Planning in constraint or “homotopy space” requires the 
identification of homotopies and an evaluation of their 
goodness. Because the constraints bounding a homotopy 
admit an infinite number of paths, identifying and evaluat-
ing the “goodness” of these constraints requires a new set 
of evaluation criterion from those commonly used in path 
planning. Whereas the goodness or “optimality” of a spe-
cific path is well defined using metrics such as length, cur-
vature, and dynamic feasibility, corresponding measures 
lose their traditional meaning when applied to a set of 
constraints and the many paths they admit. Further, plan-
ning methods typically used to design paths, such as graph 
search, potential fields, and sampling-based algorithms, 
will not necessarily work to plan constraints since the lat-
ter must be designed to circumscribe—rather than simply 
remain within—a safe operating region. In light of this 
inherent difficulty, a method is presented here based on 
the constrained Delaunay triangulation, which provides a 
useful physical boundary to, and heuristic evaluation of, 
the many distinct paths existing within a given homotopy.

A. Homotopy Identification
As illustrated in Figure 1, any environment bifurcated by 
obstacles or impassible regions admits multiple path homotop-
ies. A path homotopy is a set of paths that can be continuously 
deformed into one another without crossing infeasible regions. 
If a particular homotopy can be identified, vehicle position con-

straints may be designed at its edges to circumscribe the set of 
paths it contains and thereby ensure that the vehicle remains 
safely within it (avoiding collisions with obstacles). 

In this work, we identify homotopies by decomposing a two-
dimensional configuration space C R2!  containing convex, 
polygonal obstacles1 into a complete set of constrained Delau-
nay triangles. The dual graph of this triangulation provides a 
search space through which homotopies may be planned via 
standard graph search methods. That is, any feasible homotopy 
containing the vehicle’s current position ,X0  and the position 
of the goal location, ,XG  may be defined as a sequence Hn  of 
adjacent triangles TT n0f  extending from the triangle cir-
cumscribing the vehicle’s current position (T0  in Figure 2) to 
that containing the goal location(s). This goal may be described 
by a single point or by a region of ,R2  such as the distal edge of 
the local sensing window illustrated in red in Figure 2.

B. Homotopy Evaluation
In order to plan a set of constraints circumscribing a 
desired homotopy, metrics describing homotopy goodness 
must be defined and ascribed to individual triangles and 

1Methods for convexifying non-convex polygons described in [21], [22].

Fig 1 Visualization of prominent homotopies available to a human 
operator (image best viewed in color).
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Fig 2 Illustration of triangulated environment showing homotopy 
selection and dual graph for length heuristic.
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transitions between them. We here propose geometric and 
reachability heuristics for evaluating homotopy goodness. 
These include an estimate of the average distance traveled 
by paths within it, an estimate of the control freedom it 
affords an operator, and an approximation of its dynamic 
reachability given the vehicle’s current state. 

Given a constrained Delaunay triangulation of C, we 
note that any path belonging to a particular homotopy 
H T T Tn

n0 1, , ,f=  will pass through each triangle Tk  
in Hn  at least once. A path enters Tk  through the edge it 
shares with ,T E1 1k k k- -^ h and exits through ,E 1k k+  into 

.T 1k+  Thus, the average “distance” traveled by all trian-
gle-monotonic (passing through each edge at most once) 
paths belonging to a given homotopy as it crosses Tk  may 
be heuristically described as the distance from the mid-
point of ,E 1k k-  to that of , .E 1k k+  As Figure 2 illustrates, 
the dual graph embodying this heuristic closely resembles 
the Generalized Voronoi Diagram (GVD).

While the average “length” of paths belonging to a par-
ticular homotopy may be described by the distance met-
ric above, the “restrictiveness” and dynamic feasibility of 
the constraints bounding this homotopy require heuristic 
evaluations of the range of motion and control freedom 
they admit. To incorporate these considerations into the 
constraint-planning problem, we observe the following:
1)	 The dynamic feasibility of any path followed by a vehicle 

with Dubins constraints and friction-limited tires may be 
characterized by the lateral acceleration it requires.

2)	 This lateral acceleration is directly proportional to the 
square of vehicle velocity and inversely proportional to 
the radius of curvature of the path it follows.

3)	 In any homotopy ,Hn  the maximum radius of curvature 
of any of the constant-velocity paths belonging to Hn  is 
limited by the “width” ,wk  or minimum pass-through 
clearance of the Delaunay Triangles comprising the ho-
motopy. As illustrated in Figure 3, wk  is calculated as 
the perpendicular distance from the constrained edge 
of the triangle to the apex opposite the constrained 
edge. If Tk  is obtuse and either ,E 1k k-  or ,E 1k k+  lie  
opposite the obtuse vertex, wk  is instead calculated as 
the shorter of ,E 1k k-  and , .E 1k k+  The blue dashed line 
in Figure 3 illustrates the maximal radius path belong-
ing to a particular homotopy.

4)	 This maximal curvature is also affected by the relative 
orientation of adjacent constrained edges, or equivalently, 
the difference in orientation 1,k kz -  for adjacent line seg-
ments L 1k-  and Lk  of the dual graph used to calculate 
“length” (these being parallel to the constrained edge).
Finally, while the above heuristics give an estimate of 

the dynamic feasibility of a set of constraints, they do not 
explicitly account for the dynamic reachability of the homo-
topy itself from the vehicle’s current state. This consider-
ation is incorporated into the homotopy planning layer 
using an adaptation of the dynamic window approach origi-
nally described in [23]. Rather than map obstacles onto a 
2-dimensional velocity search space, however, our approach 
instead maps the total vehicle acceleration required to avoid 
obstacles onto the one-dimensional steering space of the 
vehicle. It then calculates the surplus tire friction available 
to the human driver if s/he were to steer into either homo-
topy. Steering angles from which the vehicle cannot avoid a 
collision with an impending obstacle are excluded from this 
area calculation. Figure 4(b) illustrates one such region 
(labeled “Collision Imminent”) corresponding to a range of 
steering angles from within which the vehicle cannot avoid 
the black obstacle at its current speed. Regions Am  and An  
correspond to the surplus acceleration available by crossing 
edges ,E ,m1  and ,E ,n1  respectively.

Assuming constant velocity V, wheelbase length L, tire 
friction coefficient n , gravity g, stationary obstacles, and 
no-slip conditions, the minimal avoidance acceleration 
required to avoid obstacle :  is given by
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Fig 3 Illustration of a triangulated channel and the heuristics used to 
describe constraint restrictiveness and dynamic feasibility.
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Summed over the steering angles corresponding to the 
homotopy choices, the surplus tire friction for homotopy i 
is then given by 
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where 1,E1d : ^ h and 2,E1d : ^ h are the extremal steering 
angles reaching the two ends of edge E ,1 :  (edges of the 
“Collision Steer” regions illustrated in Figure 4), actuatord :  
refers to physical steering limits, and kinematicd :  represents 
the maximum non-slip steering angle allowed by the tire 
friction and current vehicle velocity arctankinematic !d =:^

/ .mgL V2n^ hh
With heuristics , , ,L wk k kz  and asurplus

)  thus calcu-
lated, a graph search (Dijkstra’s algorithm is used here) 
may be performed to calculate the optimal path homotopy  
(a “channel” made of adjacent triangles) and its associated 
constraints. In the results shown in this paper, the objec-
tive function is defined as
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This objective function incorporates an estimate of 
average homotopy “length” with an approximation of the 
control freedom and dynamic stability available to the 
vehicle as it traverses the homotopy. Weights k :  are tuned 
to reflect navigation priorities.

III. Constraint Enforcement
In the previous section, an objective function was defined 
to assess the goodness of a given homotopy. Once a desired 
homotopy has been identified, vehicle position constraints 
circumscribing the homotopy must be converted into 
semi-autonomously enforceable constraints on the human 
operator’s control inputs as the vehicle traverses the con-
strained region.

To calculate these limits, a finite-horizon model predictive 
(MPC) controller is used to predict the vehicle state evolution 
within the desired homotopy under a stability-optimal control 
input sequence. The nearness of the predicted trajectory to 
stability limits is then used to compute the steering constraint 
applied at the vehicle and the torque feedback provided to the 
operator. These steps are briefly described below.

The MPC controller bases its predictions on a 4-wheeled 
vehicle model with slip and yaw dynamics. Defining vehicle 
states, outputs, inputs, and disturbances by x, y, u, and v, 
respectively, discrete plant dynamics are described by

	 x Ax B u B vk k u k v k1 = + ++ � (7)
	 .y Cx D vk k v k= + � (8)

A quadratic objective function over a prediction hori-
zon of p sampling intervals is defined as 
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where Ry , Ru , and R uD  represent diagonal weighting 
matrices penalizing deviations from ,y u u 0i i i tD= = = f  
represents the penalty on constraint violations, n denotes 
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Fig 4 Illustration showing (a) triangularized environment with obstacles 
(gray and black), and (b) avoidance acceleration mapped to steering 
commands [with gray and black blocks corresponding to obstacles in (a)]. 
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the number of free control moves, and f  represents the 
maximum constraint violation over the prediction hori-
zon p. Inequality constraints on vehicle position (y), 
inputs (u), and input rates uD^ h are then defined as
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where the vector uD  represents the change in input from 
one sampling instant to the next, the superscript “ j

:^ h ” rep-
resents the jth component of a vector, k  represents the cur-
rent time, and the notation k i kj

: ;+^ ^h h denotes the value 
predicted for time k i+  based on the information avail-
able at time k . The vector V  allows for variable constraint  

softening over the prediction horizon, p, when f  is included 
in the objective function. The vectors y min

y  and yy
max  are 

sampled from the edges of the constrained channel Hn . Also 
note that input constraints enforced in the MPC calculation 
are simply those imposed by available actuation. 

The state trajectory x  predicted by the MPC solu-
tion represents the state evolution of maximum stability 
that can be achieved given the vehicle’s current position, 
dynamics, and homotopy constraints (imposed by Hn ). 
As such, the nearness of this prediction’s stability-critical 
states to their physical limits provides a useful indication 
of the need for intervention and a natural boundary for the 
current vehicle control input. 

Here, we define by “threat”, U , the maximum predicted 
value of a stability-critical state (front wheel sideslip in this 
case). We then adjust the steering command seen by the 
vehicle uvehicle^ h to a blended sum of the optimal uMPC^ h and 
driver udriver^ h steering commands 

	 ,u K u K u1vehicle MPC driverU U= + -^ ^^h hh � (11)

where K 0 1d 6 @ is computed using a piecewise linear 
function
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Below a configurable threshold , K 0engU =  and the 
driver retains full control authority. Above , K 1autU = , and 
the MPC controller operates autonomously to satisfy state 
and homotopy constraints. Between engU  and autU , control 
authority is shared. 

This intervention ensures that at low threat, the vehicle 
closely matches operator commands while at high threat—
when the safest maneuver satisfying homotopy constraints 
approaches the limit of vehicle stability—the vehicle steering 
command tracks the optimal command predicted by the MPC 
controller. For a complete treatment of this threat assess-
ment and shared control method, the reader is referred to the 
authors’ previous work [24].

In addition to constraints imposed on (or adjustments 
made to) the vehicle steering (which is transparent to the 
human operator), experimental tests also fed back a visual 
representation of the safe homotopy and a tactile set of “soft” 
constraints on the position of the steering wheel. This feed-
back was provided to improve the human operator’s tele-
presence and situational awareness by indicating not only 
where the input constraints lie, but also how urgently they 
must be satisfied in order to avoid collision or loss of control. 

Visual feedback was provided by overlaying a visual rep-
resentation of the desired homotopy on the driver’s screen as 
illustrated in Figure 5. In addition to the homotopy overlay, 
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Fig 5 Illustration of the operator control interface.
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steering angle indicators were pro-
vided at the bottom of the screen to 
show the driver where the vehicle 
is currently steering (red line), and 
where the driver’s steering com-
mand lies relative to the vehicle’s 
current steering angle. Section V.A 
describes the warning indicator.

The resistance torque applied to 
the operator’s steering wheel is calculated as 

	 T k K driver MPCmax d d= - ,� (13)

where kmax  represents the maximum available steering 
wheel torque and is used to re-dimensionalize K . Figure 6 
illustrates the (hypothetical) response of the torque restor-
ing function to increasingly threatening MPC predictions 
(assuming the driver fails to steer).

Notice that as time progresses (denoted by ti  labels on 
the host vehicle), the threat posed by the optimal maneuver 
prediction increases. Additionally, the immediate steering 
command required to track this optimal trajectory begins 
to drift leftward. The combined effect of an increasingly-
urgent, and progressively-leftward uMPC  recommendation 
increases ks  and shifts the torque resistance trough. In the 
limiting case for which only the optimal steering command 
can reasonably be expected to avoid both the hazard and loss 
of control (sometime shortly after t4 ), the controller exerts 
the maximum available torque on the operator’s steering 
wheel, essentially ensuring that the operator not only cedes 
to the requirements of the controller, but is also aware of 
exactly what steering action is being taken by the vehicle.

IV. Simulation Testing
The constraint-based semi-autonomous controller was 
simulated using a nonlinear ADAMS model of a generic 
light truck. The MPC controller ran at 20 Hz. Its predic-
tion and control horizons were calculated over 60 and 40 
time steps, respectively. Parameters in the MPC model 
were configured to closely match those of the ADAMS 
plant, vehicle velocity was set at a constant 20 m/s, and 
simulated driver steering input was set to 0 degrees for 
generality. Figure 7 shows the path homotopy and asso-
ciated position constraints designed by the path planner 
(green channel) as well as the control constraint imposed 
on the vehicle steering input (colorbar). Note that given 
the vehicle’s initial position at (0,-2) [m], a shortest-path 
homotopy would have passed under the obstacles. Because 
this path is more tortuous and offers less control freedom 
to the human operator, the objective function described 
in (5) instead chooses the wider and less dynamically-
challenging homotopy passing above the obstacles. Input  
constraints are initially tight in order to avoid the impend-
ing hazard, but quickly relax as the vehicle enters a less 

restricted region of the homotopy above the obstacles. 
Finally, we note that the “ricochet” off the upper obstacle 
occurs because the simulated “human” input remains 
at zero for the entire maneuver. In practice, the signifi-
cant control freedom afforded by the relaxed constraints 
between x 40=  and 80 meters allows the human opera-
tor to straighten out of desired.

V. Experimental Testing
The effect of constraint-based semi-autonomy and driver 
feedback on driver performance was tested in a repeated 
measures study of twenty drivers remotely teleoperating a 
modified utility vehicle through an obstacle field. Experi-
mental results were analyzed with a one-way analysis of 
variance (ANOVA) and a significance threshold .p 0 05= .

A. Setup
Experimental testing was performed on a four-wheeled, 
Kawasaki 4010 Mule utility vehicle fitted with steering 
and braking actuators, Velodyne LIDAR, NavCom GPS, a 
triaxial Inertial Measurement Unit (IMU), and a progres-
sive area scan color CCD camera. An onboard Linux PC 
processed sensing data, ran controller code and transmit-
ted video and other data to a teleoperator control station 
over an 802.11g wireless link. At the remote control sta-
tion, human operators received video and state feedback 
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Fig 7 Simulation results demonstrating constraint-based semi-autonomous 
control through an obstacle field.

If the optimal steering command is expected to avoid both the 
hazard and loss of control, the controller exerts the maximum 
available torque on the operator’s steering wheel.



IEEE Intelligent transportation systems magazine  •  52  •  summer 2013

data on a computer monitor and issued steering commands 
through a Logitech G27 steering wheel. Torque constraints 
were applied to the steering wheel via its dual-motor force 

feedback mechanism capable of applying 0–3.1 N-m of 
torque in either direction. Large barrels were arranged 
on a m m50 30#  field, and operators were instructed to 
navigate the course as quickly as possible without hitting 
them. In order to simulate periodic loss of vision caused by 
random occurrences such as camera obfuscation, sensor 
outages, and loss of communication, the camera feed seen 
by the teleoperator was blanked at random intervals for up 
to 2 seconds at a time.

Twenty operators, ranging in age from 20 to 51 years, 
with 0–35 years of driving experience, and 0 20- + years 
of video game experience were tasked with remotely  
(non-line-of-sight) teleoperating an unmanned ground 
vehicle across the 50-meter-long by 30-meter-wide obsta-
cle course shown in Figure 8. In addition to this primary 
task, operators were asked to press a button on the steer-
ing wheel every time a warning indicator box in the lower 
left side of their screen indicated the need. To make this 
secondary task more challenging, the warning light took 
three values at random ( 2+ -second) intervals during a 
trial: “Resting…” (white), “Don’t Act!” (blue), and “Press 
Headlights!” (red). Users were instructed to press the but-
ton only when this indicator assumed its red, “Press Head-
lights!” state. Performance on this task was used to gauge 
differences in cognitive workload required by each control 
configuration (unassisted vs. assisted).

Prior to the tests, operators were briefed regarding the 
test setup, control interface, and semi-autonomy details. 
Each operator manually drove the vehicle through the 
course before the first round of testing began, and was given 
one warm-up run with each control configuration prior to 
each day of testing (first four trials not scored). 

Altogether, 600 trials were conducted, with 480 of those 
trials scored (240 scored trials per test configuration). Each 
operator performed one round of testing per week for three 
weeks. Testing rounds consisted of 10 total trials (5 trials 
per configuration), with the configuration order random-
ized within each round to avoid ordering effects. Barrel 
placement on the obstacle course was changed between 
rounds to prevent users from relying on learned habits or 
worn paths to traverse the course. Following each round of 
testing, operators were administered an 8-question survey 
to gauge their acceptance of, comfort with, and confidence 
in each system configuration. Questions were posed on a 
5-point Likert scale and included, “How easy was it to navi-
gate the course without collisions,” “How much control did 
you feel you had over the vehicle’s behavior,” “How fast did 
you feel comfortable traveling,” and “How confident were 
you that the vehicle would do the right thing?”

Operators were instructed to minimize the performance 
“score”, where Score = Time + 10*Collisions + 5*Brushes 
- Hits + Misses. This score represents the total time it takes 
to navigate the course (in seconds), plus 10-second penalties 
for each collision, plus 5-second penalties for each “brush” 
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(barrel touched, but does not fall down), and 2-second pen-
alties or rewards for incorrect/correct button presses in 
response to the secondary task. As an incentive for good per-
formance, $150, $100, and $50 gift certificates were prom-
ised to the top three finishers.

B. Results
Figure 9 plots the results of a typical run with shared 
control and operator feedback enabled. Teleoperation 
performance was assessed from run data logged at 10 Hz. 
Dependent measures included collision frequency (colli-
sions/run), course completion time (seconds), driver steer 
volatility (degrees), reaction time to the secondary task, 
and overall performance score (seconds). 

Assessed  over  all  drivers,  courses,  and  dependent 
measures,  constraint-based  semi-autonomy  improved 
teleoperational  performance.  With  shared  autonomy 
enabled,  the  number  of  collisions  decreased  by  78% 
( , , e )F p1 478 37 1 81= -^ h  while average velocity 
increased by 26% , , e ,F p1 478 86 1 181= -^^ h h  leading 
to a corresponding decrease in course completion time 

, , eF p1 478 97 1 201= -^^ h h and a 29% improvement  
in average driver score , , eF p1 478 97 1 201= -^^ h h. Fig-
ure 10 plots the results of constraint-based semi-autonomy 
on six dependent measures of system performance.

With enough control intervention, similar improvements 
in collision avoidance and average speed might be expected 
of any controller. What makes this constraint-based frame-
work unique is the minimal degree of adjustments it made 
to achieve the above results. Averaged across all drivers 
with shared control and feedback both enabled, the con-
troller took only 43% of the available control authority 
mean . , SD .K 0 43 0 13= =^^ h h to effect the above perfor-

mance improvements. This minimal restriction on human 
commands afforded the operators significant freedom to 
maneuver as desired, leading 95% of operators to report 
feeling a greater sense of both confidence and control with 
assistance enabled than they felt when left to their own 
devices. This improvement in performance and confidence 
was accompanied by a significant decrease in driver steer 
volatility. With the semi-autonomous controller enabled, 
drivers were significantly more moderate in their control 
inputs—decreasing average steering volatility by 34%—
from . °14 5  to . °9 5  , , eF p1 478 147 1 271= -^^ h h.

Cognitively, enabling the semi-autonomous controller 
did not significantly affect the driver’s ability to respond 
quickly to the secondary task. With the controller enabled, 
driver response times to the secondary task improved by 
an insignificant 3%—from 0.73 seconds SD .0 4=^ h to 0.71 
seconds SD .0 4=^ h per alert. Considered in light of other 
performance improvements, this result suggests that any 
reduction in cognitive workload occasioned by the control-
ler’s offloading of high-threat tasks may have been nulli-
fied by a corresponding increase in visual and haptic cues 

that the operator had to process. In particular, the proxim-
ity of visual overlays to the warning indicator (see Figure 
5) reduce the saliency of the latter, making changes in its 
state more difficult to notice.

VI. Conclusions
Semi-autonomous navigation requires planning and con-
trol methods capable of identifying desirable path homo-
topies and ensuring that the controlled system remains 
within them. This paper has illustrated one method for 
achieving minimally-restrictive, homotopy-based control 
through the planning and enforcement of constraints—
rather than reference paths—on the states and control 
inputs of the vehicle. This method has been shown in sim-
ulation and experiment to improve human performance 
in the teleoperation task, eliminating 78% of collisions 
experienced by the unassisted teleoperator while simul-
taneously enabling a 26% increase in average speed. We 
note that the 0.096 collisions that continued to occur per 
trial were the result of the vehicle speed surpassing the 
capabilities of the steering actuators. This course was con-
figured such that beyond a certain (operator-selected) tra-
jectory and speed, it became impossible for the controller 
to turn the wheels fast enough to avoid collisions. We are 
currently extending the framework to include velocity con-
straints and corresponding acceleration intervention and 
expect this extension to eliminate 100% of avoidable colli-
sions with minimal intervention.
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