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Abstract— In this paper we present a new approach to
the threat assessment problem for semi-autonomous and fully
autonomous vehicles, based on the estimation of the con-
trol freedom afforded to a vehicle. Given sensor information
available about the surrounding environment, an algorithm is
described for identifying fields of safe travel through which
the vehicle can safely navigate. Within each candidate field, we
then characterize the level of threat, to influence autonomous
navigation or driver support inputs. To characterize threat,
the fields of safe travel are associated with sets of feasible
trajectories generated from a lattice sampled in the vehicle’s
input space. A planner then computes a metric associated with
available control freedom from these sampled trajectories. This
method potentially allows a semi-autonomous control system
to honor safe driver inputs while ensuring safe and robust
navigation properties. It could also serve as an input to an
autonomous decision-making layer.

I. INTRODUCTION

Recent traffic safety reports from the National Highway
Traffic and Safety Administration show that in 2012 alone,
over 33,500 people were killed and 2.4 million injured
in motor vehicle accidents in the United States [1]. The
presence of passive and active safety systems has contributed
to a decline in these numbers from previous years. However,
even if active safety technologies have begun to play a
major role in collision mitigation [10], the need for improved
threat assessment methods remains significant. Recent de-
velopments in onboard sensing, lane detection and obstacle
recognition have facilitated these active safety systems [4].
However, most of these technologies have limited ability
to assess the future threat posed to the vehicle: many are
reactive in nature, and cannot apply preventive actions based
on estimates of potential future actions. Here, a predictive,
margin-based threat assessment approach is described that
combines sensory information related to the surroundings
and information about the host vehicle’s dynamic to assess
threat associated with future actions. This threat estimate
could then be used to plan the desirable navigation option
(in an autonomous system) or correct the anticipated driver’s
trajectory when the threat exceeds a specified threshold (in
a semi-autonomous, active safety system).

A. Motivation

This proposed threat assessment method relies on the
observation that human drivers tend to operate vehicles
within fields of safe travel, rather than along a specific path
[6]. Based on this, we propose a framework that relies on
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identification and analysis of candidate fields, each of which
can be interpreted to contain a path homotopy (see figure 1).

Fig. 1. From path planning to corridor navigation and sets of trajectories

Threat to a vehicle is assumed to be proportional to the
freedom of control afforded by a particular field. This implies
that (for instance) drivers tend to prefer to navigate through
regions that are wide and exhibit low curvature. To character-
ize threat in each candidate field, a state lattice is constructed
via sampling in the vehicle input space. This sampling
method enables identification of sets of feasible trajectories
associated with each field, from which the metrics related to
control freedom can be derived. Lattice algorithms have been
extensively studied and are highly flexible tools for motion
planning that can adapt to complex environments. Lattice
structures can be adapted to parallel computing methods,
making them computationally efficient and implementable
in real-time at high resolutions [11].

B. Related Work
In the context of autonomous control, typical path plan-

ning tools include rapidly exploring random trees [9], poten-
tial fields [13], and lattice-based approaches [15],[12],[14]
and [7]. These approaches have proven effective in au-
tonomous navigation, however their reliance on specific
reference paths (rather than spatial fields) can potentially lead
to non-robust performance in the presence of various forms
of uncertainty that can cause deviation from the planned path.
Also, for semi-autonomous applications, forced adherence to
a specific path can feel non-intuitive or over-restrictive to a
human operator.

More recently, optimal-control-based methods in a field-
based framework [3], [8] propose to tackle the navigation
problem by dividing the space into homotopy classes and
generating optimal trajectories within a particular class by
minimizing a chosen objective function. A drawback to [3]
and [2] is their reliance on an ad hoc metric for evaluating the
desirability of a candidate field. Also, the threat assessment
metric is computed from metrics associated with an optimal
path within a particular field, and can therefore be sensitive
to uncertainty.



Other approaches to estimating the future threat posed to
a vehicle have been based on reachability analysis, which
aims to assess whether there exists a feasible path through
an environment to reach a desired goal, considering a driver
model [5]. This approach provides a manner for determin-
ing the time of intervention, but provides only a binary
assessment of reachability, and is therefore limited in its
ability to compare the desirability (i.e. ’goodness’) of various
candidate navigation choices.

The margin-based approach presented in this paper builds
on the field-based framework introduced in earlier work by
the authors [2] and relies on an input space lattice to assess
the threat posed by each candidate field. The proposed threat
metric captures both geometric properties of the candidate
fields and dynamic properties of the vehicle.

C. Paper outline and technical approach

The threat assessment problem is addressed as in two
stages. The first stage identifies all possible fields of safe
travel in the local vehicle surroundings. This process is
described in section II. The second stage (Section III)
characterizes the desirability of each field in order to detect
potential hazardous navigation decisions. This second stage
is, strictly speaking, the threat assessment problem, which is
addressed with a margin-based method that relies on analysis
of a state lattice. Finally, in Section IV, these methods
are demonstrated in simulated highways scenarios involving
multiple tasks such as vehicle overtaking, lane merging, or
emergency braking.

II. FRAMEWORK - IDENTIFICATION OF
HOMOTOPY CANDIDATES

The threat assessment method presented in this paper relies
on identification of fields of safe travel, a choice motivated by
the observation that human drivers tend to operate vehicles
within spatial fields rather than along a specific path. We
will loosely refer to these fields as homotopies. (Strictly
speaking, a homotopy of paths is a set of paths derived from
continuously deforming a reference path while maintaining
fixed path endpoints.)

A. Creation of the decision tree

Consider a multi-lane road environment containing obsta-
cles (i.e. vehicles or other objects) and multiple fields of
safe travel toward a goal region. Navigation decisions can
be enumerated based on the observation that each time the
vehicle encounters an obstacle it faces a choice between
remaining in its current lane (by slowing) or moving to an
adjacent lane. This illustrated in Fig.2.

We assume the presence of multiple target zones that the
driver may wish to reach. These targets are determined as
follows. First, target zones are identified immediately behind
each vehicle in the environment. This is to accommodate
a driver’s potential desire to remain behind (i.e. without
passing) a particular vehicle. Second, a multi-lane target
zone is identified at a user-defined distance from the vehicle
(i.e. at the limit of the range of local sensors). This is to

accommodate a driver’s potential desire to travel in an open
lane. The length of each target can be chosen arbitrarily,
while the width is constrained by the lesser of the lane width
or the free (i.e. non-obstacle) space in the lane.

Fig. 2. From left to right: driving strategies, definition of the target regions
and construction of the decision tree

A tree structure can be constructed by enumerating all the
possible navigation decisions associated with each obstacle,
with each branch of the tree terminating (not necessarily
uniquely) in a target zone. A homotopy can then be identified
as field constructed from connected regions associated with
each branch of the decision tree. For each homotopy candi-
date hi, δi, j is the decision taken at the jth vehicle and τi
the chosen target zone. By construction, τi ∈ {1, ...,NT} and
δi, j ∈ {le f t,behind,right}. Each homotopy candidate can be
written in the form of a sequence hi = (δi,1, ...,δi,NV ,τi) that
represents the navigation decision at each level of the deci-
sion tree. This method for homotopy candidate identification
is flexible as it allows various behaviors of the lead vehicles
(i.e. to accelerate, slow down or change lane).

B. Heuristics to prune the number of homotopy candidates

The number NH of homotopy candidates depends on the
number of vehicles NV and number of target zones NT ,
NH = 3NV ×NT which grows exponentially with the number
of vehicles. For example, in a scenario with four lanes and
two vehicles, the number of homotopy candidates is 54.
However, some of these candidates are not feasible due to
violation of constraints associated with the vehicle dynamics,
collisions, or road and lane boundaries. Furthermore, homo-
topy candidates associated with multiple lane changes can
be discarded as practically undesirable.

The identification of these unfeasible homotopy candidates
can be performed using the threat assessment methods de-
scribed in the next section that relies on sets of trajectories to
compute the control margin within each corridor. However,
this computation of the margin can become computationally
expensive as the number of candidates increases quickly.
Instead, it is possible to prune the number of candidates
before performing the threat assessment task. A fraction of
the candidates can quickly be sorted out based on heuristics
such as the minimum number of lane changes associated
with the maneuver.

As an example, consider the scenario illustrated in Fig. 3.,
with two obstacles and two identified candidate homotopies.
We can see that bypassing vehicle A (from left to right)
requires passing through lane 1 or 2. Approaching behind
vehicle A requires travel in lane 3 and overtaking it from
the right side requires travel in lane 4. Based on these
observations and from a conservative perspective, we can



Fig. 3. examples of computing minimum number of lane changes for
homotopy candidates

then calculate the minimal number of lane changes involved
in the maneuver. The red homotopy requires at least 5 lane
changes, whereas the green homotopy minimally requires
only one. We can thus discard the red option from the
homotopy candidates as it is unlikely that a) it contains any
feasible paths, considering constraints arising from vehicle
dynamics, and b) the large number of required lane changes
makes it practically unlikely to be desirable to a driver.

Let L j be the set of accessible lanes corresponding to
a decision for the jth vehicle. For example, when the jth

vehicle is in lane 3 and decision is ’left’, then L j is {1,2}. For
notational convenience, let L0 be the initial lane and let LNv+1
be the target lane. The minimum number of lane changes
between decisions can be computed as the minimum value
of differences between elements of L j and L j+1, which we
denote min di f f (L j,L j+1). Then the total minimum number
of lane changes can be computed by summing them, as:

Min = ∑
Nv
0 min di f f (L j,L j+1)

III. THREAT ASSESSMENT PROBLEM

The second stage of the threat assessment problem is to
characterize the desirability of each candidate homotopy that
was previously identified. The threat assessment approach
described here relies on a metric that is based on the volume
of the feasible input space bounded by problem constraints,
such as spatial boundaries or vehicle dynamic constraints. A
lattice structure sampled in input space is implemented to
characterize the input space. Lattice structures are adopted
since they can flexibly consider complex scenarios with
multiple inputs (i.e. change of heading and velocity).

A. Lattice Structure

Lattice structures are used to enable the use of discrete
graph search techniques on a continuous state or input space
representation, while respecting differential constraints on
motion [7]. Most previous work presents conformal state
lattices whose vertices are placed in a regular pattern and
connected by cubic polynomial paths. In [12] and [15], the
sets of trajectories are generated in two steps. First, the
algorithm samples endpoints along the road and computes
the connections, generating physical paths along which the
vehicle can travel at any desired speed. Then, for each path,

a set of trajectories is defined by specifying different accel-
eration profiles. A trajectory therefore contains information
about the coordinates of the path (spatial information) and the
velocity at which the vehicle travels the path (temporal infor-
mation). State lattices may require re-computing the entire
lattice at each time step, unlike lattices derived from input-
space sampling, which do not depend on the environment
constraints.

Here we adopt a discretization of the input space, since
this approach is easy to implement and allows easy storage
of pre-computed lattices, avoiding the computationally ex-
pensive construction requirement at each time step. If the
road contains important curvature changes, the entire lattice
can be shifted to fit the road shape more precisely.

1) Vehicle Model: The vehicle model used to build the lat-
tice accounts for the kinematics of a 4-wheeled Ackermann-
steered vehicle, along with its lateral and yaw dynamics. It is
the same model employed in [3]; the reader may refer to this
paper for a description of the equations of motion. The two
inputs to control the vehicle are the forward speed (throttle)
and steering angle. Tire compliance is included in the model
by approximating the lateral tire force as the product of
wheel cornering stiffness and wheel sideslip. Note that the
equations of motion are linearized about a constant speed
and assume small slip angles. The global velocity profile is
thus a piecewise linear function.

2) Construction of the lattice: The resolution of the lattice
discretization is chosen so that the change in input at each
vertex is compatible with both vehicle dynamic constraints
(i.e. available acceleration or deceleration level) and steering
constraints (steering rate bounds). Each level of the lattice
corresponds to a specific time step of a discretized, user-
selected time horizon. At each time step, the planner may
switch input in both steering and speed. The main limitation
of lattice structures is the curse of dimensionality: the com-
plexity of the tree grows exponentially with the resolution
and thus the number of levels in the tree. If Nδ and NV are,
respectively, the number of discretized steering inputs and
available speed levels at each node, and L the number of
levels in the tree, then the total number of trajectories stored
in the lattice is Σ = (Nδ ×NV )

L.
In order to build a lattice that is sufficiently dense to cover

the space defined by the homotopy candidates, while not
exceeding a reasonable computational threshold in terms of
number of trajectories, we take into account the following
remarks:
• The initial time steps in the sequence of inputs have

more influence than the final ones on the trajectory’s
shape.

• The bounds of the velocity rate are typically greater for
deceleration than for acceleration.

For these two reasons, we reduce the resolution of the input
space from the upper levels of the lattice to the lower levels:
here, seven steering inputs are defined at the first level
compared to three at the final level. Also, at each node, we
define four available speed inputs: +0m/s, +2m/s, −2m/s
and −4m/s. We define a four-level lattice, which enables a



range of typical maneuvers, including double lane changes.
The horizon time is chosen as three seconds. Overall, the
total number of trajectories stored in the lattice amounts to
105, which results in an algorithm that is practically com-
putationally feasible and yields a lattice that is sufficiently
dense to cover the vehicle’s local environment.

Fig. 4. Top: Construction of the three-level lattice for various resolutions.
Bottom: Shifting the lattice to fit the road shape

3) Fitting the shape of the road: Contrary to state-space
lattices that can be conformed to the road geometry by
construction, input-space lattices can potentially generate
trajectories whose endpoints lie outside the road boundaries
or whose final yaw angles deviate significantly from the
mean road heading angle. To address this issue, the lattice is
subjected to a transformation that is based on properties of
the road centerline. An algorithm is employed to check (in a
brute force manner) that all trajectories remain consistent
with input constraints and stability vehicle bounds. This
allows use of a lattice that conforms to the road geometry
while maintaining a relatively low computation cost. Fig. 4
illustrates the process of pruning inconsistent trajectories and
conforming the lattice to the road.

B. Estimation of the Margin of control

The proposed margin-based approach to threat assessment
relies on the assumption that threat to a vehicle is inversely
proportional to the available control freedom, and therefore
to the maneuverability within a candidate homotopy. For
each candidate homotopy, the sequence of decisions from the
decision tree can be directly mapped to inequality constraints
in the vehicle’s input space. These inequality constraints
yield 2-dimensional convex polytopes bounding the range
of feasible vehicle inputs. Essentially, if we can compute the
volume inside this constrained region, we expect that this
will result in a rigorous metric to characterize the available
control freedom.

A planner searches the lattice to identify trajectories that
feasibly conform to each unique homotopy candidate. In
some cases, a homotopy candidate contains no feasible
trajectories and thus the associated navigation decision is
said to be infeasible. We note Nk is the number of feasible
trajectories in the kth corridor. The associated set is called
ψk and each trajectory from the set is referred as ψk,i with
i ranging from 1 to Nk. These trajectories take on discrete
values until the finite horizon time T . Instead of considering

each trajectory independently, we consider ψk,1:Nk(t) for
each t. Then, at each time step, the associated values are
plotted in the vehicle’s acceleration space, creating a scatter
plot. Computing the volume in acceleration space has the
advantage of being homogenous, compare to a typical input
space with the speed on the one hand and the steering
command on the other hand. To compute the margin of
control at this time step and for a specific corridor, one can
simply compute the convex hull of the scatter plot. A useful
metric can then be defined as the radius of the Chebyshev
ball that lies within the convex hull.

Fig. 5. Top: sorting of the trajectories according to homotopy belonging.
Bottom: Computation of the convex hulls and Chebyshev balls

Fig. 5. illustrates how distinct trajectories from a lattice
are sorted according to their membership in a particular
homotopy. In this case, among all homotopy candidates,
only five are feasible. On the top figure, black dots show
the potential locations of the host vehicle at a specific
time step (t=1.5 s). The black scatter plot is then mapped
into the vehicle’s acceleration space. The first step consists
of computing the convex hull of each group of points,
whose area is one possible metric to estimate the margin
of the homotopy. Another plausible metric is the area of
the Chebyshev ball, i.e. the largest ball circumscribed in the
convex hull. The center figure shows the convex hull and
the right figure the Chebyshev balls. The two metrics are
similar in principle but can yield different results depending
on the region geometric properties. For example, an area
metric can be interpreted as assessing the average margin of
the two acceleration inputs, whereas the Chebyshev metric
can be interpreted as assessing the minimal margin of the two
acceleration inputs. (Thus, a long rectangular space with a
small width can have a large area while the circumscribed
ball has a small radius.) Depending on the modeling of how
drivers perceive threat, one or the other can be used.

Each maneuver is defined over a given time horizon.
However, the final goal is to assess the overall margin, and
not its value at a specific instant. The previous mechanism
is therefore repeated at every time step. Various norms can
then be used to normalize the margin, such as the average,
Euclidian or minimum norm. Fig. 6. shows the Chebyshev
balls associated with the homotopy candidates at different



Fig. 6. Computation of the overall margin

time step. The overall margin is a normalization of the
individual computations.

IV. SIMULATION TESTING IN HIGHWAY SCENARIOS

The proposed threat assessment method was studied
in a Matlab simulation environment using the 4-wheeled
Ackermann-steered model to simulate a standard passenger
vehicle, whose weight is 1100kg and dimensions are 4 by 2
meters. The maximal steering angle was limited to 10 deg
and the lateral acceleration to 0.7g. The prediction horizon
was set to 3 seconds and discretized into 20 time steps (i.e.
sampling time of 150 ms). The lattice was chosen as a four
level-tree, meaning each edge of the lattice spans five time
steps. The reference speed was set to 20 m/s. The number of
lanes, the curvature of the road as well as the position and
speed of other vehicles were left customizable.

A. Static obstacles

The first example is the same as the one introduced in the
previous section, i.e. travel on a four lane road with two static
obstacles present in the second and third lanes. The vehicle
of interest is originally located in the third lane. In Fig. 7.,
the center of each disc corresponds to the possible location
of the vehicle in the corridor at a specific time step, and the
radius is proportional to the computed freedom of control.
For simplicity sake, only one representative of each set of
trajectories is plotted. This is the feasible path from the set
corresponds to the location at the Chebyshev center of the
convex hull. Although the value of the metric assessing the
margin of control is time varying, the area of the discs of the
same homotopy are here shown as a constant (computed as
the average over the entire horizon) to improve the clarity of
presentation. The right figure shows the temporal variation
of the control margin in each homotopy candidate.

Clearly, the blue and purple homotopies represent fields
of travel with the greatest maneuver freedom. As expected,
the dark-green strategy is the most hazardous as it requires
swerving between two obstacles that are near each other. The
two other choices appear less desirable due to a stronger
restriction of the input space: strong deceleration to stop
behind the obstacle for the light green homotopy, and a
severe steering maneuver for the red homotopy (to bypass
the top-most obstacle on the left).

Fig. 8. displays the computed margin considering either
the area of the convex hull (top) or the radius of the Cheby-
shev ball (bottom) for various norms. In this scenario, all
metrics yield an identical hierarchy regarding the degree of
control freedom afforded by each homotopy candidate. The
average norm and Euclidian norm yield similar results, while

Fig. 7. Display and evolution of the margin

minimum norm tends to minimize the difference between the
computed margins. The Chebyshev metric tends to increase
the difference between the two most desirable homotopy
candidates and the next two, compared to the convex hull
metric. The reason is that it depends on the minimal margin
in both input dimensions, whereas the convex hull metric
relies on the global volume, independent of the distribution.
In other words, homotopy candidates four and five have a
large margin in both inputs whereas candidates one and two
have a relatively comfortable margin only in one direction
(either steering for candidate 2 or throttle for candidate 1).

Fig. 8. Norm comparison and hierarchy of the desireness of homotopy
candidates, top = convex hull, bottom = Chebyshev ball

B. Evolution of threat

The first example considers the control margin in each
candidate homotopy at a particular instant of the driving task.
A threat estimate based on margin can then be leveraged to
plan the most desirable navigation option for an autonomous
system, or as a means to modulate a human’s input in a
semi-autonomous driver assistance system. To analyze how
threat assessment in each corridor evolves with time, we
extend the previous example by assuming that the operator
simply travels straight at a constant speed. As a result,
the threat posed to the vehicle increases as it nears the
obstacles without reacting. The figure below displays the
homotopy candidates and the associated control margin at
three different time steps, corresponding to distances of 25m,
40m, 55m to the obstacle in lane 3.



Fig. 9. Evolution of the threat

In the absence of a nearby obstacle, the most desirable
navigation decision is to drive straight at a constant speed.
As the vehicle nears the obstacle, changing lanes becomes
the most desirable navigation decision, as indicated by the
larger margin for avoidance maneuvers shown in the middle
subfigure. There, remaining in the lane requires a strong
braking input and loses its attractiveness compared to the
(purple and green) candidate homotopies that involve lane-
change maneuvers. (Note that the green corridor exhibits
reduced margin due to the presence of a second obstacle on
the second lane.) Finally, when the vehicle reaches a distance
of 25m to the obstacle, it has no option but to change lanes
because there is insufficient braking authority to stop the
vehicle and avoid collision.

C. Dynamic Environment

The final example involves a more complex scenario that
includes dynamic obstacles, lane merging and a lane-shifting
vehicle. In this scenario the fourth lane is being eliminated,
forcing the vehicle in the extreme right to merge to the
third lane, which is the current lane of the host vehicle. As
in the static case, the homotopy candidates are displayed
along with the associated control margin. We here assume
perfect knowledge of the state evolution of the dynamic
obstacles. In the dark blue case, the host vehicle travels
straight and accelerates to pass ahead of the vehicle in the
fourth lane, before it merges into the third lane. In the light
blue navigation strategy, the host vehicle brakes to allow
the other vehicle to merge in front. The green homotopy
candidate offers the largest margin and corresponds to the
case where the vehicle merges to the second lane to avoid
the merging vehicle entirely. The red and yellow candidates
offer comparatively little control freedom.

V. CONCLUSION

A margin-based approach for threat assessment has been
introduced that yields reasonable results and can accom-
modate complex scenarios with dynamic environments. A
lattice structure is employed that provides a flexible manner
to characterize the control freedom associated with candidate

Fig. 10. Homotopy candidates and associated control freedom

homotopies. Future work will focus on methods for integrat-
ing this threat estimate information into semi-autonomous or
autonomous control architectures.
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