
On-Line Path Generation for Unmanned Aerial Vehicles Using
B-Spline Path Templates

Dongwon Jung∗

Korea Aerospace Research Institute, Daejeon 305-333, Republic of Korea

and

Panagiotis Tsiotras†

Georgia Institute of Technology, Atlanta, Georgia 30332-0150

DOI: 10.2514/1.60780

The problem of generating a smooth reference path, given a finite family of discrete, locally optimal paths, is

investigated. A finite discretization of the environment results in a sequence of obstacle-free square cells. The

generated path must lie inside the channel generated by these obstacle-free cells, while minimizing certain

performance criteria. Two constrained optimization problems are formulated and solved subject to the given

geometric (linear) constraints and boundary conditions in order to generate a library of B-spline path templates

offline. These templates are recalled during implementation and aremerged together on the fly in order to construct a

smooth and feasible reference path to be followed by a closed-loop tracking controller. Combinedwith a discrete path

planner, the proposed algorithm provides a complete solution to the obstacle-free path-generation problem for an

unmanned aerial vehicle in a computationally efficient manner, which is suitable for real-time implementation.

Nomenclature

b�u� = two-dimensional B-spline curve parameterized
by the knot u

bj = jth control points of two-dimensional B-spline
curve

ci;j = cell at �i; j� location
eL, eR = left and right bounding envelopes of a two-

dimensional B-spline curve
h = cell size
Hk = convex hull of Sk and Sk�1

J �·; ·� = cost function
L�·; ·� = linear interpolation operator
lkL, l

k
R = kth line segments of the left and right bounding

envelopes
ntL , ntR = number of concave corner points of tL and tR
Ndj �u� = B-spline basis function of degree d
P�u�,Q�v� = two-dimensional B-spline curves to be merged
Pi, Qi = control points of P�u� and Q�v�
R�w� = merged two-dimensional B-spline curve param-

eterized by the knot w
Sk = axis-aligned bounding box at the kth Greville

abscissa
tL, tR = left and right channel polygons
fukg = nondecreasing knot sequence
ukL, u

k
R = feature points obtained by intersecting two con-

secutive convex hulls
u� = Greville abscissa
vki = line segments connecting the corners of Sk and

Sk�1�i � 1; : : : ; 4�
wm = merging knot

α = weight constant
δi = perturbation from the control points of Qi
ϵi = perturbation from the control points of Pi
κ = curvature of the curve
ψ = tangent direction

I. Introduction

T HE autonomous guidance and navigation of mobile vehicles
(e.g., “agents”) is an active research topic owing to its

importance for the development of intelligent, fully autonomous
vehicles with increased decision-making capabilities. For the case of
unmanned aerial vehicles (UAVs) in particular, the ability of fully
automated guidance and navigation allows UAVs to accomplish
missions under various scenarios and with minimal human interven-
tion. Because of the stringent operational requirements and the
restrictions imposed on UAVs for autonomy, safety, and efficiency,
fully autonomous guidance and navigation (including path planning,
path generation, and path following) for low-cost UAVs with limited
onboard computational and power resources is a real challenge.
The guidance and navigation of aerial vehicles is being

traditionally accomplished by using a hierarchical control structure
[1–3], which may include path-planning, path-generation, and path-
following control layers. Typically, a simple tracking controller
operates over a sequence of waypoints, which are computed by a
(usually human) mission planner. Because the waypoint generation
problem is done at a geometric level (e.g., avoid obstacles in the
environment, visit certain areas of interest) there is no a priori
guarantee that an arbitrary path connecting these waypoints will
be flyable, especially for fixed-wing UAVs. In other words, the
geometric and trajectory generation layers of the problem are
decoupled in a typical hierarchical control structure. The lower-level
trajectory tracking controller is given the task to fly the vehicle while
trying to follow the given path. There is no a priori guarantee that the
path to be followed is feasible, however. This dichotomy resulting
from neglecting thevehicle dynamics during the path-generation step
leads to suboptimal performance. Optimal (and feasible) trajectories
can be generated using a plethora of available trajectory generation
algorithms, but these solutions are typically computationally
expensive, have convergence issues, and are therefore not amenable
to on-line, embedded execution.
A better solution to the guidance and navigation control problem

should take into account the dynamic constraints of the vehicle,
resulting in a smooth, flyable path passing through the given
waypoints. Furthermore, the waypoints must be connected such that

Presented as Paper 2008-7135 at the AIAA Guidance, Navigation and
Control Conference and Exhibit, Honolulu, Hawaii, 18–21 August 2008;
received 16 October 2012; revision received 14 February 2013; accepted for
publication 14 February 2013; published online XX epubMonth XXXX.
Copyright © 2013 by Dongwon Jung and Panagiotis Tsiotras. Published by
theAmerican Institute ofAeronautics andAstronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center,
Inc., 222 RosewoodDrive, Danvers,MA 01923; include the code 1533-3884/
YYand $10.00 in correspondence with the CCC.

*Senior Researcher, Mission Design Department; djung@kari.re.kr.
Member AIAA.

†Dean’s Professor, School ofAerospaceEngineering; tsiotras@gatech.edu.
Fellow AIAA (Corresponding Author).

1

1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. , No. ,

http://dx.doi.org/

the generated smooth path preserves the continuity of the curvature
between successive arc segments, while minimizing the maximum
curvature [4,5]. In [6], the authors proposed a dynamic trajectory
smoothing algorithm by which the path segments are smoothed
to yield an extremal trajectory with explicit consideration of the
kinematic constraints of a fixed-wing UAV. The preceding references
deal with smoothness with respect to the continuity of curvature and
curvature derivative. However, careful consideration should be taken
to preserve the continuity among line and arc segments.
To avoid such problems, in this paper, piecewise polynomial

B-splines are used as path templates to generate a feasible path. By
incorporating a high-level path-planning algorithm such as D�-lite
[7], one obtains a numerically efficient on-line path-smoothing
algorithm by merging together a set of B-spline path templates in
order to generate a smooth reference path.
Splines have been widely adopted when computing smooth,

dynamically feasible trajectories for UAVs. A series of cubic splines
was employed in [8] to connect straight line segments in a near-
optimal manner. The authors of [9] presented an implicit time
parameterization of the trajectory using a B-spline representation.
The design of an obstacle-avoiding B-spline path has been dealt with
by Berglund et al. in [10], whereas the real-time modification of a
spline path has been proposed in [11]. Most recently, the authors
of [12] proposed an algorithm for constructing collision-free paths
using cubicB-splines havingbounded, continuous curvatures. Bézier
splines were also used in [13,14] to generate trajectories that satisfy
dynamic constraints of autonomous vehicles. The advantage of
employing (B-)splines for generating a smooth path stems from the
fact that the path can be represented using a small number of
parameters. This offers significant benefits when encoding a smooth
path using splines and also when optimizing the path shape. Splines
are therefore ideally suitable for onboard implementation.
The path-generation problem using B-splines involves finding the

solution of a constrained optimization problem not only to avoid
forbidden regions but also to generate flyable trajectories. In [15],
a polygonal channel composed of piecewise polygonal lines
(polylines) is assumed to be given. A B-spline curve that remains
within the channel is found by quadratic programming. This was
made possible by adopting tight linear envelopes for the splines [16],
by which a B-spline is represented as an approximate bounding
polygon. In this paper, the results of [15,16] are extended in two
dimensions by incorporating two-dimensional (2-D) B-spline curves
in the associated constrained optimization problem. Instead of
smoothing the entire path from the initial position to the final goal,
one smooths the path segments over a finite planning horizon with
respect to the current position of the UAV. To this end, one first
generates a set of all possible combinations of discrete path sequences
within a finite planning horizon. One thus obtains the corresponding
channel constraints; the path templates are computed by (offline)
optimization. These path templates are stored in a library for on-line
implementation. Each B-spline segment from these path templates is
merged to the existing B-spline path to generate a reference path on-
line, while preserving second-order continuity along the entire path.
The proposed approach has the benefit of generating a reference

path that is appropriate for a complex environment with obstacles.
When compared with previous approaches, for instance [6,8,11],
the proposed approach has the following advantages. First, it can
easily handle obstacles in the environment, whereas the extremal
trajectories between the waypoints in [6] were computed without
consideration to obstacles in the environment. In addition, our
algorithm is fast and generates a feasible path, whereas the smoothing
algorithm proposed in [8] requires on-line optimization, which is
typically a computationally expensive operation. The proposed
algorithm has similarities with the algorithm proposed in [11], in
which B-splines are also used to generate smooth paths. However,
contrary to our approach, in [11], the path was defined using a single
B-spline. Real-time modification therefore implies the recalculation
of the relevant control points in order to avoid obstacles. If the length
of the path becomes too long, then themodification of a B-spline path
might become cumbersome. In our case, the on-line modification of
the reference path for a dynamically changing environment is dealt

with by incrementally merging the template B-splines in accordance
to a high-level path planner, which is a fast and numerically reliable
process.

II. Tight Envelopes for B-Spline Curves

In this section, a brief description of the tight envelope generation
for one-dimensional (1-D) B-spline curves is given along with an
extension of the results to two dimensions. This envelope provides
quantitative bounds of all allowable B-spline curves with respect to
the given control points. In [16], the authors derived explicit bounds
for the 1-D case, proving that the bounds are tight and quantitative
enough to provide the B-spline’s salient information [17]. The same
authors also showed that these bounds are piecewise linear. These
envelopes are crucial because they will be used in Sec. III to simplify
the optimization problem of finding the best (e.g., minimum length,
minimum curvature) spline inside an obstacle-free channel.

A. Tight Envelopes for B-Spline Functions

In this section, the construction of tight envelopes for 1-D
B-splines [16] is briefly reviewed. Thiswill allow the extension of the
envelope construction to two dimensions, which is given in the next
section. A 1-D B-spline b�u� is expressed by [18]

b�u� �
Xm
j�0

bjN
d
j �u� (1)

where bj are the control points and Ndj �u� are the B-spline basis
functions of degree d, which are defined over a nondecreasing knot
sequence fukgm�d�1k�0 such that u0 ≤ u1 ≤ · · ·≤ um�d�1. The number
of knots is determined by the sum of the number of control points
(m� 1) and the B-spline order (d� 1). The first and the last knots of
the sequence should have multiplicity (d� 1) for a B-spline to pass
through the first and the last control points; that is, u0 � u1 � · · ·�
ud and um�1 � um�2 � · · ·� um�d�1, respectively. The B-spline
basis functions are computed by the well-known Cox–de Boor
recursion formulas [18].
Among the several useful properties of theB-spline basis functions

is their local support property [18], which offers flexibility in terms of
curve design because it allows local modification of a B-spline curve
without changing the entire shape of the curve.
To obtain bounds on the allowable splines, let the control polygon

of the B-spline l�u� be defined by piecewise line segments
connecting the control points bj at the Greville abscissae [19]:

u�j �
Xj�d
i�j�1

ui∕d (2)

such that at each Greville abscissa the equation l�u�j � � bj is
satisfied. Accordingly, the envelope of the B-spline specifies a bound
on the distance between b�u� and its control polygon l�u�. Hence,
this envelope provides a good estimate of the shape of the B-spline by
carrying most of the salient information about the curve itself. The
envelopes derived in [16] are expressed in terms of the weighted
second difference of the control points,

Δ2bj ≜ b 0j�1 − b 0j; b 0j �
bj − bj−1
u�j − u�j−1

(3)

and by the nonnegative convex functions over the interval �u�k ; u�k�1�
(k � 0; 1; : : : ; m) given as follows:

βki�u� �
�P �k

j�1�u�j − u�i �Ndj �u� i > k;P
i
j�k�u�i − u�j �Ndj �u� j ≤ k

(4)

where k and k denote, respectively, the index of the first and the last
B-spline basis functions that are nonzero over the corresponding
interval. The distance between the spline functionb�u� and its control
polygon l�u� is then calculated as follows [20]:

2 JUNG AND TSIOTRAS

b�u� − l�u� �
Xk
i�k

Δ2biβki�u� (5)

Because the βki are nonnegative and convex functions over the
corresponding interval �u�k ; u�k�1�, their maxima occur at each
endpoint of the interval, i.e., at each Greville abscissa. Then, the
piecewise linear functions e�u� and �e�u� that interpolate their values
at each Greville abscissa can be employed to represent tight
envelopes of the spline function [20]. Subsequently, the maximal
bounds from the B-spline function to its control polygon are obtained
by the simple inequalities

e�u� ≤ b�u� ≤ �e�u� (6)

Figure 1 depicts a cubic B-spline function b�u� over the knot
sequence u ∈ �0; 1�. The control polygon is drawn by a dashed line,
whereas the bounding envelopes e�u� and �e�u� are drawn by dotted
and dashed-dot lines, respectively.

B. Tight Envelopes for Planar B-Spline Curves

The extension to the 2-D case follows easily from the results in
the preceding section. A 2-D planar B-spline curve b�u� �
�bx�u�by�u��⊤ is expressed in terms of the B-spline basis functions as
follows:

b�u� �
Xm
j�0
bjN

d
j �u� (7)

where bj � �bxjb
y
j �⊤ are the corresponding control points in the x and

y directions. It will be assumed that the B-spline curve is clamped at
the first and last control points by assigning the (d� 1) multiple
knots at the first and last knots.
At each Greville abscissa, u�k , the 1-D bounds in Eq. (6) generate a

2-D bounding box for which the x and y axes are determined by the
1-D envelope, as follows:

ei�u�k � ≤ bi�u�k� ≤ �ei�u�k�; i � x; y (8)

Let the axis-aligned bounding box at the kth Greville abscissa be
denoted by Sk. Then, the curve segment b�u�, for u ∈ �u�k ; u�k�1�, lies
in the convex combination of Sk and the consecutive box Sk�1, owing
to the linearity of e�u� and �e�u�. This is denoted by a linear
interpolation between two bounding boxes:

Hk � L�Sk; Sk�1� (9)

Note that Hk is the convex hull of Sk and Sk�1, which is
circumscribed by the edges of Sk and Sk�1 and the lines that connect
the corners of Sk and Sk�1. Let vki (i � 1; : : : ; 4) be the line segments
connecting the corresponding corners of Sk and Sk�1. Then, vk1
connects the lower-left corner of Sk to the lower-left corner of Sk�1,
vk2 connects the lower-right corner of S

k to the lower-right corner of
Sk�1, and so on. Figure 2 shows these line segments. Asmentioned in
the preceding sentences, the convex hull Hk over the knot u ∈
�u�k ; u�k�1� consists of parts of the edges of Sk and Sk�1 and exactly
two extra line segments chosen among vki . By the union of each
convex hullHk, where k � 0; : : : ; m, the 2-D bounding envelope of
the B-spline curve is obtained; it is represented by two piecewise
linear polygonal lines eL and eR, denoted by the left envelope and the
right envelope with respect to the control polygon, respectively.
These polylines are composed of a set of line segments lkL and lkR,
where k � 0; : : : ; m, which are referenced by the feature points ukL
andukR, respectively. These feature points are obtained by intersecting
two consecutive convex hulls; that is, the features points are chosen to
be the intersecting points among vkj .
It is possible, however, that two line segments do not intersect.

Consider, for instance, the line segments vk−11 and vk2 in Fig. 2. The
feature point ukR is inferred from the extended line segments of vk−11

and vk2; hence, the line segments lk−1R and lkR are obtained with
respect to ukR. Consequently, the line segments lkL and l

k
R are joined

together to form piecewise linear envelopes of the B-spline curve eL
and eR, respectively. Figure 3 shows an example of the 2-D bounding
envelopes of a given B-spline curve, which reveals that the entire
B-spline curve stays inside the envelope generated by eL and eR.

III. Obstacle-Avoidance Path Optimization

In this section, B-spline curves are employed as primitives for path
design. A constrained optimization problem is formulated by con-
structing channel constraints, ensuring that the designed path stays
inside the given polygonal channel, which is assumed to be obstacle
free. Section IV, later on, describes how such a channel is generated
by connecting sequences of obstacle-free cells in the environment
using a graph search algorithm, such as A�, D�, or D�-lite.

A. Channel Constraints for Obstacle Avoidance

In the sequel, the term channel refers to a feasible region in the
environment over which a geometric path will be optimized. It is
assumed that two nonintersecting polylines constitute a channel,
separating the feasible region from the obstacle region. Hence, one
can compute a path that avoids obstacles, while satisfying the given
performance criteria.
For the 1-D B-spline function optimization case [15], and given

nonintersecting channel polygons, the inequality constraints that
ensure feasibility in terms of the lower and upper envelopes e�u� and
�e�u� are given in Eq. (6). These inequalities provide bounds with
respect to the chosen parameters of theB-spline function (namely, the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Knot parameter

1D
 B

−
sp

lin
e

fu
nc

tio
n

[m
]

: control polygon
: lower envelope
: upper envelope

Fig. 1 1-D cubic B-spline bounding envelopes. The control polygon
stays inside the bounding envelopes, and so does the B-spline curve.

Fig. 2 Constructing the bounding envelopes of a planar curve from
neighboring bounding boxes. The bounding envelope is characterized by
a union of convex hulls, which is represented by piecewise linear
polygonal lines.

JUNG AND TSIOTRAS 3

control points) such that the B-spline function stays between the
given polygons. For the 2-D case, because one is dealing with a
B-spline curve and not a B-spline function, the channel constraints
should be formulated in terms of geometric constraints, as opposed to
the linear inequalities with respect to the control point parameters.
Nonetheless, it is crucial that these constraint equations capture the
condition that the given geometric channel polygon contains the
entire envelope of the B-spline curve.
To this end, let O ⊂ R2 denote the obstacle region. A signed

distance-map function f�x;l�, x ∈ R2 with respect to a polygonal
line l is introduced in order to provide a relative distance metric for
formulating geometric constraints as follows:

f�x;l� ≜ s minfd1; d2g (10)

where d1 ∈ D1 � fkx − cik; i � 0; · · · ; qg is the distance from a
point x to a corner point ci of the polygonal line l, d2 ∈ D2 �
fd�x;li�; i � 0; · · · ; q − 1g is the perpendicular distance from x to
the line segmentli that connects two consecutive corner points ci and
ci�1, and s is a sign value that dictates the location of the point xwith
respect to l as follows:

s �

8<
:
�1; x ∈ O;
0; x ∈ l;
−1; x ∈= O

(11)

Figure 4 shows the distance-map function with respect to an arbitrary
zigzag-shape polygonal line. Far-away points from the line have

bigger absolute values, whereas points close to the line yield smaller
values close to zero. The information about the relative location of a
point with respect to the polygonal line is determined by its sign.
To formulate inequality constraints similar to those in [15], one

makes use of the fact that the envelopes of a planar B-spline are
characterized by the feature points ukL and u

k
R of the piecewise linear

envelopes eL and eR, shown in Fig. 2. It then follows that, if all the
feature points are placed inside the feasible region, then each
bounding box at u � u�k (and, hence, also the envelopes of the
B-spline curve) is most likely to be contained inside the feasible
region as well. To this end, let tL and tR be the polygonal lines
representing the obstacle boundaries. Using Eq. (10), the feature
points ukL and u

k
R at each Greville abscissa u � u�k should satisfy the

following inequality expressions:

f�ukL; tL� ≤ 0; f�ukR; tR� ≤ 0 (12)

where k � 0; : : : ; m.
In addition to inequalities (12), extra constraints are required to

impose the conditions of complete inclusion of the envelopes inside
the feasible channel. Recall that the envelope of the B-spline curve is
derived by the convex hull of each bounding box, which results in the
envelope being represented by piecewise polygonal lines. As a result,
not only each bounding box atu � u�k of theB-spline curve should be
contained in the feasible region, as discussed in the preceding
paragraph, but also the convex hull is required to be contained in the
feasible region as well. Because the obstacle boundaries are also
represented by polylines, in order to ensure that the convex hull of the
B-spline envelope completely lies inside the channel, one must make
sure that the corner points of the obstacle boundaries are placed
outside the envelope. Accordingly, the obstacle region is excluded
from the B-spline envelope. It should be noted that the convex corner
points of the obstacle boundary are implicitly excluded from the
envelope of theB-spline.Hence, one only applies this condition to the
concave corners of tL and tR with respect to the obstacle region, as
marked by the triangles in Fig. 5. This results in a set of inequality
constraints using Eq. (10) at each concave corner point, in conjunc-
tion with the piecewise linear envelopes as follows:

f�ctLl ; eL� ≥ 0; f�ctRm ; eR� ≥ 0 (13)

where l � 1; : : : ; ntL , where ntL is the number of concave corner
points of tL and m � 1; : : : ; ntR , and where ntR is the number of
concave corner points of tR. Note that the positive sign in Eqs. (13)
implies that the corner points are excluded from the bounding
envelope of the B-spline curve. Consequently, the inequality
constraints in Eqs. (12) and (13) ensure that the envelope of the
B-spline stays inside the channel, as depicted in Fig. 5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

: Control polygon
: B−spline

Fig. 3 Bounding envelopes eL and eR of 2-D cubic B-spline.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y
(m

)

x (m)

Fig. 4 Signed distancemap for an arbitrary polygonal line. The feasible
region is characterized by the negative function values.

Fig. 5 Geometric constraints formulation. The channel is given by two
polylines tL and tR, the envelope of the B-spline is drawn by the dashed
lines, which is supposed to stay inside the channel.

4 JUNG AND TSIOTRAS

B. Smooth Curve Optimization

In this section, the problem of designing a smooth curve using a
quartic B-spline in terms of the knot parameter u is considered. A
quartic B-spline preserves continuity up to the third-order derivative,
thus resulting in the continuity of the derivative of the curvature.
Without loss of generality, the knot parameter is selected asu ∈ �0; 1�,
and the first and last knots have a multiplicity of five such that
u0 � · · ·� u4 � 0 and um�1 � · · ·� um�5 � 1. Consequently, the
B-spline curve will be clamped at, or pass through, the first and last
control points.
One manipulates the (m� 1) control points of a B-spline curve

given by bj � �bxjb
y
j �⊤ (j � 0; : : : ; m). These have a direct influence

on the shape of the curve. Because the shape of the curve is closely
related to the given channel geometry that encloses the curve, and
the optimization is affected by the number of control points, it is
advisable to opt for the minimum number of control points, while
taking into account the complexity of the given channel geometry.
The knot sequence is chosen arbitrarily for some nondecreasing
sequence of numbers in the interval (0, 1), so that the number of knots
matches that of the control points. It should be noted that the number
of knots and control points may be altered during the optimization
process by inserting knots or control points if the envelopes of the
B-spline curve need to be refined [15].
Two different performance indices are adopted in this work to

optimize B-spline curves in terms of attaining two distinct objectives:
in order to keep the B-spline curve as close as possible to a straight
line (say, for instance, one wishes the UAV to travel with the
maximum allowable speed), for which Δ2bj � 0, one employs the
cost function

J 1�fbjgmj�0; fukg
m�5
k�0 � �

Xm−1
j�1
�Δ2bj�⊤�Δ2bj� (14)

The performance index (14) minimizes the curvature variation of the
resulting B-spline. On the other hand, note that the arc length of the
B-spline curve is approximately captured by the total length of
the control polygon l�u�. Hence, for a shortest path, one employs a
cost function that is the length of the piecewise control polygon as
follows:

J 2�fbjgmj�0� �
Xm−1
j�0

��lj��2 (15)

The constraints for the optimization problem consist of both equality
and inequality constraints. The equality constraints stipulate
boundary conditions for the position, tangent direction, and curvature
at each endpoint at u0 � 0 and um�5 � 1 as follows:

b�0� � p0; b�1� � pf (16a)

ψ�0� � ψ0; ψ�1� � ψf (16b)

κ�0� � κ0; κ�1� � κf (16c)

whereψ�u� and κ�u� are the tangent direction and the curvature of the
B-spline curve at each knotu, respectively. The channel constraints in
Eqs. (12) and (13) become the inequality constraints for the
optimization problem.
Using the ingredients discussed so far, the path optimization

problem can then be stated as follows. Given a knot sequence
fukgm�5k�0 , two polygonal lines for the channel geometry, and
boundary conditions for each endpoint, find a B-spline curve, which
minimizes the cost function in Eq. (14) or (15), subject to the equality
constraints in Eqs. (16) and the inequality constraints in Eqs. (12)
and (13).
A standard sequential quadratic programming solver for this

optimization problem has been used [21]. Figure 6a shows the
optimization result using the cost function in Eq. (14). The
constructed quartic B-spline curve is drawn by a solid line, and the

bounding envelopes are drawn by dashed and dashed-dot lines. The
B-spline curve, as well as the envelopes, stay inside the specified
channel polygon. For the case of the shortest curve that involves the
cost function in Eq. (15), Fig. 6b reveals that the computed B-spline
curve is indeed shorter than the preceding case, albeit the maximum
curvature jκjmax is a bit larger than that of the preceding case
(equivalently, one might want to compare the curvature “energy”
∫ κ2 ds along the curve). In the following, a combined cost function
has been used, emphasizing the shortest path criterion in Eq. (15).

IV. Path Templates for Obstacle-Free Channels

In this section, a library of “path templates” is constructed, which
are to be used as the elementary path primitives for on-line path
generation. These templates contain a set of planar B-spline curves,
which will be regarded as local path segments to smooth a discrete
path sequence. It is assumed that the obstacle-free discrete path
sequence is provided by a high-level path planner, such as the
multiresolution path-planning algorithm proposed in [22,23], or a
similar discrete search algorithm, such as A� or D�. The algorithm
constructs an obstacle-free channel such that the discrete path
sequence is represented by a series of square cells. For all possible
channels that correspond to path sequences over a finite planning
horizon, a set of B-spline curves included in this channel is computed
via the path optimization, as discussed in the preceding section.
Different channel constraints and boundary conditions are imposed
in each case, resulting in a different set of smooth local path
primitives.

A. Path Rules Within a Finite Horizon

Suppose the world environment is decomposed into uniform cells
consisting of square cells ck;l of size 2h × 2h. A four-connectivity
relationship between neighboring cells is henceforth adopted for
convenience.Ahigh-level path planner computes an optimal path as a
sequence of cells from the current cell to the goal cell. The resulting
path sequence can be expressed as a pathword, by which transitions
toward the north, south, east, and west directions between two cells
are encoded by N, S, E, and W, respectively. One thus specifies the
range of interest within a four-cell horizon from the current cell, as
shown in Fig. 7. If the goal cell is located inside the horizon, we are
finished. If the goal set is outside the horizon, note that any path
sequencemust necessarily pass through one of the cells at the horizon
boundary to reach the goal. Let a local path sequence from the current
cell to any boundary cell be a local path instance. If the path is
supposed to visit each cell only once, the number of all possible
combinations of local path instances is finite. In addition, by taking
advantage of the symmetry about the x axis (east direction) and y axis
(north direction), one needs to investigate only local path instances
restricted to one quadrant of the original 7 × 7 cell grid.
Without loss of generality, one may thus consider local path

instances only inside the first quadrant, as shown in Fig. 8. Further-
more, by taking advantage of the symmetry about the diagonal axis,
one may only consider local path templates that start from the current
cell and end at one of the top boundary cells c0;3, c1;3, c2;3, and c3;3.
By applying the symmetric operations along the horizontal, vertical,
and diagonal axes, any local path instances can be deduced from these
path templates. To find all possible combinations of path sequences to
reach these cells, one must describe the necessary path rules to
determine a unique local path template. These are listed as follows:
1) For the terminal conditions, suppose a local path instance is

restricted inside the first quadrant; that is, it never goes outside the
horizon before it reaches a terminal cell on the top boundary. The
terminal cell should be one of the top boundary cells, except the cell
c3;3. The reason for this is attributed to the four connectivity between
cells. A path instance that reaches c3;3 necessarily passes through one
of the adjacent boundary cells, either c2;3 or c3;2. Thus, one regards
the path instances to the cell c3;3 as a subset of the path instances to
c2;3 and excludes those from further consideration. To come upwith a
path sequence that reaches one of the boundary cells, a corresponding
pathword should have a certain number of occurrences ofN, S, E, and
W. For example, in order to reach the top boundary cells, the number

JUNG AND TSIOTRAS 5

of occurrence ofNminus the number of occurrence of S is threewhen
a four-cell horizon is considered.
2) For the self-avoiding path, the path must visit each cell exactly

once, never intersecting itself. From this rule, one explicitly prevents
pathological cases such as a cyclic loop in the path templates. This
type of path can be described by a self-avoiding walk [24] on a
square-cell grid. The total number of self-avoiding walks in anm × n
grid, which starts from a corner and ends at the opposite corner by
only horizontal and vertical steps, is computed using a recurrence
relation [24]. It follows that the candidates of self-avoiding paths
from the current cell c0;0 to the top boundary cells are chosen from the
self-avoiding walk on am × 3 grid, wherem � 0; 1; 2. Among these
candidates, only a certain number of self-avoiding paths will be
considered in the path templates.
3) For path optimality, the higher-level path-planning algorithm

provides the optimal cell sequence to be followed. The optimal cell
sequence is calculated so as to minimize the accumulated transition
cost from the current cell to the goal cell. Typically, a directed edge
cost is assigned to each transition to N, S, E, and W cells, taking into
account the cost associated with the cells as follows:

J �u; v� � f�v� � αg�u; v� (17)

where f�v� is a positive obstacle cost associated with the target cell v,
g�u; v� is theManhattan distance cost between u and v, and α ≥ 0 is a
weight constant. Consider, for example, the path corresponding to the
pathword ENW, which represents a transition among four cells u, v,

A

B

C

D

Fig. 7 Examples of path sequences starting from the current cell at the
center. We adopt four connectivity between cells. The goal cell is located

beyond the horizon. Possible path sequences are the path A, written as
NENEN : : : ; the path B, written as EESE : : : ; the path C, written as
SSEES : : : ; and the path D, written as WNNWW : : : .

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Smooth Curve Optimization

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

Curve length = 5.094

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Knot parameter

|κ
| [

m
−

1]

Curvature distribution over the curve

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Shortest Curve Optimization

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

Curve length = 5.058

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Knot parameter

|κ
| [

m
−

1]

Curvature distribution over the curve

a) Smooth curve in the channel

b) Shortest curve in the channel
Fig. 6 Two optimization results.

6 JUNG AND TSIOTRAS

w, and z in this order. The accumulated cost for this transition is
computed by

J �u; v� � J �v; w� � J �w; z� > J �u; z� (18)

which turns out to be greater than the direct transition cost from u to z
by a single path sequence N. It follows that the transition ENW is not
optimal and neither are ESW, NES, NWS and the other remaining
pathwords. Consequently, we disregard any nonoptimal cell
sequence when investigating the candidates of self-avoiding paths.
When establishing the preceding path rules, it was assumed that

each local path template necessarily ends up at one of the top
boundary cells. In certain cases, however, the path sequence may be
given in such a way that it crosses the quadrant boundary. In other
words, the path sequence that starts from the current cell at the center
of grid is composed of cells belonging to more than one quadrant. If
this is the case, one can infer that the path sequence will finally exit
the finite horizon after passing through at least two quadrants, which
makes it difficult to take advantage of the symmetry of the templates.
In particular, if onewants to consider all possibilities of interquadrant
transitions, the number of templates will increase, thus losing the
benefit of small-sized templates. To retain the symmetry of the
templates, one considers cells between the quadrants as additional
terminal cells. Applying the path rules to a 7 × 7 cell grid (thus a 4 × 4
cell grid for the first quadrant), only the cell c0;2 (see Fig. 8) can be
considered as an additional terminal cell. The other cells on the y axis

cannot be terminal cells because the local path instances reaching
them would conflict with the path rules discussed in the preceding
paragraphs. Any local path instance starting from the center cell to
c0;2, satisfying the path rules, is appended to the path templates.
Following the preceding path rules, one finally ends up with the

path templates for the local path instances for the first quadrant. These
are summarized in Table 1. Figure 9 shows an example of using the
path templates for a given path sequence. The starting cell is located
at the center, whereas the path sequence was computed by avoiding
the shaded obstacle cells. For this example, in order to reach the goal
cell, five local path instances are required to represent the overall path
sequence. To search for the path templates, one first gets the actual
pathwords that correspond to each of the local path instances. Then,
one associates these pathwords to the first quadrant by using the
required symmetry operations, that is, the horizontal (H), vertical (V),
or diagonal (D) reflections. One can then identify the corresponding
entry in the path templates. The table in Fig. 9 illustrates that five
different path templates are used in order to construct the composite
path from the starting cell to the goal cell for the example shown.

B. Construction of B-Spline Path Templates

The B-spline path templates consist of a set of B-spline curves
inside the corresponding channels. A channel corresponding to an
optimal path sequence over a finite planning horizon is determined in
a manner such that the outmost border lines of each cell yield a
channel polygon. The channel polygon is then divided by two left
and right polylines, which serve as channel constrains during
optimization. For the sake of convenience, the boundary conditions
for each B-spline curve are imposed such that the B-spline curve
starts from the center of the first cell of the local path instance and
ends at the center of the last cell of the local path instance. The tangent
directions at each end of the curve are imposed such that they direct
toward the center of the next adjacent cell, whereas the curvature
values are all set to zero. Subsequently, the optimization problem
discussed in Sec. III is solved using the composite cost Eq. (14) or
(15), subject to a set of channel constraints and the associated
boundary conditions. Figure 10 shows the results of this optimization
for the B-spline path templates corresponding to each local path
instance shown in Table 1.

Fig. 8 Local path instances in the first quadrant. From the additional

symmetry about the diagonal axis, it is possible to transform the path
instance drawnby adashed line (NEENE) to the path instance drawnbya
solid line (ENNEN).Path rules are given to determine several uniquepath
instances to reach the cell at the top boundary.

Table 1 Path templates for local path instances
on the first quadrant

Destination cell Pathwords

c0;3 NNN, ENNWN, EENNWWN
c1;3 NNEN, ENNN, EENNWN
c2;3 NNEEN, NENEN, ENNEN, ENENN, EENNN
c0;2 ENNW, EENNWW

2

S 1

3

G

5

4

Fig. 9 Example incorporating the path templates on a complex path sequence. Five local path instances are connected to one another in order to reach the
goal cell. The actual pathwords are recovered from the path templates with the corresponding symmetry operations of the H, V, or D reflections.

JUNG AND TSIOTRAS 7

V. On-Line Path-Smoothing Algorithm

The proposed path-smoothing algorithm computes a composite
B-spline curve that smooths the discrete path sequence obtained by
the high-level path planner. When combining the B-spline curves in
the templates into a composite B-spline curve, it is necessary to keep
the composite B-spline curve smooth, especially at the junctions
of two adjacent B-spline curves. This is achieved by employing a
B-spline merging technique. By merging a B-spline path template
into the existing B-spline path curve, it is shown that a single, non-
fragmented B-spline path can be computed. Thus, one avoids using
transient B-splines and a complicated switching logic, aswas the case
in [25]. Additionally, large curvature variations resulting from the use
of transient B-splines are effectively eliminated, thus resulting in a
smoother path.

A. Approximate Merging of B-Spline Path Segments

Approximate merging of two B-spline curves is the process of
combining two, ormore, B-spline curves into a single B-spline curve,
for which the shape approximates the original B-spline curves as
close as possible. It is assumed that the B-splines to be merged have
the same degree. During the merging process it is necessary to
recalculate some control points to alter the shape of the curves. It is
also necessary to reparameterize each knot vector to be consistent
with the newly computed control points. To accomplish the
approximate merging, we adopt the merging algorithm proposed by
Tai et al. [26] along with some additional conditions in order to
accommodate the channel constraints introduced in Sec. III.A.
Let P�u� and Q�v� be two B-splines of the same degree p, which

are adjacent to each other. Let the knot vectors be denoted by

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]
Y

 c
oo

rd
in

at
e

[m
]

−150 0 150 300 450 600
−150

0

150

300

450

600

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

a) NNN b) ENNWN c) EENNWWN d) NNEN

e) ENNN f) EENNWN g) NNEEN h) NENEN

i) ENNEN j) ENENN k) EENNN l) ENNW

m) EENNWW

Fig. 10 B-spline path templates from the channel optimization results. Each plot corresponds to the local path instance in Table 1.

8 JUNG AND TSIOTRAS

U � fu0; u1; : : : ; un1�pg and V � fv0; v1; : : : ; vn2�pg and let
the control points be denoted by Pi�i � 0; : : : ; n1� and
Qi�i � 0; : : : ; n2�, respectively. Without loss of generality, the two
B-splines are clamped at each endpoint with knot multiplicity
(p� 1). LetR�w� be themergedB-spline of degreep having control
points Ri�i � 0; 1; : : : ; n1 � n2 − p� 1� and a knot vector
W � fw0; w1; : : : ; wn1�n2�2g. One needs to ensure that the two
B-splines share common derivatives up to degree (p − 1) at a certain
merging knot wm (precise merging condition). It follows that
curvature continuity is thus automatically satisfied for a cubic
B-spline, and continuity of the derivative of the curvature is satisfied
for a quartic B-spline. Later on, we explain how to determine the
merging knot parameter wm in conjunction with the knot vectors of
the original B-spline curves. For now, themerging knot is assumed to
be chosen by the middle knot of the combined knot vector of the two
splines. Subsequently, the precise merging condition is given as
follows:

P�k��wm� � Q�k��wm�; k � 0; : : : ; p − 1 (19)

Using the basis function of the corresponding B-spline curves,
Eq. (19) can be arranged in terms of the control points of the kth
derivative of the B-splines, Pki and Q

k
i (k ≤ p − 1), given by

Xn1−k
i�n1−p

NUi;p−k�wm�Pki �
Xp−k
i�0

NVi;p−k�wm�Qki ; 0 ≤ k ≤ p − 1 (20)

whereNUi;p−k andN
V
i;k are the B-spline basis functions corresponding

to each knot vector U and V, respectively, where U ≜ f0; : : : ;
0; up�1; : : : ; um1−p−1; 1; : : : ; 1g and V ≜ f0; : : : ; 0; vp�1; : : : ;
vm2−p−1; 1; : : : ; 1g, where 0 ≤ k ≤ p − 1. The control points of the
kth derivatives of the curves Pki (0 ≤ k ≤ p − 1) can be computed
recursively in terms of the control points Pi as follows [18]:

Pki �
�

Pi; k � 0;
p−k�1

ui�p�1−ui�k
�Pk−1i�1 − Pk−1i �; k > 0 (21)

It should be noted that because Eq. (21) is linear in terms of Pi, it can

be rearranged as Pki �
Pn1

j�n1−p a
�k�
ij Pj, where �a

�k�
ij � is a matrix of

dimensions �p� 1 − k� × �p� 1� where k ≤ p − 1. Similarly, Qki
can be rearranged as Qki �

Pp
j�0 b

�k�
ij Qj. Using these equalities,

Eq. (20) can be rewritten in the following form:

Xn1
j�n1−p

� Xn1−k
i�n1−p

a�k�ij N
U
i;p−k�uwm�

�
Pj

−
Xp
j�0

�Xp−k
i�0

b�k�ij N
V
i;p−k�wm�

�
Qj � 0 (22)

To merge two B-splines P�u� and Q�v�, their control points are
modified so that these are preciselymerged. In other words, by taking
into account the linear independency of the B-spline basis functions
and the number of equations in Eq. (22), one perturbs (p� 1) control
points of each curve in order to impose the precisemerging condition.
To this end, let ϵi, (i � n1 − p; : : : ; n1) and δi, (i � 0; : : : ; p) be
perturbations from the original control points of Pi and Qi,
respectively. By incorporating these perturbations in Eq. (22), one
obtains,

Xn1
j�n1−p

A�k�j �Pj � ϵj� −
Xp
j�0

B�k�j �Qj � δj� � 0 (23)

where the symbols A�k�j and B�k�j have been used instead ofPn1−k
i�n1−p a

�k�
ij N

U
i�1;p−k�wm� and

Pp
i�0 b

�k�
ij N

V
i�1;p−k�wm�, respec-

tively.
In addition to the precise merging condition, the channel

constraints presented in Sec. III.A are also imposed in order to ensure

obstacle avoidance. For instance, suppose that two B-spline
templates overlap at a single cell (see Fig. 9). The point on themerged
curve corresponding to the merging knot must be contained within
the boundary of the merging cell. That is, the following inequality
constraint is imposed:

��P̂�wm� − Pc��∞ �
���� Xn1
i�n1−p

�Pi � ϵi�NUi;p�wm� − Pc
����
∞

≤ h (24)

where k ·k∞ � max�jx1j; jx2j� and Pc is the center of the square cell
for which the size is 2h.
The performance index is given in a quadratic form andminimizes

the perturbation so that the merged curve approximates the original
curve:

J�fϵjgn1j�n1−p; fδjg
p
j�0� �

Xn1
j�n1−p

�ϵj�⊤�ϵj� �
Xp
j�0
�δj�⊤�δj� (25)

By solving this quadratic optimization problem subject to the
equality constraints (23) and the inequality constraint (24), one
obtains (p� 1) modified control points for each of the original
B-spline curves so that P̂i ≜ Pi � ϵi and Q̂j ≜ Qj � δj.
After obtaining the modified control points, the second step of

merging involves the reparameterization of the two knot vectors to
turn them into a single knot vector that is compatible with the newly
computed control points. Given the knot vector U of the first
B-spline, an affine transformation on the second knot vectorV is first
performed such that v 00 ≥ un1�p and v

0
i are nondecreasing. It should

be mentioned that the affine transformation of the knot vector has no
effect on the B-spline. On the other hand, recall that (p� 1) control
points of each B-spline are involved in merging; it follows that these
control points can be shared in common for the merged B-spline
curve. Consequently, when the two knot vectors are merged it is
required to take into account the number of these shared control
points. To this end, let the merging knot wm be chosen among the
knots of U and V 0 such as

U � fu0; u1; : : : ; un1; un1�1 � wm; : : : ; un1�pg (26)

and

V � fv 00; v 01; : : : ; v 0p � wm; v 0p�1; : : : ; v 0n2�pg (27)

where the prime denotes the corresponding knot vectors after the
affine transformation on V. Next, a reparameterization of the knot
vectors is applied to remove any multiplicities. This can be done, for
instance, by the knot adjustment algorithm presented in [26]. For the
sake of simplicity, denote by P̂i (i � 0; 1; : : : ; n1) and Q̂i,
(i � 0; 1; : : : ; n2) the control points after the knot adjustments
followed by perturbing the original control points. The composite
knot vector is constructed from Eqs. (26) and (27) as follows:

W � fu0; u1; : : : ; un1 ; un1�1 � wm � v 0p; v 0p�1; : : : ; v 0n2�pg (28)

and the control points of the merged B-spline are

R � fbP0;bP1; : : : bPn1−p�1 � bQ0; : : : ; bPn1−1 � bQp; : : : ; bQmg
(29)

B. Path Generation by Merging B-Spline Path Templates

Assuming that the high-level path planner provides an accurate
path sequence of obstacle-free cells within the planning horizon from
the current location of the UAV, the online path generation is carried
out by merging the existing B-spline path with the newly computed
B-spline segment that corresponds to the path sequence within the
finite horizon. As the UAV reaches the planning horizon, the process
is repeated again until the UAV finally arrives at its destination.

JUNG AND TSIOTRAS 9

The reference path for the path-following controller is represented
by a single B-spline curve using the B-spline merging algorithm,
which is parameterized by a nondecreasing knot vector as the new
B-spline template is merged. Subsequently, with a given consistent
parameterization over the entire path, the execution of the path-
following controller can be simplified. Onemaywant to compare this
approach to the previousB-spline stitchingmethod of [25], inwhich a
complicated switching logic was employed. The smoothness of the
B-spline path is automatically satisfied with the use of the proposed
B-spline merging algorithm. On the other hand, in [25], path
smoothness was ensured by the introduction of a transient B-spline
such that continuity with respect to position, tangent angle, and
curvature is imposed at each end of the transient B-spline. One
drawback of the stitchingmethod of [25] is that stitching twoB-spline
templates yields a transient B-spline curve of perhaps large curvature
variation for 90 deg turns at the stitching cell. This is because the
transient B-spline is relatively short, but the turn needs to take place
rapidly, resulting in a steep increase of the curvature value. In
contrast, the merging algorithm proposed in this paper results in a
smaller curvature variation even for 90 deg turns. This can be
attributed to the property of lowest torsional energy of a B-spline
curve; hence, the curvature variation is uniformly distributed over the
whole B-spline. Subsequently, the path generation via merging can
lower the curvature variation.
It should be noted that the maximum curvature value of the path

curve is imposed by the maneuverability limits of the vehicle. For a
fixed-wing UAV, for example, these are determined by the speed, lift-
to-weight ratio, and other similar factors. In this paper, the
maneuverability limits are implicitly captured by the imposed
constraints on the curvature during optimization; in our approach,
curvature thus serves as a geometric surrogate of the dynamics. In
addition, during the offline optimization step to calculate the path
templates, the curvature constraint is included as a soft constraint.
The path templates are individually examined after the optimization
to verify that the actual curvature value is kept within bounds of
maneuverability limits of the UAV. By incorporating the B-spline
merging algorithm, the proposed approach can be applied to
efficiently generate a flyable path that is compatible to the
maneuverability limits of the UAV.
In the following, an illustrative example is presented to compare

the proposed B-spline merging algorithm to the B-spline stitching
algorithm of [25]. For the sake of convenience, it is assumed that a
discrete path is given as a sequence of square cells with four
connectivity as shown in Fig. 11a. The B-spline path templates
proposed in Sec. IV are incorporated in order to generate a smooth

path curve. Starting from the cell’s top-left corner, there exist 14 path
instances that are connected to one another around the middle cells.
The path stitching between two B-spline templates is achieved by
placing a transient B-spline curve in the middle cell. The transient
B-spline is obtained in such a manner that it replaces a portion of two
adjacent B-spline curves, while imposing continuity at the stitching
points. However, a 90 deg turn at the stitching cell may lead to a
transient B-spline with large curvature variation, which reduces the
overall smoothness of the composite path. The smoothing result from
the B-spline merging algorithm is shown in Fig. 11a. As discussed in
the preceding section, the entire path is represented by a single
B-spline curve, and is likely to yield a smoother path than the one
obtained by the stitching algorithm.
To confirm these claims, Fig. 11b shows a comparison of the

curvature variation along the path. The curvature peaks occur when
the discrete path turns 90 deg. The stitching algorithm results in high
curvature variation during the turn, whereas the path generation
using B-spline merging algorithm effectively reduces the curva-
ture variation, thus increasing the smoothness of the resulting
B-spline path.

VI. Simulation Results

The proposed algorithm has been implemented in conjunction
with a high-level discrete planner, which provides a sequence of
obstacle-free cells in a unknown environment. In our implementa-
tion, the D�-lite algorithm was used for this purpose, as it allows
efficient replanning. The D�-lite (Dynamic A�-lite) algorithm was
proposed byKoenig andLikhachev [7] for path planning in unknown
or partially known environments. The algorithm reuses information
from the previous search to find the solution at the next iterationmuch
faster than solving each iteration from scratch.
It was assumed that the UAV navigates over an unknown

environment, while updating the map with information gathered
using a suitable proximity sensor. The world topographic data are
given as a 256 × 256 units (pixels) map covering an area of
approximately 4.8 km2. A uniform cell decomposition of cell size
8 × 8 pixels was adopted. The range of the proximity sensor is chosen
to be r � 28, thus resulting in the finite horizon window by a 7 × 7
square cell grids.
The results from the on-line path-smoothing algorithm combined

with the D�-lite path planning are shown in Fig. 12. Specifically,
Fig. 12 shows the evolution of the path at different time steps, as the
agent moves to the final destination. At each step, the best proposed
path is drawn by a dashed-dot line, and the actual path generated by
the algorithm is drawnby a solid line.A local channel is drawnby thin

0 5 10 15 20 25 30 35 40 45
−10

−5

0

5

10

15

Length [m]

C
ur

va
tu

re
 [m

−
1]

Curvature value wrt curve length

Stitching
Merging

a) Path smoothing b) Curvature

Fig. 11 Example of stitching the twoB-spline curveswith a transient cubic B-spline curve. The dashedboxes represent overlapping cells of two successive
path templates where the corresponding transient B-spline curve is placed.

10 JUNG AND TSIOTRAS

polylines, which corresponds to the discrete path sequence from the
D�-lite algorithm. Accordingly, a smooth path segment to be
followed is obtained from the B-spline path templates. Whenever
theD�-lite algorithm updates with a (possibly new) path sequence, as
the agent approaches close to the end of each path segment, the
on-line path-smoothing algorithm proceeds to merge the existing
B-spline path with the newly obtained path segment within the finite
horizon. This process repeats until the UAV reaches the final
destination, as shown in Fig. 12c.
The main benefit of the proposed navigation algorithm is that it is

relatively “cheap” in terms of use of computational resources, thus
making it suitable for embedded implementation in UAVs. The
proposed algorithm uses small computer memory because the
B-spline path templates are stored using only a small number of
control points and knot sequences. Furthermore, by incorporating
path templates over a finite horizon that have been computed offline,

the proposed algorithm generates a smooth path quickly, while
ensuring the smoothness of the entire path.
It should be noted that the proposedmerging algorithm in Sec. V.A

requires the solution of a quadratic programming, which has to be
solved on-line. Although this increases the overall on-line com-
putational overhead somewhat, the size of optimization problem is
always fixed regardless of the size of the B-spline path. Recalling that
the quadratic programming can be solved in polynomial time [27],
the proposed algorithm can thus be tailored to fit the onboard
computational resources of the UAV. An experimental implementa-
tion of the complete hierarchical path-planning scheme on a small
UAV 50 MHz microcontroller [28,29] showed that the proposed
path-generation algorithm takes about 5 ms to compute the path
segments from the path templates out of a 20 ms sampling interval,
enabling hard real-time implementation. The results from these tests
can be found in [30,31].

X coordinate [m]

Y
 c

oo
rd

in
a t

e
[m

]

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

X coordinate [m]

Y
 c

oo
rd

in
a t

e
[m

]

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

X coordinate [m]

Y
 c

oo
rd

in
a t

e
[m

]

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

X coordinate [m]

Y
 c

oo
rd

in
at

e
[m

]

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

a) t = t14

b) t = t30

c) t = tf
Fig. 12 On-line path smoothing in conjunction with replanning using theD�-lite algorithm. Dashed-dot lines represent the currently tentative optimal
path obtained from theD�-lite algorithm, based on the distance cost outside the finite horizon window. Actual reference path to be followed by the agent
using the B-spline path templates is represented by a solid line.

JUNG AND TSIOTRAS 11

VII. Conclusions

In this paper, a new on-line path-smoothing algorithm that
incorporates path templates for generating a path derived from ahigh-
level path planner, is presented. The path templates are composed of a
set of B-spline curves, obtained from an offline optimization step
such that each path instance stays inside the prescribed channel,
hence avoiding obstacles. Owing to the incremental implementation,
which involves merging B-spline path templates in conjunction with
a high-level path planner, the proposed approach has the benefit
of generating a reference path that is appropriate for a complex
environment with obstacles, while preserving the smoothness of the
composite curve. When used in conjunction with a high-level path
planner (such asD�-lite) the algorithm yields close-to-optimal paths
in a changing environment. Simulation results validate the effective-
ness of the proposed algorithm. The algorithm provides a complete
solution to the obstacle-free path-generation problem and is
especially suitable for real-time implementation for small size UAVs
having limited computational resources.

Acknowledgments

Partial support for this work has been provided by US Army
Research Office Multidisciplinary University Research Initiative
(MURI) award W911NF-11-0046 and National Science Foundation
awards CMS-0510259 and CMMI-0856565.

References

[1] McLain, T., Chandler, P., and Pachter, M., “A Decomposition Strategy
for Optimal Coordination of Unmanned Air Vehicles,” Proceedings

of the American Control Conference, Chicago, IL, IEEE, 2000,
pp. 369–373.

[2] Beard, R. W., McLain, T. W., Goodrich, M., and Anderson, E. P.,
“Coordinated Target Assignment and Intercept for Unmanned Air
Vehicles,” IEEE Transactions on Robotics and Automation, Vol. 18,
2002, pp. 911–922.
doi:10.1109/TRA.2002.805653

[3] McLain, T. W., and Beard, R. W., “Coordination Variables,
Coordination Functions, and Cooperative Timing Missions,” Journal

ofGuidance,Control, andDynamics, Vol. 28,No. 1, 2005, pp. 150–161.
doi:10.2514/1.5791

[4] Kanayama, Y., and Hartman, B. I., “Smooth Local Path Planning for
Autonomous Vehicles,” Proceedings of IEEE International Conference

on Robotics and Automation, Vol. 3, IEEE, May 1989, pp. 1265–1270.
[5] Scheuer, A., and Laugier, C., “Planning Sub-Optimal and Continuous-

Curvature Paths for Car-Like Robots,” Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Victoria,
Canada, IEEE, Oct. 1998, pp. 25–31.

[6] Anderson, E. P., Beard, R.W., andMcLain, T.W., “Real-TimeDynamic
Trajectory Smoothing for Unmanned Air Vehicles,” IEEE Transactions

on Control Systems Technology, Vol. 13, No. 3, 2005, pp. 471–477.
doi:10.1109/TCST.2004.839555

[7] Koenig, S., and Likhachev, M., “D� Lite,” Proceedings of the National
Conference of Artificial Intelligence, AAAI Press, Menlo Park, CA,
2002, pp. 476–483.

[8] Judd, K. B., and McLain, T. W., “Spline Based Path Planning for
Unmanned Air Vehicles,” AIAA Guidance, Navigation, and Control

Conference and Exhibit, AIAA Paper 2001-4238, Aug. 2001.
[9] Vázquez, G. B., Sossa, A. J. H., and Díaz-de-León S., J. L., “Auto

Guided Vehicle Control Using Expanded Time B-Splines,” IEEE

International Conference on Systems, Man, and Cybernetics, Vol. 3,
San Antonio, TX, IEEE, Oct. 1994, pp. 2786–2791.

[10] Berglund, T., Jonsson, H., and Söderkvist, I., “An Obstacle-Avoiding
Minimum Variation B-Spline Problem,” Proceedings of 2003

International Conference on Geometric Modeling and Graphics,
IEEE, July 2003, pp. 156–161.

[11] Dyllong, E., and Visioli, A., “Planning and Real-TimeModifications of
a Trajectory Using Spline Techniques,” Robotica, Vol. 21, No. 5, 2003,
pp. 475–482.
doi:10.1017/S0263574703005009

[12] Maekawa, T., Noda, T., Tamura, S., Ozaki, T., and Machida, K.,
“Curvature Continuous Path Generation for Autonomous Vehicle using
B-Spline Curves,” Computer-Aided Design, Vol. 42, No. 4, 2010,
pp. 350–359. doi:10.1016/j.cad.2009.12.007

[13] Choi, J.-W., Curry, R. E., and Elkaim, G. H., “Continuous Curvature
Path Generation Based on Bézier Curves for Autonomous Vehicles,”
IAENG International Journal of Applied Mathematics, Vol. 40, No. 2,
2010, pp. 91–101.

[14] Sprunk, C., Lau, B., Pfaffz, B., and Burgard, W., “Online Generation of
Kinodynamic Trajectories for Non-Circular Omnidirectional Robots,”
IEEE International Conference on Robotics and Automation, Shanghai,
China, IEEE, May 2011, pp. 72–77.

[15] Lutterkort, D., and Peters, J., “Smooth Paths in a Polygonal Channel,”
Proceedings of the Fifteenth Annual Symposium on Computational

Geometry, Miami Beach, FL, Association for Computing Machinery
(ACM), New York, NY, 1999, pp. 316–321.

[16] Lutterkort, D., and Peters, J., “Tight Linear Envelopes for Splines,”
Numerische Mathematik, Vol. 89, No. 4, 2001, pp. 735–748.
doi:10.1007/s002110100181

[17] Nairn, D., Peters, J., and Lutterkort, D., “Sharp, Quantitative Bounds on
the Distance Between a Polynomial Piece and its Bézier Control
Polygon,” Computer Aided Geometric Design, Vol. 16, No. 7, 1999,
pp. 613–631.
doi:10.1016/S0167-8396(99)00026-6

[18] Piegl, L., and Tiller, W., The NURBS Book–Monographs in Visual

Communication, 2nd ed., Springer–Verlag, Berlin, 1997, pp. 47–116.
[19] Frain, G.,Curves and Surfaces for CAGD— A Practical Guide, 5th ed.,

Morgan Kaufmann, San Mateo, CA, 2001, pp. 119–146.
[20] Lutterkort, D., and Peters, J., “The Distance Between a Uniform (B-)

Spline and Its Control Polygon,” Dept. of Computer and Information
Science andEngineering,Univ. of Florida, TR-98-013,Gainesville, FL,
Sept. 1998.

[21] Optimization Toolbox™ User’s Guide, 7th ed., The Mathworks, Inc.,
Natick, MA, 2003, pp. 3–33.

[22] Jung, D., and Tsiotras, P., “Multiresolution On-Line Path Planning for
Small Unmanned Aerial Vehicles,” Proceedings of the American

Control Conference, Seattle, WA, IEEE, June 2008, pp. 2744–2749.
[23] Tsiotras, P., Jung, D., and Bakolas, E., “Multiresolution Hierarchical

Path-Planning for Small UAVs Using Wavelet Decompositions,”
Journal of Intelligent and Robotic Systems, Vol. 66, No. 4, 2012,
pp. 505–522.
doi:10.1007/s10846-011-9631-z

[24] Finch, S. R., Mathematical Constants, Cambridge Univ. Press,
Cambridge, England, U.K., 2003, pp. 331–339.

[25] Jung, D., and Tsiotras, P., “On-Line Path Generation for Small
Unmanned Aerial Vehicles Using B-Spline Path Templates,” AIAA

Guidance, Navigation and Control Conference, AIAA Paper 2008-
7135, 2008.

[26] Tai, C.-L., Hu, S.-M., and Huang, Q.-X., “Approximate Merging of
B-spline Curves via Knot Adjustment and Constrained Optimization,”
Computer-Aided Design, Vol. 35, No. 10, 2003, pp. 893–899.
doi:10.1016/S0010-4485(02)00176-8

[27] Kozlov, M. K., Tarasov, S. P., and Khachiyan, L. G., “The Polynomial
Solvability of Convex Quadratic Programming,” USSR Computational

Mathematics and Mathematical Physics, Vol. 20, No. 5, 1980,
pp. 223–228.
doi:10.1016/0041-5553(80)90098-1

[28] Jung, D., and Tsiotras, P., “Inertial Attitude and Position Reference
System Development for a Small UAV,” AIAA Infotech at Aerospace,
AIAA Paper 07-2768, May 2007.

[29] Jung, D., and Tsiotras, P., “Modelling and Hardware-in-the-Loop
Simulation for a Small Unmanned Aerial Vehicle,” AIAA Infotech at

Aerospace, AIAA Paper 07-2763, May 2007.
[30] Jung, D., “Hierarchical Path Planning and Control of a Small Fixed-

Wing UAV: Theory and Experimental Validation,” Ph.D. Dissertation,
School of Aerospace Engineering,Georgia Inst. of Technology, Atlanta,
GA, Dec. 2007.

[31] Jung, D., Ratti, J., and Tsiotras, P., “Real-Time Implementation and
Validation of a New Hierarchical Path Planning Scheme of UAVs via
Hardware-in-the-Loop Simulation,” Journal of Intelligent and Robotic
Systems, Vol. 54, Nos. 1–3, 2009, pp. 163–181.
doi:10.1007/s10846-008-9255-0

12 JUNG AND TSIOTRAS

http://dx.doi.org/10.1109/TRA.2002.805653
http://dx.doi.org/10.1109/TRA.2002.805653
http://dx.doi.org/10.1109/TRA.2002.805653
http://dx.doi.org/10.1109/TRA.2002.805653
http://dx.doi.org/10.2514/1.5791
http://dx.doi.org/10.2514/1.5791
http://dx.doi.org/10.2514/1.5791
http://dx.doi.org/10.1109/TCST.2004.839555
http://dx.doi.org/10.1109/TCST.2004.839555
http://dx.doi.org/10.1109/TCST.2004.839555
http://dx.doi.org/10.1109/TCST.2004.839555
http://dx.doi.org/10.1017/S0263574703005009
http://dx.doi.org/10.1017/S0263574703005009
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1007/s002110100181
http://dx.doi.org/10.1007/s002110100181
http://dx.doi.org/10.1016/S0167-8396(99)00026-6
http://dx.doi.org/10.1016/S0167-8396(99)00026-6
http://dx.doi.org/10.1007/s10846-011-9631-z
http://dx.doi.org/10.1007/s10846-011-9631-z
http://dx.doi.org/10.1016/S0010-4485(02)00176-8
http://dx.doi.org/10.1016/S0010-4485(02)00176-8
http://dx.doi.org/10.1016/0041-5553(80)90098-1
http://dx.doi.org/10.1016/0041-5553(80)90098-1
http://dx.doi.org/10.1007/s10846-008-9255-0
http://dx.doi.org/10.1007/s10846-008-9255-0

