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Abstract. The problem of ensuring control software properties hold
on their actual implementation is rarely tackled. While stability proofs
are widely used on models, they are never carried to the code. Using
program verification techniques requires express these properties at the
level of the code but also to have theorem provers that can manipulate
the proof elements. We propose to address this challenge by following
two phases: first we introduce a way to express stability proofs as C
code annotations; second, we propose a PVS linear algebra library that
is able to manipulate quadratic invariants, i.e., ellipsoids. Our framework
achieves the translation of stability properties expressed on the code to
the representation of an associated proof obligation (PO) in PVS. Our
library allows us to discharge these POs within PVS.

1 Introduction

Critical computing systems, typically driving machinery or vehicles, are those
in which failure may result in unacceptable human losses. Examples of critical
systems include fly-by-wire controls on an aircraft or on a manned spacecraft,
radiation therapy equipment, and nuclear power plant safety systems. Digital
computation facilitates the design and the implementation of complex control
algorithms. The software implementation of a control law can be inspected by
analysis tools [7, 22, 24], however these tools are often challenged by issues for
which solutions are already available from control theory.

Control theory is a branch of engineering that focuses on the behavior of
dynamical systems. The desired output of a system is called the reference point.
When one or more output variables of a system need to follow a certain reference
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over time, a controller manipulates the inputs of the system to obtain the desired
effect on its output. The objective of control theory is to calculate a proper action
from the controller that will result in stability for the system, that is, the system
will hold the reference point and not oscillate around it. Among the different
mathematical approaches to prove stability of the controller or the controlled
system, Lyapounov based stability relies on ellipsoid characterization and the
so-called S-procedure [3, 14, 15]. These works also address the expression of the
proof as C code annotation, but do not give means to automate this expression
nor to prove it on C code.

Program verification based on deductive methods uses either automatic de-
cision procedures or proof assistants to ensure the validity of user-provided code
annotations. These annotations may express the domain-specific properties of
the code. However, formulating annotations correctly (i.e., precisely as the do-
main expert really intends) is nontrivial in practice [2, 12]. By correctly, we mean
that the annotations formulate stability properties of an intended mathematical
interpretation from control theory.

The challenges of domain-specific code annotation arise along two directions.
First, the domain knowledge has its own inherent complexity. When considering
control theoretic issues, the annotations need to allow the expression of stability
properties using ellipsoids and the S-procedure in the way that was proposed
in [3, 14, 15]. Second, the code annotations are meant to be manipulated by
automatic theorem provers. But most of the automatic decision procedures are
restricted to decidable logics such as Boolean satisfiability or linear arithmetic,
which are generally too weak to express the desired user-defined and domain-
specific code annotations.

In order to solve these two challenges this paper proposes an axiomatisation
of Lyapunov-based stability as C code annotations, and the implementation of
linear algebra and control theory results in PVS [28, 26], respectively. The mech-
anism of theory interpretations [27] enables the translation of POs expressed on
the C code as PVS control theory proof obligations. The proof of these obliga-
tions can then be discharged using control theory results expressed and proved
with our PVS linear algebra library.

Related works To our knowledge, apart from the work of [3, 14, 15], no other
research endeavor addresses the issue of proving in the C code the high-level
correctness properties of control systems such as stability. Some successful at-
tempts have been made at extracting quadratic invariants from the code, in [1]
and [13].

Regarding the prover part of our framework, the developments of tools that
support the proof of properties in real arithmetic or real linear algebra is a cur-
rent concern. However these early development do not cover the entire range of
mathematics and are often restricted to specific sub-areas. For example a recent
project, Coquelicot, develops real functional analysis , Gaussian elimination and
basic properties of matrices and determinants for the Coq proof assistant [18].
Generic design patterns were proposed to define algebraic structures[17]. For-
malization and instrumentation of Euclidean spaces also appears to be a new



concern for Isabelle/HOL [20]. We should also mention automatic decision pro-
cedures for floating point arithmetics, such as Gappa [11]. A PVS formalization
of multivariate Bernstein polynomials was presented in [25]. In general however,
none of these recent extensions of theorem provers are able to deal with the
properties of interest in this paper.

Outline Section 2 reminds the reader of elements of control theory software anal-
ysis [3, 14, 15], i.e., it describes the controller stability proof and its expression as
C code annotations with Hoare triples. It also discusses issues to be handled on
the theorem prover part, mainly the need for two main theorems: one related to
ellipsoids and one on the S-procedure. Section 3 introduces our axiomatisation
of stability proofs as C code annotations using Hoare triples. Section 4 presents
the implementation of linear algebra and theorems related to ellipsoids in PVS.
Finally, Section 5 explains how we plan to map POs generated from the Hoare
triple stability annotations to PVS, using theory interpretation in PVS, and how
to use the ellipsoid library to discharge these POs. Last, Section 6 concludes the
paper and discusses future research.

2 Stability and correctness

2.1 Expressing and proving stability of a control system

The basic module for the description of a controller can be presented as

ξ(k + 1) = f(ξ(k), ν(k)), ξ(0) = ξ0

ζ(k) = g(ξ(k), ν(k))

where ξ ∈ Rn is the state of the controller, ν is the input of the controller and
ζ is the output of the controller. This system is bounded-input, bounded state
stable if for every ε there exists a δ such that ||ν(k)|| ≤ ε implies ||ξ(k)|| ≤ δ, for
every positive integer k. If there exists a positive definite function V such that
V (ξ(k)) ≤ 1 implies V (ξ(k+ 1)) ≤ 1 then this function can be used to establish
the stability of the system; for more details see [8]. This Lyapunov function, V ,
defines the ellipsoid {ξ| V (ξ) ≤ 1}, this ellipsoid plays an important role for the
stability preservation at the code level, for more details see [3, 14, 15].

2.2 Hoare triple and deductive methods

Since their early formalization by Hoare [21] and later by Dijsktra [10], deduc-
tive methods from Hoare triple to weakest precondition computation have been
widely used on imperative code.

In his initial proposal, Hoare requires a program to be annotated line by
line by the invariants that should hold at each program point. He also provides
instruction-specific rules that ensure the soundness of the code with respect to
the annotation system.



Because it was, in general, not realistic to require a line-based set of anno-
tations, Dijkstra later proposed the weakest precondition computation and the
verification conditions, that automatically generate a PO with respect to a Hoare
style annotation for a block of instructions. Most software analysis tools which
use Hoare Logic are based on this algorithm.

Our current approach does not consist in automating the proof of stability,
but rather, given a stability proof, to check the proof automatically. As was
suggested in [3, 14, 15], we consider a line-by-line annotation of the code, allowing
a Hoare-like reasoning approach to the program.6

In general, Hoare proofs are sound, i.e., the proved property indeed holds, if
and only if the program terminates. They are complete if the underlying logic –
the one used in pre- and post-condition – is complete.

2.3 Application to controller stability: an ellipsoid-aware Hoare
logic

We present here the two main patterns used in stability proofs. The main con-
cerns are: to relate quadratic invariants and affine or linear combinations of
variables on the one hand – the ellipsoid affine combination theorem; and to
extract one quadratic invariant out of implications between several quadratic
invariants on the other hand – the S-procedure.

Ellipsoid affine combination theorem The use of ellipsoids to formally specify
bounded input, bounded state stability was proposed in [3, 14, 15] following prior
work [6]. Stability is then expressed as a predicate stating that the system state
remains in a given ellipsoid. Typically, an instruction S would be annotated in
the following way:

{x ∈ EP } y = Ax+ b {y − b ∈ EQ} (1)

where the pre- and post- conditions are predicates expressing that the variables
belong to some ellipsoid, with Ep = {x : Rn|xTP−1x ≤ 1} and Q = APAT .

The mathematical theorem that guarantees the relations in (1) is now stated:

Theorem 1. If M , Q are invertible matrices, and (x− c)TQ−1(x− c) ≤ 1 and
y = Mx+ b then (y − b−Mc)T (MQMT )−1(y − b−Mc) ≤ 1

We will refer to it as the ellipsoid affine combination theorem. More details about
this result in the context of control theory can be found in [6, 23].

The S-procedure A second common need is to prove the implication between two
quadratic invariants. In the initial Hoare proposal [21], the post-condition of a

6 or equivalently a limited-depth Dijkstra weakest precondition.



{P1} S1 {Q1}
{Q1} nil {P2}
{P2} S2 {Q2}

Fig. 1. Conseq. rule

statement is exactly the pre-condition of its successor. A
consequence rule allows to transform a post-condition of
a statement into another pre-condition for the following
statement. This can be understood as the introduction of a
nil statement that contains this translation of predicates
as illustrated in Figure 1. This unavoidable step allows software analyzers to
manipulate the annotations along the code. The PO associated to this new nil

statement is Q1 =⇒ P2.
A frequent proof pattern when using ellipsoid-based stability proofs is to show

that the inequality xTPx ≤ 1 implies yTQy ≤ 1. Such implications are usually
difficult to prove. We need to give conditions under which, given symmetric
matrices A0 and A1, statement 2. implies statement 1. in the following:

1. ∀x ∈ Rn : xTA1x ≥ 0 =⇒ xTA0x ≥ 0

2. ∃a ∈ R : ∀x ∈ RnxT (A0 − aA1)x > 0

From [3, 14, 15], a typical property for the composition of Hoare triples is to
prove that the implication

{xc ∈ EP , y2c ≤ 1} implies {Acxc +Bcyc ∈ EP , y2c ≤ 1}

is a consequence of the inequality

(Acxc +Bcyc)
TP (Acxc +Bcyc)− µxTPx− (1− µ)y2 ≤ 0.

This type of property may be proved using the following theorem, which the
S-procedure [6, 23] is a by-product of.

Theorem 2. Let the real valued functionals σk : Rn → R where k = 0, 1, 2, . . . , N
and consider the following two conditions:

1. S1: ∀y ∈ Rn : (∀k = 1, 2, . . . , N : σk(y) > 0) =⇒ σ0(y) ≥ 0
2. S2: There exists τk ≥ 0, k = 1, 2, . . . , N such that

σ0(y)−ΣN
k=1τkσk(y) > 0, ∀y ∈ Rn.

Then S2 =⇒ S1.

The S-procedure is the method of verifying S1 using S2.

3 Defining quadratic invariants as code annotations

Now that we know the annotations that we want to generate on the code, we
have to find a concrete way to express them on actual C code. The ANSI/ISO
C Specification Language (ACSL) [5] allows its user to specify the properties
of a C program within comments, in order to be able to formally verify that
the implementation respects these properties. This language was proposed as
part of the Frama-C platform [9], which provides a set of tools to reason on



both C programs and their ACSL annotations. ACSL offers the means to extend
its internal logic with user-defined theory, i.e., types, constructors, functions,
predicates and axioms.

We outline the axiomatisation in ACSL to fit our needs, which consist of
expressing ellipsoid-based Hoare triples over C code. We first present the ax-
iomatisation of linear algebra elements in ACSL. Then we present the Hoare
triple annotations in ACSL and the POs generated by them.

3.1 Linear algebra in ACSL predicates

The following abstract types are declared: matrix, vector, integer, and real. With
these abstract types, basic matrix operations and properties are introduced : a
component of the matrix is a real number accessed using the function mat select
(matrix A, integer i, integer j), total number of rows and columns are integers ac-
cessed with mat row(matrix A), and mat col(matrix A), respectively. The multipli-
cation of a matrix with a vector is defined with function vect mult(matrixA, vector x),
which returns a vector. The concatenation of vectors x and y, itself a vector, is
accessed through Vconcat(vector x, vector y). Addition and multiplication of
2 matrices, multiplication by a scalar, and inverse of a matrix are declared as
matrix type as follows:

mat add(matrix A,matrix B), mat mult(matrix A,matrix B)

mat mult scal(matrix A, real a), and mat inverse(A).

The matrix operations are defined axiomatically, for example the inverse of a
matrix A, mat inverse(A) is defined using the predicate is invertible(A) as follows:
/*@ axiom mat inv select i eq j:
@ ∀matrixA, integer i, j;

@ is invertible(A) && i == j ==>

@ mat select(mat mult(A,mat inverse(A)), i, j) = 1
@

@ axiom mat inv select i dff j:
@ ∀matrixA, integer i, j;

@ is invertible(A) && i! = j ==>

@ mat select(mat mult(A,mat inverse(A)), i, j) = 0
@*/

ACSL

In the same axiomatic way, the main matrix operations are declared. Complex
constructions or relations can be defined as uninterpreted predicates, i.e., with
no associated axiom. The semantics of those predicates are introduced in PVS,
as discussed in section 5. The following predicate is meant to express that vector
x belongs to EP :
//@ predicate in ellipsoid(matrix P, vector x);

ACSL

And last, a set of typing functions, associated to a set of axioms, such as
mat of array or vect of array, is used to associate an ACSL matrix type to a
C array.
//@ logic matrix mat of array{L}(float *A, integer row, integer col);

ACSL



3.2 Linear Algebra Code Annotations

The paramount notion in ACSL is the function contract, [7]. It can be understood
as a Hoare triple for a whole function. The key word requires is used to introduce
the pre-conditions of the triple, and the key word ensures is used to introduce its
post-conditions. Dealing with a low-level language has its disadvantages: we need
to deal with memory issues. In general, we want all functions to be called with
valid pointers as arguments, i.e., valid array and therefore valid matrices. This is
what the built-in ACSL predicate valid does. The followings snippet shows how
the contract can be written using mat select and mat of array,

/*@ requires (valid(a + (0..3)));
@ ensures ∀integer i, j; 0 ≤ i < 2 && 0 ≤ j < 2
@ ==> mat select(mat of array(a, 2, 2), i, j) == 0;
@ */

void zeros 2x2(float* a)

{ a[0]=0; a[1]=0; a[2]=0; a[3]=0; }

ACSL

In the following example the uninterpreted predicate in ellipsoid is used:

/*@ requires

@ (valid(xc + (0..1))) && (valid(yc)) && (valid(u)) &&

@ in ellipsoid(Qmu,Vconcat(vect of array(xc, 2), vect of array(yc, 1)));
@ ensures

@ in ellipsoid(Ubound, vect of array(u, 1)) &&

@ in ellipsoid(Qmu,Vconcat(vect of array(xc, 2), vect of array(yc, 1)));
@ */

void inst2(float* xc, float* yc, float* u)

{ u[0] = 564.48*xc[0] - 1280*yc[0]; }

ACSL

where Qmu, C = [564.48 0 −1280] are matrices and

Ubound = mat inv(mat mult(mat mult(C,mat inv(Qmu)), transpose(C)))

One important assumption which will be made throughout the rest of this
article is that all computations in the program yield their exact, real result.
Errors due to floating point approximations are thus not taken into account.
The Frama-C toolset offers the possibility of making this assumption by including
the pragma ’JessieFloatModel(Math)’. Verification conditions are then generated
with no concern for floating point computations.

3.3 Generating Proof Obligations

Frama-C tools do not require an annotation at each line as proposed by Hoare.
They rather rely on Dijkstra-style weakest precondition calculus to compute the
backward semantics of the function code S to the post-condition Q and generate
the weakest pre-condition wp(S,Q) that guarantees to obtain Q after executing
S. The generated PO is then P =⇒ wp(S,Q) where P is the pre-condition.



Focusing on single line contract, i.e., the Hoare annotations as described
in [21], these tools will generate the following two kinds of POs when used with
ellipsoid-based annotations.

First, we have the POs associated with the use of the ellipsoid affine combi-
nation theorem, see Equation 1:

in ellipsoid(matrix P , vector x)
IMPLIES

in ellipsoid(matrix Q, vector (vect mult(matrix A, vector x))

ACSL

One can remark that both axiom-based and uninterpreted predicates are ex-
pressed in the same way. The only difference is that axiom-based predicate def-
initions appear in the other generated files of the proof obligation generation
phase.

Second, we have the POs associated with the use of the S-procedure, cf.
Theorem 2:

in ellipsoid(A1, x) IMPLIES in ellipsoid(A0, x)
IF AND ONLY IF

in ellipsoid(mat add(A0,mat mult scal(A1, a)), x)

ACSL

For both POs, we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically. We must then discharge the verification
conditions using the appropriate theorem. This is done by using PVS and a linear
algebra extention of it, presented below.

4 Linear algebra in PVS

First, we define matrices, vectors, etc. in PVS in a way that can be used to
interpret in ellipsoid and S-procedure. Second, we provide the main theorems
and basic principles of linear algebra in PVS that are needed to support this
interpretation. General linear algebra references include [19, 4, 16].

4.1 Bases for linear algebra in PVS

We first define maps as follows:

Mapping:TYPE=

[# dom: posnat, codom: posnat, mp: [Vector[dom]->Vector[codom]] #]

PVS

This is the set of functions that take a vector and return a vector. A linear map
is defined as a map h ∈ Mapping with the linear property h(ΣN

i=0(a(i)x(i))) =
ΣN

i=0(a(i)h(x(i))). this property in PVS is expressed as follows:

linear_map_e?(h,l,n,m): bool = h‘dom=n and h‘codom=m and

∀(x: Vector[l], F: [below[l]->Vector[n]]):

h‘mp(Σl−1
i=0x(i)*F(i)) = Σl−1

i=0(x(i)*(h‘mp(F(i))))

linear_map_e?(n,m)(h): bool = ∀(l): linear_map_e?(h,l,n,m)

Map_linear(n,m): TYPE = {h: Map(n,m) | linear_map_e?(n,m)(h)}

PVS



The algebra of matrices is the set of matrices together with the operations ad-
dition, multiplication and multiplication by scalar, and these operations satisfy
the associative and commutative properties. The algebra of linear maps is the
set of linear maps with the operations of composition and multiplication and
preserving the associative and commutative properties [4, 16]. We define the op-
erator L(n,m) from the algebra of linear maps Map linear(n,m) to the algebra
of matrices Mat(m,n) as follows:

L(n,m)(f) = (# rows:=m, cols:=n, matrix:=λ(j,i): f‘mp(e(n)(i))(j) #)
PVS

where f∈ Map linear(n,m). We define the operator T(n,m) from Mat(m,n) to
Map linear(n,m) as follows:

T(n,m)(A) = (# dom:=n, codom:=m,

mp:=λ(x,j):
ΣA‘cols−1

i=0 (λ(i): A‘matrix(j,i)*x(i)

#))

PVS

With these two operators connecting linear maps and matrices, the following
PVS lemmas prove the isomorphism between them:

Iso : LEMMA bijective?(L(n,m))

Iso_T : LEMMA bijective?(T(n,m))

PVS

Because of the isomorphism between these two operators, the following lemma
holds:

L_inverse: LEMMA inverse(L(n,m))=T(n,m)
PVS

More practical lemmas for proving properties in PVS are:

map_matrix_bij: LEMMA ∀(A:Mat(m,n)): L(n,m)(T(n,m)(A)) = A

iso_map: LEMMA ∀(f:Map_linear(n,m)): T(n,m)(L(n,m)(f)) = f

PVS

An important consequence of the isomorphism is the relation between the op-
erations of the isomorphic spaces. For example, the composition of two linear
maps is equivalent to the multiplication of their corresponding matrices:

comp_mult: LEMMA ∀(g: Map_linear(n,m),f:Map_linear(m,p)):

L(n,p)(f o g) = L(m,p)(f)*L(n,m)(g)

PVS

and the addition of two linear maps is equivalent to the addition of their corre-
sponding matrices:

iso_add: LEMMA ∀(f, g:Map_linear(n,m):

L(n,m)(f + g) = L(n,m)(f) + L(n,m)(g)

PVS

The main reason for the isomorphism is to define the inverse of a matrix; one
condition for the existence of the inverse in linear maps is that the linear map
needs to be bijective. The space of matrices having inverses is defined in PVS as
follows:

Matrix_inv(n):TYPE =

{A: Square | squareMat?(n)(A) and bijective?(n)(T(n,n)(A))}

PVS



where Square is the type of matrices having the same number of rows and
columns, squareMat?(n)(A) is the type of matrices having the same number of
rows and column and equal to n, and the predicate bijective?(n)(T(n,n)(A))
expresses that the linear map, T(n,n)(A), associated to a matrix A is bijective.

The inverse operator, inv(n), maps Matrix inv(n) to Matrix inv(n) and
is defined as follows:

inv(n)(A) = L(n,n)(inverse(n)(T(n,n)(A)))
PVS

It is important to note that the operators L, T and the isomorphism play an
important role in this definition. The main lemmas for the matrix inverse are
proved in PVS, such as: the multiplication of the matrix and its inverse is equal
to the identity matrix, I(n), the inverse of a transpose matrix is equal to the
transpose of its inverse or the distributive property of the inverse over matrix
multiplication.

The PVS libraries also have basic lemmas from the matrices theory such as
the solution to a matrix equation, the transpose of matrix multiplication, and
the multiplication of matrix transpose and vectors.

One important point of this development is that the conditions under which
the inverse of a matrix exists is that the linear map associated to the matrix
is a bijective map. A common test for the existence of the inverse of a matrix
is that the determinant of the matrix be not equal to zero, The equivalence
between these two conditions needs to be implemented in PVS for which more
mathematical theories such as multi-linear forms, convex spaces, and so forth are
currently under development. The two conditions of S-procedure, i.e., Theorem 2,
were implemented as follows:

s1_condition?(m)(beta: fun_constraint(m),f: Map_linear(n,1)):

bool = FORALL (x: Vector[n]):

pos_constraint_point?(m)(beta,x)

IMPLIES

f‘mp(x)(0) >= 0

PVS

s2_condition?(m)(beta: fun_constraint(m),f: Map_linear(n,1)):

bool = EXISTS (r: pos_scalar_family(m)):

(FORALL (x: Vector[n]): f‘mp(x)(0) -

sigma(0,m - 1, LAMBDA(i): r(i)*beta(i)‘mp(x)(0)) >= 0)

PVS

We are still working on the proof of the equivalence of these two conditions, one
result that is needed for the proof is the Hyperplane theorem, which is a theorem
from real analysis currently under development in PVS.

4.2 Ellipsoid affine combination theorem in PVS

The implication associated to Equation 1 can be proved using the following
theorem implemented in PVS.



ellipsoid_affine_comb: LEMMA

∀ (n:posnat, Q, M: SquareMat(n), x, y, b, c: Vector[n]):

bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))

AND (x-c)*(inv(n)(Q)*(x-c))≤ 1

AND y=M*x + b

IMPLIES

(y-b-M*c)*(inv(n)(M*(Q*transpose(M)))*(y-b-M*c))≤ 1

PVS

This lemma was proved in PVS, the main part of the proof was to show that
replacing y by M ∗ x+ b in (y− b−M ∗ c) ∗ (inv(n)(M ∗ (Q ∗ transpose(M))) ∗
(y− b−M ∗ c)), we obtain (x− c) ∗ (inv(n)(Q) ∗ (x− c)). In order to manipulate
(y− b−M ∗ c)∗ (inv(n)(M ∗ (Q∗ transpose(M)))∗ (y− b−M ∗ c)) the following
PVS lemmas trans mat scal, prod inv oper, tran inv oper, transpose product
and basic properties of SigmaV were used.

5 Mapping ACSL predicates to PVS linear algebra
concepts

On the one hand, using ACSL and the Frama-C framework, we were able to
generate POs about the ellipsoid predicate. Frama-C tools even make it possible
to express the PO in PVS, along with a complete axiomatisation in PVS of C
programs semantics. On the other hand, we have developed a PVS library that
is able to reason about these properties.

We now must link these two worlds: ACSL ellipsoids predicate proof obliga-
tion in PVS must be connected with with our linear algebra PVS library. We
first propose to relate ASCL constructs to PVS Linear Algebra library elements
and achieve a proof on the latter. A current ongoing approach, presented at the
end of the section, is to automate this mapping using theory interpretations in
PVS.

5.1 Mapping ACSL predicates to PVS linear algebra

Frama-C tools automatically generate the proof obligations (POs) associated
with a function contract, in our case, a Hoare triple. Depending on the back-end
used, the PO can be expressed either to target an automatic decision procedure
such as an SMT-solver, or to target a proof assistant, like Coq or PVS.

Using the PVS back-end, both the PO and all the axiomatisation of C se-
mantics and all ACSL defined theories and predicates are expressed in PVS files.
We now map PVS-encoded version of ACSL predicates into their PVS linear al-
gebra library equivalent. A few examples of how such a mapping is performed
are given in the rest of this section.

The ACSL logic function mat of array(ptr, n,m), when put through the PVS
back-end, appears with an additional argument, mat of array(ptr, n,m,mem),
which describes the memory state at the point where the function is used. The
mapping for this function and the accessor mat select are as follows:



mat of array(ptr, n,m,mem) = A where

A ∈ Matrix, A‘rows = n, A‘cols = m
FORALL (i: below(A‘rows), j: below(A‘cols)):
A‘matrix(i,j) = select[real, floatP](mem, shift[floatP](ptr, i*n+j))

mat select(A, i, j) = A‘matrix(i,j) where A ∈ Matrix

PVS

The select and shift functions are part of the axiomatisation of C semantics
pertaining to memory access.
Function mat inverse and predicate is invertible are interpreted as follows:

mat inverse(matrix A) := inv(n)(A)

is invertible(matrix A)

:= square?(A) AND squareMat?(n)(A) AND bijective?(n)(T(n, n)(A))

PVS

And the following axiomatic definition of inverse

/* @axiom mat inv select eq: ∀ matrix A, integer: i, j; i=j

@ is invertible(M) =⇒ mat select(mat mult(A, mat inverse(A)),i,j) = 1

@*/

ACSL

is mapped to the following lemma:

LEMMA squareMat?(n)(M) and bijective?(n)(T(n,n)(M)) and

i=j and i≤n
IMPLIES

(M*inv(n)(M))‘(i,j) = 1

PVS

which was also proved, using the concepts introduced in the linear algebra library
and basic properties in PVS.

In the same way we develop the interpretation for the basic matrix opera-
tors such as addition, transposition, multiplication by scalars, multiplication by
vectors, and so forth.

5.2 Discharging Proof Obligations

We now sketch the typical use of our framework to prove a specific Hoare triple.
We consider the following single line function annoted with ellipsoid-based pre-
and post-condition. This function corresponds to the definition of the linear
combination of matrices as presented in Equation (1).

/*@ requires (valid(xc + (0..1))) && (valid(yc)) && (valid(u)) &&

@ in ellipsoid(Q mu, Vconcat(vect of array(xc,2), vect of array(yc,1)));

@ ensures in ellipsoid(U bound, vect of array(u,1)) &&

@ in ellipsoid(Q mu,Vconcat(vect of array(xc,2), vect of array(yc,1)));

@ */

void inst2(float* xc, float* yc, float* u) {
u[0] = 564.48*xc[0] - 1280*yc[0];

}

ACSL



Using Frama-C and its PVS back-end on these annotations generate the
following PVS PO:

FORALL ... in_ellipsoid(Q_mu,

Vconcat(vect of array(xc, 2, floatP_floatM),

vect of array(yc, 1, floatP_floatM))) IMPLIES

FORALL (result: real) :

result = select[real, floatP](floatP_floatM, shift[floatP](xc, 0))

IMPLIES

FORALL (result0: real) :

result0 = select[real, floatP](floatP_floatM, shift[floatP](yc, 0))

IMPLIES

FORALL (floatP_floatM0: memory[floatP, real]) :

floatP_floatM0 = store[floatP, real]

(floatP_floatM, u, 564.48 * result - 1280.0 * result0)

IMPLIES in ellipsoid(U_bound, vect of array(u, 1, floatP_floatM0))

AND in ellipsoid(Q_mu,

Vconcat(vect of array(xc, 2, floatP_floatM0),

vect of array(yc, 1, floatP_floatM0)))

PVS

In order to discharge this PO, we first give a meaning to the predicate
in ellipsoid.

in ellipsoid(matrix P, vector x)=x*(inv(n)(P)*x)≤ 1
PVS

Then, after skolemisation, we can split the conjunction in the consequence and
prove the two implications using the ellipsoid affine combination theorem in
PVS, presented in paragraph 4.2.

5.3 Theory interpretations

Theory interpretation is a logical technique for relating one axiomatic theory to
another. This technique makes it possible to show that one collection of theories
is correctly interpreted by another collection of theories under a user-specified
interpretation for the uninterpreted types and constants. PVS supports theory
interpretations [27]. A theory instance is generated and imported, while the
axiom instances become POs to ensure that the interpretation is valid. Interpre-
tations can be used to show that an implementation is a correct refinement of a
specification, or that an axiomatically defined specification is consistent.

We outline here a possible use of theory interpretation to automate this
mapping between the two theories. This will be developed as future work.

Jessie to PVS The Jessie plugin translates obligations to uninterpreted types
and constants of PVS. When generating the PVS file associated to an annotated
C file, all ACSL definitions and the generated POs are declared under a new the-
ory acsl theory. This theory contains new types, for example, the uninterpreted
type matrix. To provide an interpretation for matrix, we first import the inter-
preting theory matrices, then we import the uninterpreted theory acsl theory

with mappings for matrix, matselect, mat mult, etc., as shown below.



importing matrices

importing acsl theory{{ matrix := Matrix,

mat_select := λ M, i, j: M‘matrix(i, j),

mat_mult := *,

. . . }}

PVS

This action generates POs corresponding to the axioms of the theory acsl theory.
In a similar fashion, all uninterpreted predicates may be given interpretations,
and any axiom instances become POs. In the early stages of development, pred-
icates such as in ellipsoid may not have axioms provided in Jessie, in which case
there is no guarantee of soundness. However, the system still generates POs
corresponding to type correctness conditions (TCCs).

6 Conclusion and Future Work

We have described a global approach to validate stability properties of C code im-
plementing controllers. Our approach requires the code to be annoted by Hoare
triples, following [3, 14, 15], proving the stability of the control code using ellip-
soid affine combinations and S-procedure.

We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates. This library con-
tains matrices, linear maps, ellipsoid affine combination theorem, isomorphism
between matrices and linear maps and theirs basic properties. The PVS libraries
can be found at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

We have also outlined an approach based on theory interpretation that maps
proof obligations generated from the code to their equivalent in this new PVS
library. This mapping allows to discharge POs using the ellipsoid affine combi-
nation and S-procedure theorems implemented in PVS.

Currently we are working on the automatic translation, using theory inter-
pretations, of POs in ACSL about matrices properties into POs in PVS and
discharging these POs using our linear algebra libraries. We are also working on
the proof of the S-procedure in PVS, which involves more mathematical results
such as hyperplane theorem, multilinear forms etc. As future research we are
going to develop PVS strategies for automatically discharging proof obligation
generated from the ACSL annotations of the control code and also to prove the
equivalence between Det(A) 6= 0 and the inversibility of matrix A.
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