
Robotics and Autonomous Systems 62 (2014) 1657–1667
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Vistas and parallel tracking and mapping with Wall–Floor Features:
Enabling autonomous flight in man-made environments
D.-N. Ta ∗, K. Ok, F. Dellaert
Center for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA

h i g h l i g h t s

• We enable autonomous flight for a lightweight quad-rotor in indoor environments.
• Distant features, called vistas, are used for steering towards open spaces.
• Parallel tracking and mapping framework with odometry overcomes challenges in monoSLAM.
• Special Wall–Floor Features cope with feature-poor environments.
• Wall inference using Wall–Floor Features helps avoid lateral collisions.

a r t i c l e i n f o

Article history:
Available online 28 March 2014

Keywords:
Quadrotor
MAV
Autonomous navigation
Indoor
SLAM
Monocular
Parallel tracking and mapping
Vistas
Wall–Floor Features

a b s t r a c t

We propose a solution towards the problem of autonomous flight in man-made indoor environments
with amicro aerial vehicle (MAV), using a frontal camera, a downward-facing sonar, and odometry inputs.
While steering an MAV towards distant features that we call vistas, we build a map of the environment
in a parallel tracking and mapping fashion to infer the wall structure and avoid lateral collisions in
real-time. Our framework overcomes the limitations of traditional monocular SLAM approaches that
are prone to failure when operating in feature-poor environments and when the camera purely rotates.
First, we overcome the common dependency on feature-rich environments by detecting Wall–Floor
Features (WFFs), a novel type of low-dimensional landmarks that are specifically designed for man-made
environments to capture the geometric structure of the scene. We show that WFFs not only reveal the
structure of the scene, but can also be tracked reliably. Second, we cope with difficult robot motions
and environments by fusing the visual data with odometry measurements in a principled manner. This
allows the robot to continue tracking when it purely rotates and when it temporarily navigates across
a completely featureless environment. We demonstrate our results on a small commercially available
quad-rotor platform flying in a typical feature-poor indoor environment.

Published by Elsevier B.V.
1. Introduction

We address the problem of vision-based autonomous naviga-
tion in man-made environments for Micro Aerial Vehicles (MAVs).
We utilize a lightweight frontal camera, a downward-facing sonar
for height measurements, and odometry inputs, while refraining
from using heavy and power-hungry sensors that impose limita-
tions on the MAVs. Research and applications for such lightweight
MAVs have been growing significantly in recent years for bothmil-
itary and civilian services.

∗ Corresponding author. Tel.: +1 6174158387.
E-mail addresses: duynguyen@gatech.edu (D.-N. Ta), kyelok@gatech.edu

(K. Ok), dellaert@cc.gatech.edu (F. Dellaert).

http://dx.doi.org/10.1016/j.robot.2014.03.010
0921-8890/Published by Elsevier B.V.
Man-made environments pose two key difficulties for vision-
based methods. First, state-of-the-art monocular vision systems
[1,2] rely on many corner-type features in the image to localize
the camera and build a map. However, a typical indoor environ-
ment does not possess many distinct corner-type features, while
the few that are present are mostly far-away, providing only lit-
tle information to localize the camera reliably. Furthermore, these
systems break downwhen the camera dominantly rotates towards
an unknown region, due to the lack of motion parallax needed to
triangulate new landmarks in the scene. Such rotation is common
in robot navigation where the robot’s frontal camera undergoes a
yaw motion induced by a change in the robot’s heading.

In this paper, we present a vision-based navigation system that
steers the robot towards distant features, which we call vistas,
while inferring the structure of the scene to avoid lateral collisions.

http://dx.doi.org/10.1016/j.robot.2014.03.010
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2014.03.010&domain=pdf
mailto:duynguyen@gatech.edu
mailto:kyelok@gatech.edu
mailto:dellaert@cc.gatech.edu
http://dx.doi.org/10.1016/j.robot.2014.03.010

1658 D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667
Such capability could not be achieved in previous vision-based
MAVs, without dedicating additional sensors for this purpose
(i.e. frontal and side-facing sonars [3]).We infer the scene structure
by building a map of Wall–Floor Features, a special type of
landmarks, that can copewith lack of corner-type features inman-
made environments. Our map building system also overcomes the
aforementioned limitations of monocular SLAM by fusing visual
features with odometry inputs. We do this in a parallel tracking
and mapping framework to achieve fast response to changes in
the environment, while building a high-quality map of the scene.
Contributions of our system, which is an extension of our previous
work [4], are as follows (see Fig. 1):

Our first contribution is using vistas to determine the robot
steering direction, enabling robust navigation. Our vistas are
derived from first principles of what it means to be distant; hence,
they are not hallway-specific like the previous work that depends
on vanishing points detected from spurious edges [3] or hallway-
specific cues [5].Moreover, vistas are also derived from scale-space
features and inherit the properties such that they are easily and
reliably detected and tracked in many types of environments.

Our second contribution is a special type of landmarks, called
Wall–Floor Features, that are suitable for mapping indoor environ-
ments and enabling autonomous exploration capabilities. In addi-
tion to vistas, for intelligent exploration schemes, the MAV needs
some knowledge of the scene structure. We infer the structure
from a map of compact and low-dimensional landmarks that are
informative enough to capture the most important geometric in-
formation of the scene. Our novel landmarks lie on the perpendicu-
lar intersection of vertical lines on thewall and the horizontal floor
plane. They encode the direction of the wall and can capture any
type of corners whether straight, convex or concave.

Our third contribution is a parallel tracking and mapping
framework that adopts the parallel-style execution of tracking and
mapping introduced in the Parallel Tracking and Mapping (PTAM)
system in [1], and extends its capabilities to deal with the lack
of features in man-made environments and typical robot motions
that fail monocular SLAM. While PTAM requires a large number
of visual features to localize the camera, our system fuses visual
featureswith odometry/IMUmeasurements to dealwith periods of
featureless scenes in the environment. Utilizing sensor fusion, our
system can also deal with rotational motions towards unknown
regions, where map building commonly fails due to the lack of
motion parallax to triangulate new landmarks for the map. Unlike
other PTAM–IMU fusion work that uses the actual PTAM system
as a black box [6,7] and fails to prevent breakdowns for such cases,
we incorporate the parallel-style execution in our own factor graph
framework [8] to fuse sensor information in a principled manner;
hence, our system gains robustness in these difficult situations.

We demonstrate our results on an inexpensive AR.Drone 2.01

quad-rotor. Our system successfully flies autonomously towards
vistas while avoiding lateral collisions with wall inference. We
evaluate our mapping results with loop closures on a pre-
captured offline dataset using the ground-truth map, and compare
its accuracy against PTAM and the quad-rotor’s own estimate
provided by the manufacturer’s own firmware.

2. Related work

Successful MAV navigation systems neglect to address the
power and payload limitations by using heavy and power-hungry
sensors. For example, [9–14] use laser scanners to build a map of
indoor environments for MAV navigation and exploration. Scherer

1 http://ardrone.parrot.com.
Fig. 1. Weuse vistas (bottom left) to steer the robot and rely on amap ofWall–Floor
Features (bottom right) in a parallel tracking and mapping framework to infer the
scene structure and avoid lateral collisions. We present our results in an indoor
setting using an AR.Drone (top).

et al. [15] use a laser scanner on a helicopter to detect and avoid
different types of objects such as buildings, trees, and 6 mm wires
in the city. Recently, Bry et al. [16] also use a laser scanner and a
prebuilt map to enable aggressive flight and obstacle avoidance on
a small fixed-wing airplane. These systems, however, are severely
limited to short-term operations due to their heavy payload and
high power usage. Furthermore, active sensors such as laser scan-
ners are undesirable in many applications (e.g., military), due to
the risk of cross-talk and ineligibility for covert operations. There-
fore, we preclude the use of laser scanners and other heavy and
power-hungry sensors.

Recentwork in vision-based autonomous navigationneglects to
provide exploration and planning capabilities achieved by building
a map of the environment. While the system in [17] can navigate
autonomously with a single camera, it relies on a prebuilt map.
Bills et al. [3] enable autonomous navigation towards the end of
the hallway by detecting the vanishing point from intersections
of long lines along the corridors, but their system relies on sup-
plementary sonar sensors to detect openings to the sides for au-
tonomous exploration. Moreover, Murali and Birchfield [5] enable
vision-based autonomous exploration on a ground robot by fusing
many hallway-specific properties such as high entropy, symme-
try, self-similarity, etc. to detect new hallway directions; however,
their method is reactive and cannot support high-level planning
algorithms. Based on map-building, our method can support ex-
ploration and planning algorithms to efficiently navigate towards
unexplored regions.

On the other hand, state-of-the-art vision-based map-building
methods are insufficient for usage in indoor navigation. Many
methods build 3D point-cloud maps [18,7,19,20] but in texture-
less indoor environments, the point-clouds are too sparse to re-
veal the 3D structure needed for path/motion planning. Although
some [21,22] build a map from the edges in the environment,
they neglect to infer the environment structure crucial for robot
navigation. Moreover, state-of-the-art vision-based methods that
reconstruct the indoor scene [23–25] either rely on the in-
door Manhattan world assumption or require expensive multi-
hypothesis inference methods [24,25]. Our method based on

http://ardrone.parrot.com

D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667 1659
Fig. 2. PTAM is not suitable for robots with a frontal camera, especially in this type
of indoor environment with a small number of features that are mostly far away
along the robot’s direction. Our framework for robot navigation overcomes PTAM’s
limitations by fusing visual and odometry measurements together in a principled
manner.

Wall–Floor Features improves on previous work with the ability
to work in textureless environments, using sparse yet informa-
tive scene representation, and not relying on the indoorManhattan
world assumption.

Furthermore, other vision methods that are derived from
PTAM [1] to enablemap building need to rely on a downward cam-
era for building a map, lacking the ability to avoid obstacles [26,6,
27,7,18,19]. When using with a frontal camera, these monocular
SLAM methods fall short in indoor environments where sufficient
features do not exist as shown in Fig. 2, and when the robot under-
goes rotationally dominant motions. In these situations, one needs
to rely on odometry or IMUmeasurements for the localization task,
but the latest work in combining PTAM and odometry or IMUmea-
surements does not integrate them properly. These systems [6,7]
simply treat PTAMas a ‘‘black box’’ and combine results fromPTAM
with IMU measurements in an outer loop; hence, the visual and
odometry/IMU measurements are not fused together in the same
system, nor are the fused results propagated back to PTAM to pre-
vent it from failing, e.g., when there is a lack of visual features in
the scene, or when the robot rotates towards unknown regions.

3. Autonomous navigation towards vistas

One of the first tasks in autonomous navigation and exploration
is to determine the direction towards open space. In this section,
we derive from first principles a general approach that can poten-
tially be applied to any type of environment to steer the robot.

3.1. Vista size change criterion

We use vistas to refer to landmarks that are far from the robot
and can be used as a steering direction towards open space when
exploring in an unknown environment.

One important property of vistas is that, due to their far distance
to the robot, the size of their projection in the camera frame does
not change significantly when flying towards them. This property
is already well-known in perceptual psychology under the τ -
theory [28] by David Lee, saying that the time-to-collision (TTC)
to an object is the ratio τ of the object’s image size to the rate of its
size change. Some work has utilized this property to compute TTC
using optical flow [29,30] or direct methods [31,5].

Using this property, we derive vistas from relative size change
of scale-space features such as SIFT [32] or SURF [33]. The optimal
sizes of these features are computed by fitting a 3D quadratic
function to the feature responses in scale-space around the max
response [32].
Fig. 3. Detected vistas (in red) and features that do not satisfy the vista criteria
(in yellow) are shown. The closestvista to the mean of all the detected vistas (pink
feature) is selected as the steering direction for the robot. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Let s1, s2 be feature sizes and Z1, Z2 be their distance from the
camera at frames 1 and2. Since si = f S

Zi
, where f is the camera focal

length and S is the true size of landmark, we have s1/s2 = Z2/Z1. It
can be easily shown that 1s

s2
= −

1Z
Z1

=
tz
Z1

where1s = s2−s1 is the
absolute size change of the feature and tz = −1Z = Z1 − Z2 is the
amount of forward movement of the robot between two frames,
easily obtained from integrating an IMU, using a motion model,
or fusing optical flow and corner tracking on a bottom-looking
camera, as already implemented on the AR.Drone [34].

Let Z1 min be the minimum safety distance to the landmark in
camera frame 1 so that any landmarks with Z1 ≥ Z1 min can be
considered vistas. The relative size change of vistas must satisfy

1s
s2

≤
tz

Z1 min
. (1)

As shown in Fig. 3, this criterion leads to an efficient way to
detect distant landmarks in the environment.

3.2. Vista rotation-predictability criterion

The minimum safety distance Z1 min of vistas in the previous
section could be chosen arbitrarily as long as it is safe for the
robot to avoid collidingwith thewall at current speed. However, to
ease the prediction and tracking of the vistas, we enforce another
geometric property of distant landmarks that their projection
in the image should be predictable using pure camera rotation,
unaffected by the translation.We call this ‘‘rotation-predictability’’
criterion.

We derive this additional requirement for our vistas based on
a well-known fact that if a point is at infinity, its projection in the
camera image can be purely determined by the camera rotation. In
our case, the camera translation between two consecutive frames
is insignificant compared to the distance from the camera to the
landmarks, hence has no effect on the landmark position in the
image.

More specifically, let p1 and p2 be the 2D homogeneous forms of
the landmark projections in camera frames 1 and 2. Also, let K =
fx 0 ox
0 fy oy
0 0 1


be the camera calibration matrix, and X1

2 = {R, t} ∈

SE (3) be the odometry of the camera from frame 1 to frame 2. If
the landmark P is at infinity or if the cameramotion is under a pure

1660 D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667
200

200 300

100

100

0
20

15

10

5

0
0

Fig. 4. Minimum Z r
1 min distances for rotation-predictable features for tx = ty =

0, tz = 0.1. The horizontal xy-plane is in image pixels, and the vertical z-axis is the
minimum Z1 required at each pixel. Plot with camera calibration: ox = 160, oy =

120, fx = fy = 210.

rotation (t = 0), its projections p1 and p2 are related by the infinite
homography H = KR2

1K
1 between the two images [35]:

p2 = pr2 ∼ KR2
1K

−1p1,

where R2
1 = R⊤, and ∼ denotes the equivalent up to a constant

factor.
However, if the camera motion also involves a translation,

i.e. t ≠ 0, and the landmark is not at infinity, the relationship
between p1 and p2 is:

p2 = pt2 ∼ K(R2
1Z1K

−1p1 + t21)

∼ pr2 +
1
Z1

Kt21 ,

where t21 = −R⊤t .
Consequently, the rotation-predictability criterion infers that

pt2 must be well approximated by pr2. In this case, the effect of
the camera translation t on p2 is negligible and insensible by the
camera, i.e., in homogeneous form, 1

Z1
Kt21 ≈ kpr2, for some scalar

k ∈ R. To satisfy this constraint, we impose the condition that the
non-homogeneous distance between pt2 and pr2 has to be less than
1 pixel, i.e., 1
zpr2

pr2 −
1
zpt2

pt2


2

≤ 1,

where zpr2 and zpt2 are the third components of pr2 and pt2, respec-
tively. Solving for this constraint leads to theminimumdepth Z r

1 min
of the landmark such that its image projection can be purely deter-
mined by the camera rotationas follows:

Z r
1 min(x, y, t)

= tz +


[fxtx + tz(ox − x)]2 + [fyty + tz(oy − y)]2 (2)

where t =

tx ty tz

⊤, and (x, y) is the non-homogeneous co-
ordinate of p1.

This formula shows that the minimum Z r
1 min distance of the

landmark in the first camera view depends on its position (x, y)
in the first image, and also the camera translation t . Fig. 4 shows
the Z r

1 min required for each pixel landmark location in the image
where the camera moves in z direction.

Note that at the Focus of Expansion (FoE), where the camera
translation vector intersectswith the camera imageplane, themin-
imum Z r

1 min is very close to the camera. As a trivial example, when
the camera moves forward without rotation, R = I3×3, the min-
imum distance for rotation-predictability criterion is Z r

1min = tz ;
i.e., any point along the camera optical axis is not affected by the
camera translation as long as it is in front of the second camera
view.
Although such limitations exist in the FoE region, the rotation-
predictability criterion is still useful to reject false vistas outside
the region. Thus, we use max(Z r

1 min, Z1 min) for the minimum
distance in Eq. (1) to create the final criteria to track vistas on a
frame to frame basis.

4. Parallel tracking and mapping framework for robot naviga-
tion

Despite the capability of vistas in steering a robot towards
open space, vistas alone cannot grant fully autonomous explo-
ration capabilities. In order to avoid lateral collisions, detect direc-
tions towards unexplored regions, and adopt an intelligent plan-
ning scheme, it is critical to obtain a map of the environment.

Our map-building and localization system tailors the well-
known Parallel Mapping and Tracking (PTAM) system [1] for robot
navigation. Although PTAM is originally designed for Augmented
Reality applications, its parallel framework is desirable in robotics
applications as well, in which the tracker guarantees a fast re-
sponse to changes in the environment, while the mapper builds
a high-quality map of the environment and performs computa-
tionally expensive tasks such as structure inference. These desir-
able characteristics of PTAM have proven the system superior over
traditional monocular SLAM filtering methods in robotics applica-
tions [36].

However, similar to other feature-based monocular SLAM
methods, PTAM suffers from pure camera rotations and the lack of
features in the environment, as previously discussed. Our frame-
work overcomes these limitations by fusing visual features with
odometry inputs for robot navigation. We note that although we
use a special type of visual features in this work to capture the
structure of indoor environments, as detailed in Section 5, our
framework presented here is generic enough to be applied for any
types of visual features.

4.1. The framework

Fig. 5 shows the overall layout of our framework, consisting of
a tracker and a mapper running in parallel. The tracker receives
a stream of timestamped images and odometry measurements
from the robot. Its task is to localize the current camera in real-
time within the optimized map of local landmarks created and
maintained by themapper. Based on the localization results, it then
decides if a new keyframe and odometry measurements should
be added to the existing map to cover new parts of the scene.
Performing these tasks in real-time, the tracker’s localization
results benefit time-critical tasks such as controlling the robot to
follow a trajectory, or avoiding obstacles.

The mapper periodically receives a new keyframe image from
the tracker, as well as odometry measurements between this new
keyframe and the previously received keyframe. These odometry
measurements are created by accumulating all odometrymeasure-
ments of the intermediate frames between the two keyframes. The
mapper’s task then is to build a global map of visual landmarks
in the environment, and simultaneously compute the optimal
keyframe poses. After finishing an iteration, the mapper updates
the tracker with the newly optimized local map and keyframe
poses, which are then used by the tracker to localize the current
camera pose in real-time. Due to the inherently slower pace of the
mapper and the fact that it does not have to obey real-time con-
straints, other time-consuming tasks such as inferring the struc-
ture of the environment can also be added to the mapper thread,
to provide contextual information of the environment.

4.2. The mapper

Unlike PTAM,which only uses visualmeasurements,we employ
both visual measurements and odometry measurements between

D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667 1661
Fig. 5. Overall framework of our Parallel Tracking and Mapping system with odometry measurements.
Fig. 6. The factor graphs of PTAM’s mapper (top) and our mapper (bottom).

keyframes to build themap.We denote the set of unknown camera
poses and landmarks by X = {xi}ni=1 and L =


lj
m
j=1 respectively,

the set of all visual measurements by Z =

zij


, with zij the visual

measurement of landmark j viewed from camera i, and the set
of all odometry measurements B = {bik}, with bik the odometry
measurement between the camera poses i and k.

The map-building problem is then to recover the maximum a
posteriori (MAP) estimate, given by

X∗, L∗
= argmax

X,L
p(X, L, Z, B)

= argmax
X,L

p(x1)

i,k

p(xi| xk, bik)

i,j

p(zij| xi, lj).

This general map-building problem can be posed in terms of infer-
ence in a factor graph [8]. As shown in the bottomof Fig. 6, the cam-
era poses xi and the landmarks lj are represented as variable nodes
(white circles) in the graph. The factor nodes (black dots) in the
graph represent the prior densities p(x1) on the variable nodes, the
motion models p(xi| xk, bik) between two poses xi and xk given the
odometrymeasurement bik, and themeasurement likelihoodmod-
els p(zij| xi, lj) constraining a pose xi and a landmark lj, given the
corresponding visual measurement zij. The measurement model
can be derived for any type of landmark and their visual measure-
ments, using any standard camera projection model. In Section 5
we give a detailed measurement model for the specific landmarks
we use. For comparison, the factor graph of the original PTAM is
shown at the top of Fig. 6. It has no odometry factors between cam-
era poses.

This problem can be solved by techniques like bundle adjust-
ment [37,1], smoothing and mapping [8], or incremental smooth-
ing and mapping methods [38]. We use the state-of-the-art
incremental smoothing andmapping algorithm iSAM2 [38] imple-
mented in our GTSAM library2 for the actual inference.

2 https://borg.cc.gatech.edu/download.
Fig. 7. The factor graphs of PTAM tracker (top) and our trackers (bottom).

4.3. The tracker

While our mapper is fairly similar to PTAM’s, our tracker differs
significantly. PTAM’s tracker can robustly localize the current
camera pose xt within the knownmap (received from themapper),
by relying on the visual measurements ztj of many landmarks lj
visible in the current image t . To do so, it solves the well-known
camera resectioning problem, i.e., computing the optimal camera
pose from measurements of known landmarks:

x∗

t = argmax
xt

p(xt | {ztj, lj}j=1..m)

= argmax
xt


j

p(ztj| xt , lj).

The corresponding factor graph is very simple: there is only
a single variable node xt , and a single (unary) resectioning factor
for each of the visual measurements, parameterized by the corre-
sponding known landmark. The top of Fig. 7 shows the factor graph
of PTAM’s tracker.

With the odometry measurements to compensate for the lack
of visual measurements and landmarks in the environment, our
tracker is more involved. We compute not only the current pose,
but also all previous poses since the latest keyframe received from
the mapper. To make things precise, let X]k,t] = {xi}ti=k+1 be those
unknown camera poses, with k the index of the latest keyframe
received. Also, let Lk be the set of known landmarks received from
the mapper, Zk

]k,t] the visual measurements from frame k + 1 to

frame t , and B[k,t[=

bi,i+1

t−1
i=k the set of odometrymeasurements

from frame k to t .
Our tracker computes:

X∗

]k,t] = argmax
X]k,t]

p(X]k,t]| xk, Lk, Zk
]k,t], B[k,t[)

= argmax
X]k,t]


i

p(xi| xi−1, bi−1,i)

i,j

p(zij| xi, lj)

where i ∈]k, t] and where the index j ranges over landmarks in Lk
observed in frame i. The corresponding factor graph is shown in the
bottom of Fig. 7. We also use our GTSAM library mentioned above
to optimize this graph.

https://borg.cc.gatech.edu/download

1662 D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667
(a) Factor graphs of the tracker (left) and the mapper (right) before update.

(b) The tracker sends a new keyframe (and its odometry measurement from the previous keyframe) to the mapper.

(c) While the mapper is computing new landmarks and optimizing the graph, the tracker keeps on adding new poses and measurements.

(d) After receiving the newmap and the latest keyframe pose from the mapper, the tracker removes the past poses
and updates the remaining graph.

Fig. 8. The communication and updating process between our tracker and mapper.
At runtime, the tracker decides when to send a keyframe to
the mapper, to request for new landmarks in the new parts of the
scene. While waiting for the results from the mapper, it keeps on
adding new camera poses and optimizing the graph as it receives
new images and odometry measurements from the robot. In our
experiments, the tracker simply sends a keyframe to the mapper
after every 10 frames. Based on the speed of our robot and the field
of view of its frontal camera, we found that this 10-frame sampling
frequency is sufficient for the mapper to cover the space, while
preventing redundant overlap between them.

Upon receiving a new keyframe pose and landmarks back from
themapper, the tracker removes from the graph all the past frames
before the latest keyframe received, including the keyframe itself.
This process is shown in Fig. 8. Based on the new optimal keyframe
pose and landmarks, it then updates the prediction, redoes data
association, and re-optimizes all the remaining poses in the graph
using the new prediction as the initial value. The data association
stepmight not be necessary if the keyframe and landmark updates
from the mapper are not very different from their values currently
used in the tracker. However, this is not the case at loop closure, as
we will discuss next.
4.4. Loop closing

While PTAM cannot close the loop, as mentioned in its original
paper [1], our use of odometry factors allows us to employ a simple
loop closing mechanism. Although feature-based loop closure
detection schemes [39,40] are available, we employ a simple yet
effective loop-closure detectionmethod thatworkswell for typical
indoor environments with straight orthogonal hallway segments.
Our method is based on the Small-Blurry-Image (SBI) technique
used in PTAM for camera relocalization from tracking loss [21]. We
implement the loop closure module in the mapper thread due to
its high computational complexity.

In particular, to detect a loop closure, we first determine if cur-
rent hallway segment is potentially a pre-visited segment. When
the robotmakes a turn around a corner, we know that it is entering
a new segment. Thus, we can divide the trajectory into segments,
and average the yaw angles of the robot during its stay on a seg-
ment and use it as the segment direction. If the current segment di-
rection is similar to another segment in the past, a potential match
is found.

To confirm a loop closure from a potential match, we find the
keyframe in the old candidate segment that best matches with our

D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667 1663
a b

c d

Fig. 9. (a) Our landmark encodes a vertical line position and a wall direction. (b)
Two landmarks with opposite wall directions sharing one vertical line. (c) Two
landmarks encoding an edge. (d) Two landmarks, one invisible.

current keyframe, and determine if their difference is small enough
to consider them a loop closure. We do this by computing the
SBIs, down-sampled and blurred images [21] for keyframes in all
segments, and using the sum-of-square-differences (SSD) of pixels
from the candidate keyframe’s SBI and current SBI to measure the
difference between them. In order to aid thematching, we also use
an image alignment technique to optimize for the relative camera
rotation that best aligns the two SBIs before calculating the SSD.
Finally, if the best match has differences less than a threshold, we
consider it a good match, and a loop closure is found.

When a loop closure is found, we add a loop-closure factor
constraining the relative pose between the latest keyframe and
the best match keyframe to the mapper. Since keyframes in the
mapper regularly sample the space and the SBI match guarantees
that the two frames are very close together, we simply predefine
the values for this constrained relative pose measurement and
use a reasonably large uncertainty as its noise model. We note
that other traditional feature-based techniques, e.g. detecting and
matching features between the two keyframes using fundamental
matrix RANSAC, can also be used; however, their effectiveness is
questionable with the lack of features and the regularity of indoor
environments.

At loop closure, after receiving the latest keyframe and land-
marks from the mapper, it is important for the tracker to redo the
data associations for all visual measurements of previous frames
in its graph and re-compute the initial values of those poses for
optimization. This is because when closing the loop, the latest
keyframe can be shifted very far back to an old place in the map,
moving the attached frames together with it due to their odom-
etry constraints. Hence, the visual measurements need to be re-
associated with these old landmarks, and the initial values need to
be recomputed to make sure the nonlinear optimization process
converges at the correct local minima.

5. Wall–floor features

For the typical indoor environment in our experiment (Fig. 2),
choosing the right type of visual landmarks is challenging. Corner-
type features are easy to detect butmost of themare far away at the
end of the hallway and provide little information for localizing the
camera. Many solutions have been proposed to deal with this type
of environment; for example, encoding the floor–wall boundary in
each columnof the input image [41], categorizing all possible types
of corners to generate all hypotheses of the environment struc-
ture [24], generating multiple hypotheses of wall–floor intersec-
tion lines from detected edges [25], or exploiting the floor–ceiling
planar homology [23].

Our system overcomes such difficulties by adopting and im-
proving the Wall–Floor Features introduced in our previous
work [4]. These landmarks lie on the intersection of a vertical line
on thewall and the intersecting floor plane. As shown in Fig. 9, each
landmark encodes a single wall direction and their combinations
can model any type of wall corner configurations. We represent
each landmark as an element of the Lie-group SE (2), encoding its
2D position and direction on the floor.

To detect these landmarks in the image, instead of using steer-
able filters and gradientwalk, as done in our previouswork, we use
the Histogram of Gradient (HoG) of a 7 × 7 patch around the pixel
to gain more resilience to pixel intensity noises. Inspired by [42],
our HoG is computed by accumulating the gradient magnitudes of
each pixel in the patch into the corresponding histogram bin asso-
ciated with the pixel gradient orientation.

More specifically, we first detect the vertical line in the land-
mark by rectifying the image using the rotation estimate from the
on-board server, so that vertical lines in the 3D space are also ver-
tical lines in the image, as shown in Fig. 10. After rectifying the
image, we detect vertical lines as local maxima along the x-axis
of the sum of horizontal image gradients as done in our previous
work. Next, we compute HoG responses for points along the verti-
cal line, starting from the middle of the image towards its bottom,
up to the pixelwhere its HoG component in the horizontal gradient
bin is less than a threshold, i.e. it is not a pixel on the vertical line
anymore. We then mark this point as the end of the vertical line,
and continue to search for another pixel, within a small distance
from this end point, which has the maximum HoG component in
a non-horizontal gradient bin. If this maximum non-horizontal bin
HoG response is larger than a threshold, this pixel is considered a
Wall–Floor Feature and the direction of the bin with themaximum
(a) Wall–Floor Features (circles) detected by the previous method in [4]. (b) Wall–Floor Features (green circles) detected by the new method using HoG.
Red color denotes the vertical lines that have no features close to their lowest
end points. The number of spurious features is reduced significantly.

Fig. 10. Detection results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1664 D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667
HoG component encodes the direction of the wall–floor intersec-
tion line.

Fig. 10 shows our detection results. Unlike the previousmethod,
which simply chooses the lowest point with the largest non-
horizontal gradient as a feature, this newmethod can significantly
reduce the number of false features by constraining the features
to be close to the end point of a vertical line. However, as seen
in Fig. 10, due to the reflection of vertical lines on the floor, some
spurious features still exist. These features are very unstable and
become undetectable very easily. We remove them by checking
their uncertainty and visibility in the frames.

The projection of a landmark onto an image given the camera
pose is also an element of SE (2) encoding its projected point and
projected direction in the image. Hence, our likelihood function
p(zij | xi, lj) can be formulated from a Gaussian distribution on
SE (2). However, the simple representation of SE (2) allows us to
treat the measurement feature zij ∈ SE (2) and the predicted pro-
jection pij ∈ SE (2) of the landmark lj given the camera pose xi
as two 3-vector (x, y, θ)’s, encoding their projection points (x, y)’s
and directions θ ’s in the image. Our measurement model is simply
p(zij | xi, lj) = N (pij; zij, Σm), where Σm is the covariance of the
measurement noise.

Since the landmarks lie on the floor, their 3D world positions
can be initialized efficiently from a single image by back-projecting
the detected image locations onto the floor using the predicted
camera orientation and the metric height measurement. This is
another advantage of using these features over the traditional
corner-type features, which depths have to be initialized by
maintaining a set of hypotheses until converged [2], or using
the inverse-depth parameterization technique with non-Gaussian
priors [43]. As a result, this combination of features on the floor
and the height measurements also provides us with the non-
drifting absolute scale information, a well-known challenge for
pure monocular SLAM systems.

6. Experiments

We evaluate our system for (1) offline map-building with loop
closures and (2) online autonomous navigation following a vista
and avoiding collisions. The first experiment evaluates the qual-
ity of our parallel tracking and mapping with odometry frame-
work, while the second one assesses our system’s ability for
autonomous navigation and exploration. For both experiments, we
fly an AR.Drone 2.0 quad-rotor in the hallway shown in Fig. 11, at
one meter above the ground.

6.1. Platform

The quad-rotor is equipped with a 30 fps HD frontal camera, a
60 fps QVGA bottom camera, an ultrasound height sensor, and an
IMU system with a 3-axis accelerometer, a 3-axis gyroscope and a
3-axis magnetometer. An on-board server program on the quad-
rotor filters measurements from the bottom camera, the height
sensor, and the IMU system to estimate the pose of the quad-
rotor [34].

Wedeveloped an additional on-boardprogram toobtain images
from the frontal camera and stream JPEG compressed 320 × 180
grayscale images to the tracker running on a MacbookPro 6.2
laptop with a 2.4 GHz Intel Core i5 CPU and 4 GB DDR3 RAM.
Our on-board program also receives estimated robot poses from
the on-board server and creates odometrymeasurements between
the frames, using their relative pose. However, these odometry
measurements are not completely reliable over time, as indicated
by the inaccurate trajectory estimates from the quad-rotor shown
in Fig. 11. They systematically underestimate the traveled distance,
perhaps due to the lack of features on the floor corrupting the
motion estimation scheme that largely depends on the features
from the bottom-facing camera [34].
Our trajectory before the first loop closure
Our trajectory after the first loop closure
Our estimated landmarks

Navdata trajectory
PTAM trajectory
Our final trajectory

30

20

10

0

–10

–20

0 10 20 30

Fig. 11. Comparison between the ground-truth map of the environment and
the estimated trajectories from the quad-rotor’s on-board program, PTAM, and
our system. Our map is manually-aligned to fit with the ground-truth map. The
Wall–Floor Features are shown in magenta and the ground-truth floor layout is in
gray (walls) and black (doors). Our estimate roughlymatcheswith the ground-truth
map evenwith an unreliable odometry input and a small number of visual features.

6.2. Map-building results

We evaluate the quality of our map by running our system
offline on a set of video frames and sensor data recorded from the
quad-rotor, flying manually twice around the square hallway for
loop closures (see Appendix A). We compare our results with the
original PTAM implementation provided by Klein et al. [1], and also
with the hand-measured ground-truth of the test environment.

We first run PTAM with our dataset to analyze its perfor-
mance in feature-poor environments. We initialize the system as
required [1] using the last frame when the quad-rotor is on the
floor and the first framewhen it stabilizes in the air. Since the quad-
rotor is flying about ameter high, we set the initial scale of the sys-
tem, determined by the baseline between these two frames, as 1m.

Fig. 11 shows the trajectory of the quad-rotor estimated by
PTAM. As we predicted, PTAM cannot estimate the motion and
shows that the quad-rotor does not move. This is because there
are not enough corner features in the scene, and the few that are
available are mostly at the end of the hallway, providing little
information about the robot’s forward movement; these features
have almost no motion parallax as they are close to the focus-of-
expansion point on the image. PTAM also breaks down when the
quad-rotor starts to turn around the first corner, failing to initialize
new landmarks with no motion parallax.

Using the same dataset, we show the results of our system in
Fig. 11, where the estimated trajectory is in red and the landmarks

D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667 1665
(a) Original frame with vistas (red) and detected Wall–Floor Features (yellow). (b) Wall inference mask, showing wall–floor intersection lines in white.

Fig. 12. Wall inference results in a key-frame. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
inmagenta. Due to drift and unreliability in sensor readings during
AR.Drone’s take-off sequence [34], we only start our system once
the drone stabilizes in the air. Since the entire map depends on the
first robot pose at the system start, which is arbitrary due to the
drift, we manually rotate our map to match the ground-truth map
orientation.

Our system successfully finishes the sequence with a proper
loop closure. With the aid of the odometry measurements, our
system does not fail when the robot yaws around the corner, or
when it cannot detect any visual features in the environment. For
example, during the last hallway segment before the loop closure
at the bottom of Fig. 11, it relies sorely on the incorrect odometry
measurements obtained from the quad-rotor’s on-board program
and underestimates the amount of its forward motion. This is
evident in the estimated trajectory before the first loop closure,
shown in dashed lines in Fig. 11. Due to the underestimated
forwardmotion, the estimation results show that it is at themiddle
of the bottom hallway, when it has already turned around the
corner. However, with the loop closure in our system, this is
corrected, as shown in the trajectory after the first loop closure in
Fig. 11. Our final map and trajectory roughly match the ground-
truth map of the environment, even with the odometry input that
drifts significantly.

6.3. Autonomous flight results

In these experiments, we run both our tracker and mapper
online on the Macbook Pro, building the map and inferring the
environment structure from images and sensor data streamed over
Wifi from the on-board programs. To control the quad-rotor, our
tracker also sends back control commands over the network to the
low-level controller running on-board [34]. Although the tracker
runs very fast, network latency is still a challenging problem for
real-time control. We mitigate this issue by setting the maximum
flying speed of the quad-rotor slow enough for our off-board
controller to copewith changes in the environment in the presence
of network latency. Our system can be modified to more robustly
dealwith network latency and thiswill be discussed in futurework.

We steer the robot towards vistas which prevents frontal head-
on collisionwith obstacles. However, to also avoid lateral collisions
with the wall, we post-process the map of Wall–Floor Features, to
infer the wall locations as follows.

Wall inference: To infer the local wall locations, we accumulate
evidence of walls in a local occupancy grid on the floor. Given
the estimated maps of our Wall–Floor Features and the key-frame
poses,we first project each landmark as a corresponding line on the
key-frame images and compute HoG descriptors, as described in
Section 5, for pixels within a fixed distance from these lines. Pixels
with large HoG component in the line orientation bin are masked
as shown in Fig. 12 as possible wall–floor intersection lines and
contribute their votes to the corresponding grid cells on the floor.

Avoiding lateral collisions: Given the local occupancy grid
centered at the current robot position, we infer the distance to the
walls on the sides of the robot by attempting to equate the distance
to the left and the right by changing the MAV’s yaw and roll rates.
This strategy prevents side collisions and navigates the robot in the
middle of the environment.

Given the binarized local occupancy grid centered at the current
robot position, we can infer the directions of the walls on the sides
of the robot and compute the distances to these walls to navigate
along the middle of the hallway. We first find two lines that
pass through the robot center and are orthogonal to the possible
left and right walls in the local grid by minimizing the variances
of projections of nonzero grid cells on each of the lines. More
specifically, let b = [cos θ sin θ]

⊤ be the line direction as a unit
vector, o be the local grid center, and vi = ui − o be a vector from
the grid center to a nonzero grid cell ui on one side of the robot,
we find θ that minimizes the variance of d = v⊤b. This variance
is computed as: f (θ) = E[d2] − (E[d])2 and can be minimized in
closed-form by solving for ∂ f

∂θ
= 0, leading to a quadratic equation

of tan(θ). Finally, knowing the minimum distances dl, dr from the
robot to the left and right walls, we compute the offset of the robot
to themiddle of the hallway by calculating (dl−dr)/2. The obtained
offset is used in a simple PID controller to keep the robot on the
middle of the path.

With the closed-form formula, the algorithm can produce fast
accurate results while the robot heading is relatively parallel to the
side walls. However, when turning corners, where multiple wall
directions appear on one side of the robot, our method produces
invalid results. We solve this problem by simply enforcing a
threshold on the maximum variance of projections.

Combining these strategies, we obtain a system that can
avoid collisions in both forward and side directions, fly towards
unexplored open areas, while also simultaneously localizing and
building a map of the environment. We achieve avoiding any
collisions 8 out of 10 experiments in the hallway shown in Fig. 12.
Repeated failures to detect landmarks and the instability of the
AR.Drone in the narrow hallway are main reasons for the failure
cases.

In terms of speed, our tracker runs favorably at 10–12 fps, while
the mapper runs at 1–2 fps with the majority of time spent on
waiting for new keyframes and odometry measurements from the
tracker. Comparing to iSAM2 [38], which is also very fast due to its
incremental computational nature, our framework allows the ex-
tra resource in themapper to be utilized for other time-consuming
wall inference tasks without affecting the tracker speed.

1666 D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667
7. Discussion and future work

We have presented a vision-based system that enables au-
tonomous navigation strategies on an MAV in feature-poor indoor
environments, which could not be achieved in previous work in
the absence of heavy and power-hungry sensors. We are able to
steer the robot towards open areas with vistas and avoid lateral
collisions by inferring the local scene structure with our map of
Wall–Floor Features. We adopt a parallel tracking and mapping
framework to achieve fast responses to changes in the environ-
mentwhilemaintaining the computationally expensivewall infer-
ence and map-building tasks in a parallel process.

We have shown that a typical monocular SLAM system is not
suitable for robot navigation with a frontal camera, because (1)
features in front of the robot do not provide enough information
for localization when the robot moves forward, and (2) there is
not enough motion parallax to triangulate new landmarks in the
scenewhen the robot rotates to change its heading. In fact,motions
typically performed by robots, mainly moving forward and purely
rotating to change direction, are challenging for any monocular
visual SLAM system in general. The lack of visual landmarks in
typical indoor environments adds to the challenge for feature-
based systems.

By fusing in the odometry measurements, we have shown that
our framework can overcome the key difficulties in frontal monoc-
ular SLAM for robot navigation. The new framework also enables a
simple loop-closing mechanism to correct the robot trajectory and
the map.

Although our method of combining vistas and Wall–Floor Fea-
tures advances autonomous navigation and exploration capabili-
ties of MAVs, there remain some limitations as future work. The
most critical limitation is the lack of ability to autonomously turn
corners for exploring a large area. Our current strategy of steering
towards vistas detected in the frontal camera of the robot does not
work well with finding openings to the sides and turning to lateral
directions. We have some preliminary results suggesting that the
wall inference strategy can be further extended to find gaps in the
walls to mark as potential corners to turn towards. However, this
strategy requires further work to achieve reliable performance.

Some improvements can also be made to make the complete
system less sensitive to thresholds and be more robust to other
lighting conditions. Our wall-inference is sensitive to thresholding
values, and requires fine-tuning for the specific lighting condition
in the environment. In addition, our criteria for vistas (1) and (2)
may have some practical limitations without perfect projective
camera imaging. For example, the rolling shutter effect of the low-
quality camera on the AR.Drone may affect the size of the features
and violate (1).

Another direction of our future work is to further leverage
the benefits of the parallel tracking and mapping framework for
robotics applications. In our current implementation, the tracker
and the mapper both run off-board but communicate with each
other over TCP/IP. In the future, we plan to implement the tracker
on the quad-rotor itself so that its results can be immediately
accessed by the on-board controller, eliminating the effects of
network latency on real-time control. The mapper can also be
improved to utilize other visual information in the environment,
using state-of-the-art structure inference methods.

Acknowledgment

This work is supported by an ARO MURI grant, award number
W911NF-11-1-0046.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2014.03.010.
References

[1] G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces,
in: IEEE and ACM Intl. Sym. on Mixed and Augmented Reality, ISMAR, Nara,
Japan, 2007, pp. 225–234.

[2] A. Davison, I. Reid, N. Molton, O. Stasse, MonoSLAM: real-time single camera
SLAM, IEEE Trans. Pattern Anal. Mach. Intell. 29 (6) (2007) 1052–1067.

[3] C. Bills, J. Chen, A. Saxena, Autonomous MAV flight in indoor environments
using single image perspective cues, in: Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, 2011, ICRA 2011, 2011.

[4] K. Ok, D.-N. Ta, F. Dellaert, Vistas and wall-floor intersection features—
enabling autonomous flight in man-made environments, in: Workshop on
Visual Control of Mobile Robots ViCoMoR, 2012.

[5] V. Murali, S. Birchfield, Autonomous exploration using rapid perception of
low-resolution image information, Auton. Robots (2012) 1–14.

[6] S. Weiss, R. Siegwart, Real-time metric state estimation for modular vision-
inertial systems, in: IEEE Intl. Conf. on Robotics and Automation, ICRA, IEEE,
2011, pp. 4531–4537.

[7] M. Achtelik, M. Achtelik, S. Weiss, R. Siegwart, Onboard IMU and monocular
vision based control for MAVs in unknown in and outdoor environments, in:
Proc. of the IEEE International Conference on Robotics and Automation, ICRA,
2011.

[8] F. Dellaert, M. Kaess, Square root SAM: simultaneous localization andmapping
via square root information smoothing, Int. J. Robot. Res. 25 (12) (2006)
1181–1203.

[9] A. Bachrach, R. He, N. Roy, Autonomous flight in unknown indoor environ-
ments, Int. J. Micro Air Vehicles (ISSN: 1756-8293) 1 (4) (2009) 217–228.

[10] A. Bachrach, S. Prentice, R. He, N. Roy, RANGE—robust autonomous navigation
in GPS-denied environments, J. Field Robot. 28 (5) (2011) 644–666.

[11] M. Achtelik, A. Bachrach, R. He, S. Prentice, N. Roy, Stereo vision and laser
odometry for autonomous helicopters in GPS-denied indoor environments,
in: SPIE Defense, Security, and Sensing, International Society for Optics and
Photonics, 2009, 733219–733219.

[12] S. Grzonka, G. Grisetti, W. Burgard, Towards a navigation system for
autonomous indoor flying, in: IEEE International Conference on Robotics and
Automation, 2009, ICRA’09, ISBN: 1050-4729, 2009, pp. 2878–2883.

[13] S. Grzonka, G. Grisetti, W. Burgard, A fully autonomous indoor quadrotor, IEEE
Trans. Robot. 99 (2012) 1–11.

[14] S. Shen, N. Michael, V. Kumar, Obtaining liftoff indoors: autonomous
navigation in confined indoor environments, IEEE Robot. Autom. Mag. 20 (4)
(2013) 40–48.

[15] S. Scherer, S. Singh, L. Chamberlain, S. Saripalli, Flying fast and low among
obstacles, in: 2007 IEEE International Conference on Robotics and Automation,
ISBN: 1424406013, 2007, pp. 2023–2029.

[16] A. Bry, A. Bachrach, N. Roy, State estimation for aggressive flight in GPS-
denied environments using onboard sensing, in: IEEE Intl. Conf. on Robotics
and Automation, ICRA, IEEE, 2012, pp. 1–8.

[17] A. Wendel, A. Irschara, H. Bischof, Natural landmark-based monocular
localization for MAVs, in: ICRA, IEEE, 2011, pp. 5792–5799.

[18] M. Blösch, S. Weiss, D. Scaramuzza, R. Siegwart, Vision based mav navigation
in unknown and unstructured environments, in: 2010 IEEE International
Conference on Robotics and Automation, ICRA, 2010, pp. 21–28.

[19] S. Weiss, M. Achtelik, L. Kneip, D. Scaramuzza, R. Siegwart, Intuitive 3D maps
for MAV terrain exploration and obstacle avoidance, J. Intell. Robot. Syst. 61
(2011) 473–493.

[20] S. Shen, Y. Mulgaonkar, N. Michael, V. Kumar, Vision-based state estimation
and trajectory control towards high-speed flight with a quadrotor, in:
Robotics: Science and Systems, RSS, 2013.

[21] G. Klein, D. Murray, Improving the agility of keyframe-based SLAM, in:
European Conf. on Computer Vision, ECCV, Marseille, France, 2008.

[22] E. Eade, T. Drummond, Edge landmarks in monocular SLAM, in: Proc. British
Machine Vision Conf., 2006.

[23] A. Flint, D. Murray, I. Reid, Manhattan scene understanding using monocular,
stereo, and 3D features, in: Computer Vision (ICCV), 2011 IEEE International
Conference on, IEEE, 2011, pp. 2228–2235.

[24] D. Lee, M. Hebert, T. Kanade, Geometric reasoning for single image structure
recovery (2009).

[25] G. Tsai, C. Xu, J. Liu, B. Kuipers, Real-time indoor scene understanding using
Bayesian filteringwithmotion cues, in: International Conference on Computer
Vision, 2011.

[26] S. Weiss, D. Scaramuzza, R. Siegwart, Monocular-SLAM–based navigation for
autonomous micro helicopters in GPS-denied environments, J. Field Robot. 28
(6) (2011) 854–874.

[27] J. Engel, J. Sturm, D. Cremers, Camera-based navigation of a low-cost
quadrocopter, in: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, IROS,
Vol. 320, 2012, p. 240.

[28] D. Lee, et al., A theory of visual control of braking based on information about
time-to-collision, Perception 5 (4) (1976) 437–459.

[29] N. Ancona, T. Poggio, Optical flow from1-D correlation: application to a simple
time-to-crash detector, Int. J. Comput. Vis. 14 (2) (1995) 131–146.

[30] D. Coombs, M. Herman, T. Hong, M. Nashman, Real-time obstacle avoidance
using central flow divergence and peripheral flow, in: Fifth International
Conference on Computer Vision, 1995. Proceedings, IEEE, 1995, pp. 276–283.

http://dx.doi.org/10.1016/j.robot.2014.03.010
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref2
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref5
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref6
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref8
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref9
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref10
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref11
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref13
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref14
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref16
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref17
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref19
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref23
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref26
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref28
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref29
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref30

D.-N. Ta et al. / Robotics and Autonomous Systems 62 (2014) 1657–1667 1667
[31] B. Horn, Y. Fang, I. Masaki, Time to contact relative to a planar surface, in: 2007
IEEE Intelligent Vehicles Symposium, IEEE, 2007, pp. 68–74.

[32] D. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91–110.

[33] H. Bay, T. Tuytelaars, L.V. Gool, SURF: speeded up robust features, in: European
Conf. on Computer Vision, ECCV, 2006.

[34] P. Bristeau, F. Callou, D. Vissière, N. Petit, The navigation and control
technology inside the AR.Drone micro UAV, in: World Congress, vol. 18, 2011,
pp. 1477–1484.

[35] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2000.

[36] H. Strasdat, J.M.M. Montiel, A.J. Davison, Real-time monocular SLAM: why
filter? in: IEEE Intl. Conf. on Robotics and Automation, ICRA, 2010, pp.
2657–2664.

[37] B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle adjustment—
a modern synthesis, in: W. Triggs, A. Zisserman, R. Szeliski (Eds.), Vision
Algorithms: Theory and Practice, in: LNCS, vol. 1883, Springer-Verlag, 2000,
pp. 298–372.

[38] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, F. Dellaert, iSAM2:
incremental smoothing and mapping using the Bayes tree, Int. J. Robot. Res.
31 (2012) 217–236.

[39] A. Angeli, S. Doncieux, J.-A. Meyer, D. Filliat, Real-time visual loop-closure
detection, in: IEEE Intl. Conf. on Robotics and Automation, ICRA, IEEE, 2008,
pp. 1842–1847.

[40] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, J.D. Tardos, An image-
to-map loop closing method for monocular SLAM, in: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, IROS, Nice, France, 2008.

[41] E. Delage, H. Lee, A. Ng, A dynamic Bayesian network model for autonomous
3D reconstruction from a single indoor image, in: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Vol. 2, IEEE, 2006,
pp. 2418–2428.

[42] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2005, pp.
886–893.

[43] J. Montiel, J. Civera, A. Davison, Unified inverse depth parametrization for
monocular SLAM, in: Robotics: Science and Systems, RSS, 2006.
Duy-Nguyen Ta is a Ph.D. student in the School of
Interactive Computing, College of Computing, Georgia
Institute of Technology. He received an M.Eng. degree
in computer engineering from National University of
Singapore in 2007, and the B.Eng. degree in computer
engineering from the HCM City University of Technology,
VietNam, in 2003.His research focuses on computer vision
techniques for robot navigation and augmented reality.

Kyel Ok is currently a second year M.S. Student in
Computer Science at Georgia Institute of Technology. He
received his BASc. degree in Mechatronics Engineering
fromUniversity ofWaterloo in 2011. His research interests
focus on state estimation, SLAM, and vision techniques for
autonomous MAVs.

Frank Dellaert (M’96) received the Ph.D. degree in
computer science from Carnegie Mellon University in
2001, an M.S. degree in computer science and engineering
from Case Western Reserve University in 1995, and the
equivalent of anM.S. degree in electrical engineering from
the Catholic University of Leuven, Belgium, in 1989. He is
currently a Professor in the College of Computing at the
Georgia Institute of Technology. His research focuses on
probabilistic methods in robotics and vision. Prof. Dellaert
has published more than 180 articles in journals and
refereed conference proceedings, as well as several book

chapters. He also serves as Associate Editor for IEEE TPAMI.

http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref31
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref32
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref34
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref35
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref37
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref38
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref39
http://refhub.elsevier.com/S0921-8890(14)00054-2/sbref41

	Vistas and parallel tracking and mapping with Wall--Floor Features: Enabling autonomous flight in man-made environments
	Introduction
	Related work
	Autonomous navigation towards vistas
	Vista size change criterion
	Vista rotation-predictability criterion

	Parallel tracking and mapping framework for robot navigation
	The framework
	The mapper
	The tracker
	Loop closing

	Wall--floor features
	Experiments
	Platform
	Map-building results
	Autonomous flight results

	Discussion and future work
	Acknowledgment
	Supplementary data
	References

