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Multi-resolution Motion Planning for Autonomous
Agents via Wavelet-Based Cell Decompositions
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Abstract—We present a path- and motion planning scheme multi-resolution estimates of object locations); in [9] ufti
that. is “multl-rgsolqtlon,” both in the sense of representing the resolution potential field); and in [10] (hierarchy of imagry
environment with high accuracy only locally, and in the sens of encapsulating spheres for collision avoidance).

addressing the vehicle kinematic and dynamic constraints rdy Wi id | Il d it h that th
locally. The proposed scheme uses rectangular multi-reagion € consider planar ce €compositions - suc a €

cell decompositions, generated efficiently using the wawltrans-  €nvironment is represented with high accuracy (i.e., using
form. The wavelet transform is used widely in signal and imag small cell sizes) in the agent’s immediate vicinity, andhwit
processing, with emerging applications in autonomous seimy |ower accuracy in regions farther away, similar to the multi
and perception systems. The proposed motion planner enatiéhe  o50)ytion grids considered in [6], [11]. Multi-resolutiaell

simulltaneous use of the V\{avelet transform in both the percejon d it t data struct that |
and in the motion planning layers of vehicle autonomy, thus Y9€COMPOSIUONS are compact data structures that encagee lar
potentially reducing online computations. We prove rigoraisly ~€nvironment maps, and thus enable efficient online path- and
the completeness of the proposed path planning scheme and wemotion planning. Furthermore, multi-resolution decompos
provide numerical simulation results to illustrate its efficacy. tions of the environment capture naturally the graded tevel
of uncertainty about the environment as a function of the
distance from the current location of the agent. In otherdspr
such decompositions encode the notion that theertainty
OTION planning for autonomous terrestrial and aerialr incomplete knowledgabout the environment is higher in
vehicles has been extensively studied [1], [2]. Howeveregions farther away from the vehicle’s current location.
important issues such as dealing with uncertain, partially The discrete wavelet transform pwT) is a mathematical
known, and/or dynamically changing environments, and theol used widely in multi-resolution signal processing Jj12
satisfaction of vehicle kinematic and dynamic constraares [13]. Applications of thebwT to vision-based navigation and
yet to be thoroughly and satisfactorily addressed, eslheciavision-basedsLam for autonomous vehicles have appeared
when considering additional constraints stemming from threcently in [14] (appearance-based vision-osilym); in [15]
limited computational resources on-board the vehicle. and [16] (local feature extraction); and in [17] (stereo gma
In this paper, we present a fast multi-resolution motioprocessing). With the plethora of available sensors, and in
planning scheme that guarantees the satisfaction of the light of the fact that multiple sensors are typically used fo
hicle’s kinematic and dynamic constraints. To introduce ttautonomous navigation [11], the wavelet transform may soon
various inter-related aspects of the proposed scheme, e Wwecome the common standard for representing and analyzing
use the following terminology: We will use the terpath signals [18]. In this context, wavelet-based data repitasien
to refer to the locus of continuous motion of a point, antbr path planning problems has been addressed recent/@]jn [1
the termtrajectory to refer to a path parameterized by time(occupancy grids); in [20] (standardized representatiooad
Depending on the context, we will use the tepath to also roughness characteristics); in [21] (terrain depiction gdot
refer to a sequence of successively adjacent vertices iaphgr situational awareness); and in [22] (image registration fo
Finally, we will use synonymously the termgorkspaceand vision-based navigation).
environmento refer to a planar region over which the vehicle In light of the ubiquitous use of thewT in signal-
moves. and image processing, and its emerging applications in au-
Multi-resolution path planning involves the representationtonomous sensing and perception, it is natural to invegtiga
of the vehicle’s environment with different levels of acacy. the seamless integration of sensing and path planning using
For example, the popular quadtree method [3]-[5], gengrataulti-resolution wavelet analysis. To this end, we propase
a planar cell decomposition consisting of small cell sizest t path planning scheme that directly useD@&T representa-
capture accurately obstacle boundaries, and larger cadb sition of the environment. Applications of thewT in multi-
that represent efficiently large areas in the free spaceerOthesolution path planning schemes have appeared prevjously
path planning schemes that use multi-resolution cell decofor instance, in [23], [24] (preliminary implementation$ o
positions have appeared, for instance, in [6]; in [7] (tgalar the proposed path planning scheme); in [25] (path refinement
cells); in [8] (receding horizon path planning scheme usirgased on successively finer approximations of a terrain map)
and in [26], [27] (multi-resolution schemes for vision-bds
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. . . Models
representation (e.g., graphs associated with cell decempo , ‘ ,
sitions) of the workspace and deals with the satisfaction Multi-resolution Veicle Parilly” Lifed
. ge . . Cell Decomposition B
of task specifications such as obstacle avoidance. However, Gruph Dymmica Mol Gt

the resultant geometric path may be found to be infeasible

or unacceptably sub-optimal if the vehicle’s kinematic and
dynamic constraints are ignored. To address this issue, we
introduced in [28] a motion planning approach based on
assigning costs, called/-costs to multiple edge transitions

in the cell decomposition graph. Thedé-costs allow the '
vehicle’s kinematic and dynamic constraints to be incoapeat
in the geometric path planner via the (implicit) constraotof

a so-calledifted graph which is closely related to the original
cell decomposition graph. In this paper, we discuss a multi-

resolution implementation of thig7-cost motion planning motion planning scheme is thus an important step in the
approach, such that the overall scheme is “multi-resafytio development of an hierarchicaltyonsistenautonomous nav-
both in the sense of representing the environment with highation and motion planning system, i.e., one that guaesnte
accuracy only locallyand in the sense of considering thethe satisfaction of vehicle kinematic and dynamic constsai
vehicle dynamical model for path planning only locally.  while retaining the computational efficiency of discreteltinu

In summary, the proposed motion planning scheme consigéSolution path planning.
of the following main elements: (a) A wavelet-based multi- The rest of this paper is organized as follows. In Section II,
resolution cell decomposition algorithm that creates aod-m we describe the proposed wavelet-based multi-resolugdin ¢
ifies a graph that represents the environment (see Sec}ion dlecomposition technique. In Section Ill, we describe a path
(b) A local trajectory generation algorithm calledLEPLAN  planning scheme using this cell decomposition, and we prove
that associated/-costs in the aforesaid cell decompositioits completeness. In Section IV, we discuss the inclusion
graph to (implicitly) construct a “partially” lifted grap{see of vehicle dynamical constraints in the multi-resoluticattp
[29], [30]); and (c) A discrete path planner that finds pathsianner via thef-cost approach. In Section V, we provide nu-
in the “partially” lifted graph, which, in turn, corresportd merical simulation results illustrating the successfutrgpion

trajectories that satisfy the vehicle’s kinematic and dyita of the overall motion planner, and in Section VI, we conclude
constraints (see Section 1V). The interactions betweewdinte the paper with comments on possible future extensions.

ious models and methods involved in the proposed scheme are
illustrated in Flg 1: here, hollow arrows indicate the ti@as 1. MULTI-RESOLUTIONCELL DECOMPOSITIONS USING
and modifications of various models by the methods shown, THE DISCRETEWAVELET TRANSEORM
whereas bold arrows indicate the dependencies between th&ell decomposition i . .
position is a common technique used in geomet-

various models and methods shown. For example, the hO||(r)|Vc\:/ ath planning [1], that involves partitioning the wopleee
arrow from TILEPLAN to the “partially” lifted graph model path p gt P 9

indicates modification of the edge transition costs of thieta Into convex rehglc;]ns caller::bllshA graphiis ?jssouated W ith this
The main contributions of this paper are as follows. Firstl pagutmn,hsuc tf at eac ce” co(rjrespon s"to a unique ;/:rte
. . o "~ and each pair of geometrically adjacent cells correspomds t
we present a multi-resolution cell decomposition techeiqu . dp Thg qinal ?1/ IJ . blem i ﬁ
that is completely encoded in thewT coefficients of the unique edge. The original path planning problem Is thusstran

. . fO{med to the problem of finding a path in this graph, which
environment map. This approach allows for the developmen . A :
. . - o . can be solved, for instance, by the A* algorithm [2]. In what
of highly integrated, efficient navigation and path plamgnar- : . . .
. - follows, we introduce a multi-resolution cell decompasiti
chitectures, where thewT coefficients are used as a common ; .
. technique based on the 2-D discrete wavelet transform. We
data structure both for scene understanding and for motign . e : . .
; : rovide a brief introduction to thewT in Appendix B, and
planning. Secondly, we demonstrate one such integrated o2 :
" : “{Je refer the reader to [12], [13] for further details.
proach by proposing a path planning scheme based on thé
aforesaid cell decompositions, and we rigorously prove its ) . -
completeness. To the best of our knowledge, such proofs/f Multi-resolution cell decompositions
completeness are absent from other similar multi-resmiuti  We define arimageas a pair(R, F'), whereR C R? is a
path planning schemes [6], [11]. Finally, we discuss a metheompact, square region, ard: R — R, F € L%(R), is an
of incorporating vehicle dynamic constraints in the multintensity map. We will assume thdt = [0,27] x [0,27],
resolution path planning scheme using thecost motion with D € Z, and that the image intensity mdpis known at
planning approach of [28]. The issue of consistency betwearfinite resolutionns > —D, i.e., the functionf’ is piecewise
the geometric and dynamic planning layers is well-known iconstant over each of the square regidhs, .. (defined
the robotics community [31]. To date, this problem has beém (B.2)), for k,¢ = 0,1,...,2P+t™ — 1. We will assume,
addressed by planning in the (high-dimensional) stateespawithout loss of generality, thais = 0. In the context of path
instead of the workspace, where the obstacles naturally lganning, the intensity mag’ may represent, for instance,
We show that, for mobile robotic applications, planning caterrain elevation [25], a risk measure [23], or a probatidis
be restricted to the low-dimensional workspace. The olerakccupancy grid [19], [32].

Discrete
Path Planner

L] T
Environment Map Methods Control

Fig. 1. Schematic illustration of the proposed motion plagrscheme.
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We assume that the least cell size of interes2i8" = 1,
and we define a cell decompositiOnconsisting of uniformly
spaced square cells, each of sizd.e.,

Q= {Smepe: k€ €{0,1,...,27 —1}}.

The intention of the geometric path planner is to find a path
in the graph associated with. However, the number of
cells in Q is 22P, which makes the graph search impractical (a) Original image (b) Approximation
when D is large. To enable fast online computation, multi-

resolution cell decompositions may be used to approximatg: 2= Example of an image and its multi-resolution appreaton.
large environment maps. Such decompositions correspond to

graphs with significantly fewer vertices, thus requiringser The dilation equation (2) implies, for the 2-D case, that the

computational resources for path planning at each ite’rati%quare support of the scaling functios, is exactly the
Furthermore, such decompositions also capture naturadly 'i.mion of the SUpPOTts o, 11 5 ¢ By i1 k’ 1713 Byt kg
m+1k, 6 Pmt1k—1,00 Pmt1k—1

yehicle’_s ser)sing limitations by rglaxing prc_)gressive/lgrth and®,,, .1 x—1.¢—1. Consequently, a map is constant over the
increasing distance from the vehicle’s location, the aacyr support of,, 1, ¢ if and only if the detail coefficients of at

at which the mtenzsgmes of cells ift are k_npwn. level m and at higher-resolution levets +1, m+2, ... are all
Let Amo k.2 anddmw be thebwT coefficients O;F’ where zero. Furthermore, for the Haar scaling function and wayele
mo € Z1s pre-speC|f]|Dlezl7;llerA C {0m, k) € Z° :mo S gpg may associate with each detail coefficient a regiofi&’in
m < Oupo S kIS 2 } be a set of triplets of INtEYErS, 5\ \ch that this coefficient affects the values of the map amly i
and letd,,, ;. , be defined by this region. Specifically, we make the following associatio

4 —
e = {0 e RO €A s Sme =277 ([, (k+ D] X [+ 1)), @
' for eachmgy < m < my =0, wheremg € Z is pre-specified.

Then the imag€ R, I'), where I is obtained by the recon- Based on the preceding observations, we formulate the
struction ofay, ¢ andd, , ,, is called theapproximationof = following Rules to determine the locations and the sizes of
(R, F') associated with the sgt. Informally, an approximation cells in the cell decompositioR™" associated with a setl

is obtained by neglecting certain detail coefficients inher  of indices of the significant detail coefficients.

of F: the setA contains the indices of detail coefficients thaj) {8 i1 0< fe 0 < 2P+mo} c Qe |f A is empty,

are considered “significant”. A specific approximation tfat  then these cells form a uniform decomposition.

of interest in this paper is one that retains detail coefisie ) (g NIYE e {2k, 2k + 1}, £ € {20,204+ 1}} € Qm

only in the immediate vicinity of the vehicle’s current |dicm whenever(m, k,¢) € A. This Rule arises from the
(z0,40) € R and gradually discards them in regions farther fact that the support of the Haar scaling function at each
away. To define precisely this approximation,detZ — Nbe  resolution level is equal to the union of the supports of the
the distance from the vehicle's location up to which the dletay (g~ . . i e {|2m—mk| — 1,27 ™k}, { €
. - mt1,E 0 - ) )

coefficients at that level are significant. The s&ti, (o, o) (127m0] — 1,[27 ™0}, mo < M < m} e Qo
of indices of significant detail coefficients is then defingd b whenever (im k, 0 e A ’ This\ Rule decomposes i’nto

Awin (20, 90) = {(m’ k. 0) :mo <m <0, squares non-convex regions tha_t e}rise when thg in_dices of

a detail coefficient at the leveh is in A, but the indices

[2™20] — o(m) < [2™20] + o(m), of coefficients associated with the same region (given by

m, | _ m (3)) at all levels lower thamn are not in.A.

[2™yo] — o(m) < £ < [2™yo] + Q(m)}a 1) 8 (Spppt k= [27k), L= [27-7), my < <

wheremg € Z. An example of an image and its approximation m} ¢ Q™" wheneve(m, k,¢) € A. This Rule indicates

using (1) is shown in Fig. 2. In this exampley, = —10, that a cell, once decomposed, cannot belon@'té.

(w0, 90) = (390,449), ando(m) = 4 for eachmo < m < 0.  Exclusions fromQ™* prescribed by Rule 4) take precedence
over inclusions prescribed by Rule 3). Note that the prewgdi

B. Computing Cell Locations and Intensities Rules are valid only for the Haar system.

Figures 3 and 4 illustrate the application of the
preceding Rules for the approximation associated with
A = {(=2,0,2),(=2,3,2),(—1,3,4),(—1,4,2), (—1,4,3),
(—1,5,2),(-1,6,5)}. In Fig. 3(a), the cells with dotted bor-

k
4

NN

The cell decompositio2™ associated with R, F') is a
partition of R into square cells of different sizes, such tiat
is constant over each of the cells. In this section, we desei
procedure to determine the !ocﬁtlons, the sizes, and tms{alders are due to Rule 1), and the cells with solid borders age du
of F' over each of the cells i@™". D .

In this paper, we use the Haar wavelet family, and the Hata?rthe Rule 2) for the indices with = —2. The shaded cells

: : g : o . In Fig. 3(b) illustrate the non-convex regions that may aris
scaling function satisfies the following dilation equatiass]: due tgo n(()n)-zero coefficients at higher regolution Ievels'z/:bvh

o(t) = o(2t)+ (2t —1). (2) need to be decomposed using Rule 3). The shaded cells in
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adjacent if the corresponding cells are geometrically catjg

and E is the collection of all ordered pair§, j) of vertices

mn i in V, such that andj are adjacent. In what follows, we will

distinguish by an overline symbols denoting vertices, path

or functions associated witR or G. We introduce an edge

oo oo cost functiong : E — R, that assigns to each edge Gfa

(a) Rule 2) form = (b) Rule 2) form = non-negative cost of transitioning this edge. B

—2. —1. For given initial and terminal verticess, i € V, an

admissible pattr (is, ig) in G is a finite sequenc@y, . .. ,ip)

of vertices (with no repetition) such thdi,_1,i.} € E for

eachk = 1,..., P, with iy = ig andip = iq. For brevity, and

,,,,,,, when there is no ambiguity, we will henceforth suppress the

! ! arguments ir. The cost7 (7) of an admissible path in G is
N T the sum of costs of edges i) and thepath planning problem
l4>/ is to find an admissible path*(is, ic) with minimum cost.
| - p (is,ia)

1 Next, we associate with the multi-resolution cell decompo-

Fig. 3. Computations of cell locations and dimensions frdm

 — sition Q™" a graphG = (V, E) such that each cell if2™"
(@) Rule 3) form = (b) Overall decomposi- corresponds to a unique vertex In. Note that each vertex

-t ton. j €V corresponds to a sét/(j,1) C V, and the collection
Fig. 4. Computations of cell locations and dimensions frdm {W(4,V)}jev is a partition ofV. Specifically:

W(j7 V) = {3 ev: cell(j;Q) C ceII(j;er)} .

Fig. 4(a) are those which arise twice: due to Rule 2) for levghe multi-resolution cell decomposition gragrapproximates
m = —2 coefficients and due to Rule 3) for level = —1  the graphG by representing each set of vertidégj, V) c V

coefficients. Figure 4(b) shows the final cell decompositioith a single vertexj € V. For the Haar wavelet, it can be
After determining the elements of the multi-resolutionl cekhown that for each € V,

decomposition, i.e., the locations and sizes of all thescell 1 -
the adjacency relations between cells can be determined byF(cell(j; Q™)) = WG Z F(cell(;9)). (5)
geometric arguments (cf. [24]). To calculate the cell isiges, I JeW(,v)

we use recursively the following relation: Finally, two vertices, j € V are said to be adjacent # i.e.,

F(Sumi1.2k.2¢) 2 B (S o) (i,7) € E, if and only if there exis € W(i,V) andj €
F(Smi1.25i1.2¢) . ., W5, V) _such that{z’,j} € E. We will denote bycell(j; ™)
F(Smr1 20.9001) =2"E | & L » (4 the cell in Q™ associated with the vertex € V, and by
B o 30 vert(S; G) the vertex inG associated with the celi’ € Q™.
F(Sm+1,2k+1,2041) i et

for 0 < k, £ < 207%™, With F(Spmg k.0) = 2™, k0 for 0 < A. Path Planning Algorithm

k.t < 2P+mo, whereE is a constant matrix. The intensities e present an algorithm that finds iteratively an admis-
of the cells due to Rule 2) for a triplen, k,¢) < A are gjple paths in G by first constructing multi-resolution cell
given by (4). The intensities of cells due to Rule 3) for @ecompositions, then by finding paths in these multi-remiu
triplet (m, k, () € A, are each equal t&'(Sy, k,.¢,), Where cell decompositions, and and then by moving along these
(m1, k1, 61) € A'is the triplet with the greatestn, < m  paths. The proposed algorithm is a modification of the multi-
satisfyingSy, k¢ C Sm, k1.4, - If N0 such triplet exists, then the resplution path planning algorithm presented in [23] arebén
intensities of these cells are each equal't®.,, x, ¢, ), Where  mqgifications ensure that the proposed algorithm is coraplet
k1, ¢, are the unique indices satisfyitt), ke C Sk .6, - We assume thaF (cell(j;2)) € [0, 1] for eachj € V, such
We re-emphasize thail information needed to completélythat more favorable cells in the environment have a lower
define the cell decompositid™ is encoded in the set, and  jntensity, and such thatell(j; ) represents an obstacle if
it is straightforward to extract this information. Furthesre, F(cell(j; ) > 1 — &, for some pre-specified € (0,1). We
the expression (1) lends itself to a fast update of theds@t gefine the transition cost of an edgej) € E by
accordance with the changes in the vehicle’s position in the

environment, as we will demonstrate in Section I11-B. 3((G,7)) = ALF (cell(j; 2)) + A, F(ce”@ ) <1-¢,
' M, otherwise,
(6)

I1l. M ULTI-RESOLUTIONPATH PLANNING where;, \; € (0,1] and M > 2|V are constants.
We denote byG = (V, E) the graph associated with the We denote byE,, the approximation of the environment

cell decompositiorf2, such that each cell i corresponds to constructed at iteratiom of the proposed algorithm, by

a unique vertex i/. We will denote bycell(j; Q™) the cell A(n) the associated set of detail coefficients, 8§ (n)

in Q™ associated with a vertekc V, and byvert(c; G) the the associated multi-resolution cell decomposition, ayd b

vertex of G associated with a cell € Q™. Two vertices are G(n) = (V(n), E(n)) the associated topological graph. We
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define the goal vertexs ,, € V(n) as the unique vertex that Multi-resolution Path Planning Scheme
satisfiesic € W(ign, V(n)).

For each vertex € V, the proposed algorithm maintain _
an estimateCg (j) of the least cost of any path @ from the 1 A < Awin(2(7), ¥(J))
vertexj to the goal vertexg, and a recordCs () of the least procedure MIN
cost of any path iy from the initial vertexis to the vertexj. 1. 7 « ig, jo < is, n + 0, AtGoal« 0, J () < 0
The algorithnl also associates with eacﬁh vertexV" another 2. For eachj € V, VISITED(j) « 0
vertexb(j) € V called thebackpointerof j. At each iteration, 3. while —AtGoaland J(7) < M andK¢(j,) < M do
the algorithm performs a computation (Line 18 or Line 204:  b(j,) < jn_1

in Fig. 5) whose result is a unique vertex in We refer to 5. A(n) < MR-APPROX(j,,)

JrocedureMR-APPROX(j )

this computation as wisit to this vertex, and we denot by, 6 G(n) + MR-GRAPH(A(n))

the vertex visited at iteratiom, with jo := is. Finally, let 7. if viSITED(j,) = 1 then

Jn = vert(cell(j,; 2™ (n)); G(n)). 8: 7%« argmin{J(n) : 7 obstacle-free irg(n)},
An admissible pathr, (jn,ic») in G(n) is a finite se- subject to 7 (7%) > Ka(jn)

quence (io, - . .,ip(n)) Of vertices (with no repetition) in o T (@) + Ks(n)

V(n) excluding b(j,) and excluding vertices iV (n) cor- 1o0: else

responding to cells in the path from to j,. Note that this 11; 7% < argmin {J () : = obstacle-free irG(n)}

definition precludes cycles in the concatenation of the path: Ks(jn) « T (7)

(jos- -, Jn—1) with the pathr,. We introduce an edge cost 13: VISITED(j,) + 1
functiong, : E(n) — R, which assigns to each edge®fn) 14: if 7* does not existhen

a non-negative cost of transitioning this edge, defined by 1s; if j, = ig then
o ME; + M) WG V), Fy<1—e, 16: Report failure
gn((B:9)) =19 4, otherwise. () 1T else i
’ ’ 18: Jnt1 < b(jn)
where Ej := F(cell(j; 2™ (n))). The cost7(r,) of the path 19: else )
7, is the sum of the costs of edges in the path. Note tha): Jnt1 < vert(cell(i1;G(n)); G)

by (5) and (7), the cost of an obstacle-free pattGim) is 21 Ka(jn) < J (7))
less than or equal t@|V|, and hence an admissible path 22 AtGoal + (Kg(jn) = 0),
in G(n) is obstacle-free if and only if7 () < M. 230 T+ (T, jn) -

The proposed algorithm associates with each vejtext/ 241 J (%) < J(T) + g(jn, Jn+1)
a binary valuevisITED(j) that records whether the vertgx 25: n<n+1 -
has previously been visited by the algorithm: at any iterati 26: if J(7) > M or Kg(jn) > M then
of the algorithm’s execution, for eaghe V, vISITED(j) =0 27:  Report failure
indicates that the algorithm has never visiteith any previous
iteration, whereasISITED(j) = 1 indicates that the algorithm Fig. 5. Pseudo-code for the proposed path planning algorith
has visited; during a previous iteration. The algorithm also

maintains a cumulative cosf () of the path7(is,jn) IN  4igorithm finds an obstacle-free path in a finite number of

g. The proposed multi-resolution path planning algorithm ig. a4ions. Otherwise, the algorithm reports failure afte
described by the pseudo-code in Fig. 5. Het¢) andy(j)  finite number of iterations.

denote, respectively, the andy coordinates of the center of

cell(j; G), andMR-GRAPH denotes the procedure described in ~ Proof: See Appendix A. u
Section II-B to obtain the cell decomposition graph asgedia o
with a set of indices of significant detail coefficients. B. Efficient Updates ofi(n) and G(n)

The setA(n) of the significant detail coefficient indices, and

Remark 1. The constrained optimization problem in Line . . ) .
can be solved by an algorithm that finds tiieshortest pathsgthe associated multi-resolution cell decomposition grapthn

in a graph. Such algorithms have been reported, for instan
in [33]. We assume that thé({ shortest paths will have
strictly increasing costs. This assumption is not requfied
the algorithm’s successful execution, but it enables a isenc
statement of the algorithm.

depend on the vehicle’s current position. Consequentlih bo
94&71) andg(n) are updated (Lines 5-6 in Fig. 5) at each iter-
ation of the algorithm. To enable faster computations, we de
scribe, in this section, a method to obtadiin) incrementally
from A(n — 1). Specifically, we first compute the elements of
the setd3; := A(n)NA°(n—1) andB_; := A(n—1)NA°(n),
Remark 2. Due to Line 9, the cost of “back-tracking” is notand we then evaluatgl(n) = A(n — 1) U B1\B_1. To this
added to the cumulative cost(7). Also, it follows from (7) end, we observe that for eaghe V, z(j) = |z(j)| +1/2. It
and Line 21 thatCq () = 0 if and only if j = ig. O follows that for everym < 0,

We may now state the main result of this section as follows. 12"z(jn)] = [2™(l=(5)] +1/2)]. (8)

Proposition 1. The proposed algorithm is complete: if theréNext, we note thatz(j.)|] = |z(jn—1)] + A., where, at
exists an obstacle-free path i@ from is to iq, then the iterationn, A, = 1 if the vehicle moves one cell to the right,
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Recomputation of Multi-resolution Cell Decomposition 2. .
= = 10
procedure MOD-MR-APPROX(.A) g 20 S
S 15 £ 6
. é 10 i 4
1: ComputeB_; and B; with (12) a s £
23A(n)<_A(n_1)UBI\B—1 g—»z 7 7 8 8 8 9 9 DUHZ 7 s 8 9
_ _ mr _ o — 6 15 4 15 30 15 30 o — 6 6 15 4
procedure\AOD MR GRAPH(Q (n 1)’8_1’81) (a) Comparisons of execution timg¢s) Comparisons of execution
L QM+ o, QMo for the computations ofA andG. times for overall path planning.
2: for all (m, k, £) € By do ~ 5 Fig. 7. Sample data illustrating benefits of i talates to.A and
3 Q?’T%QT“U{SmH,;@:kG/C, £e£} ig. 7. Sample data illustrating benefits of incrementalatesl to.4 andG.
4 QM = QMU {S, ko= 20 mk|, @ =
[2m7™], mo < < m} Figs. 7(a) and 7(b) are averages computed 80aimulations.
5. forall (m,k,¢) € By do . As it is evident from these results, the multi-resolutiorthpa
60 QU QM U{S, 1z kEK, LeL} planning algorithm with the modified procedures of construc
7 QP = QU Sk} tion of A(n) andG(n) executes up ta0 times faster than that
8 QM (n) «+ Q™ (n—1) U QP\Q™ with the original procedures.
Fig. 6. Pseudo-code for the procedwi®©D-MR-GRAPH. IV. MULTI-RESOLUTIONH-COSTMOTION PLANNING
It has been noted in several previous works [34]-[36],
A, — —1if the vehicle moves one cell to the left, and, — 0 including ours [28], that single-edge transition costs @il ¢

decomposition graphs cannot capture adequately the e&hicl
B i kinematic and dynamic constraints. In light of this obséora
1272 (jn+1)] = [1272(n)] +27 AL+ 7], (9) we introduced in [28] a motion planning approach based on
M em (1 om S o - assigning costs tonultiple edge transitions (calletistorieg
whererg! .= 2 (|2"2(jn)] +1/2) = [2"2(jn) . Similarly, in cell decomposition graphs.
12"y(Jnr1)] = [12"y(n)] +27A, + 7], (10) Consider the multi-resolution cell decomposition graph
- - G = (V,E) at any iteration of the path planning algorithm
ments (;Jf the set®; andB_; are then determined from (9)-prewousy ISCUSSEd. 10 Tormalze the concept of Celidals

ries, we define, for every integéf > 0, the set
(10) as follows. We first define the scalarsandd, by y g

otherwise. From (8), it may be shown [30] that

_17 0>2mAa+T$, VH = {.(.]07""7.]H):{]kfla.]k}eEv kz.lv"'aHa
6a — 07 O<2mAa+,’,gz<1’ fOfCYE{(E,y}7 (11) Ik ;ﬁj[, for k,£€{07...,H}, with k;ﬁg}
L 1<2™Aa +1) An element ofV 1, is called anH-history. Let I € Vi and

and, forp € {~1,1}, we define the sets7* and By~ by ~ denote by[7]; the k" element of this(H + 1)-tuple, and by
[1];, the tuple ([I], [I]syq,- .-, [1],), for k < £ < H + 1.

Byt = A(m,k0) k= 12" 2(jn) | + POs, We associate with eacli/ a non-negative cost function
12"y (jn)] — o(m) << [2"y(jn)] + o(m)}, g : Va1 — R, and state a shortest path problem with
BrY = {(m,k,0): €= [2"y(jn)] + pdy, transition costs defined on histories as follows.

122 (jn)| — o(m) < k < |2™2(jn)] + o(m)}. Problem 1 (H-Cost Shortest Path Problemlet H > 0,
and letig,ic € V be initial and goal vertices such that any

Then the set®_, andB, are given by the following equation: . 4 ic e path irg contains at leasff + 1 vertices. Thef -

B, = U U Bre, pe{-1,1}. (12) cost of an admissible path = (jo,...,jp) in G is defined by
ac{z,y} mo<m<0 P
The advantage of computingl(n) using the modified T (m) := Z 9 (k—H—1, Ik, -5 Jk)) - (13)
procedureMoD-MR-APPROX described in Fig. 6 instead of k=H+1

the proceduravR-APPROX, is that the set$_; andB; have Find an admissible pathr* in the graph G such that
significantly fewer elements thad(n). More precisely, the Jg(7*) < Ju(w) for every admissible path in G.

number of elements in the set(n) is O(g?), whereas the
numbers of elements in the sdfs; and B; are bothO(g),
whereg := max;,<m<o{0(j)}-

Problem 1 may be transformed into an equivalent standard
shortest path problem onlited graphGy . The vertices ot/
Figures 7(a) and 7(b) show data that confirm the precedia[:]e .the elements dfy;, and the e_dge sdip of the lifted graph
oo . . % is the set of all ordered paiid, .J), such thatl, J € Vy,
observations: these figures show the ratio of the executiot N N
. : e with [I], = [J],_,. for everyk =2,...,H + 1, and[I]; #
time required by the combination of the procedures- ] For given initial and terminal vertices:. ic. € V
APPROX andMR-GRAPH to the execution time required by the'” 7+ g 8 ta ’

combination of the prpcedur%OD-MR-APPROX and MOD- 1For the sake of clarity, we drop from the notation of the celtamposition
MR-GRAPH for computing the graply(n). The data shown in graph the explicit reference to the™ iteration.
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an admissible patlil in Gy is a finite sequencél, ..., Jg)

Multi-resolution Motion Planning

of vertices (with no repetition) such that,_,Jx) € Ep,
for eachk = 1,...,Q, with [Jo]; = is, and [Jg|y,, =
ig. Note that every admissible path= (Jy,...,Jg) in Gu
corresponds uniquely to an admissible patk- (jo,...,Jjp)
in G, with P = Q + H and [Jy], = jku+¢—1, for eachk =
0,1,...,Q — 1, andJQ = (jp,H,...,jp).

We introduce a non-negative cost functign : Eg — R,
defined bygy ((1,7)) == gu (1]{ ", [J]541)) , for every
pair (I,J) € Eg. It follows that Problem 1 is equivalent to

the standard shortest path problem &g, where the cost of 5:

an edge(l,J) € Eg given by gn((I,J)). However, solving

the H-cost shortest path problem by first transforming it to thes:

standard problem is computationally intensive, becdydsg

is large and grows exponentially witH. 7:

In [30], we discuss an efficient and flexible algorithm for
solving the H-cost shortest path problem, as well as a mo-

tion planning framework that incorporates vehicle kineémat 8:
and dynamic constraints by obtainirg-costs from a local 9:
trajectory generation algorithm called thike motion planner 10:

1: i« vert(cell(is; Q); G), AtGoal« 0
2: while —AtGoal do
3:

DefineV;:= {j € V : size(cell(j)) < d},
Vogi={j €V :size(cell(j)) > d}
Find the set of boundary verticé$,q defined by

Vba = {jGV:EZjEng*, 12 € Vog
such that(i1, j) € E, (i2,j) € E}

For eachj € V4,q, define(j) := minimum cost of a
path inG from j to the goal vertexg
Define Vi§ = {I € Vi : [I]; = i},
Vi : Lo € Voa} .
Find the shortest patil* = (Iy,...,Ip) in Gy from
any vertexls € V3 to any vertex inlg € V§, with
terminal penalty([c];.)
i < [Io], B
if cell(z; Q™) = cell(ig; Q) then

AtGoal <+ 1

Vg ={I €

(TILEPLAN). A precise statement of the tile motion planning

problem and its solution based on model predictive contrbp- 8 Pseudo-code describing the overall motion planner.

are available in [30]. Briefly, we specify ITEPLAN as an

algorithm that takes as the input a sequence of cells and an _ ]

initial state, and returns as the output a control input t(if ptrictly lower thand, whereas the size of the. + 1) cell

exists) that enables the vehicle’s traversal through thergi IS at mostd. This definition alludes to the previously stated

sequence of cells from the given initial state. notion of including in the “partially” lifted graph only theel_l_s
The overall motion planner searches faf-cost shortest small enough for the curvature constraints to be significant

paths in the multi-resolution cell decomposition graphs ddhe “partially” lifted graphty = (Viz, Err) is then defined by
scribed in Section Ill. However, it is unnecessary and ca@pu Vo e L1E UAP(U
tionally expensive to consider history-based transitiosts on TH UL=1Us\PL(Un),
the entire multi-resolution cell decomposition graph duéhe Ey=Uj_ {U,J):1€UL,JeUy, [IIF=J}.
following reasons: (a) large cells ™" correspond to coarse
information about the environment in the regions assodiate 1he overall motion planner then operates as follows. At
with those cells, and hence trajectories passing througje la€ach iteration, a multi-resolution cell decomposition istfi
cells will be refined and/or replanned in future iteratiomsg Cconstructed. The cells in this decomposition may be catego-
(b) curvature-constrained paths are guaranteed to exit [ized into two classes: cells with sizes at mastand cells
in rectangular channels wider than a certain thresholdhwiddith sizes greater thad. We defineboundary cellsas the
(compared to the upper bound on curvature). cells of sizes at most that have at least one neighboring cell
In light of the preceding observations, and in keeping with €ach of the two previously defined classes (see Fig. 17(a))
the multi-resolution idea of using high-accuracy inforioat A Multiple-source, single-goal implementation of the &lgo-
only locally, the proposed motion planner searches fbr 'ithm may be used to determine the costs of optimal paths in
cost shortest paths on a “partially” lifted graph, such thd€ multi-resolution cell decomposition graph from thetioers
the vehicle dynamical constraints are considered (viatyist associated with each of the boundary cells to the goal vgrtex
based transition costs) only locally. To state preciselg th!N€seé costs are then used as terminal penalty costs in the
notion of a “partially” lifted graph, we define, for eachéxecution qf theH-(;ost path planner on the “partially” lifted
J = (jo,...,jun) € Vi, and eachL € {1,...,H — 1}, the 9raph previously discussed. This-cost path planner returns
projection Py, (.J) of J onto Vi, by Pr(J) := (jo,...,j.) € @& Sequence of cells from the current location to one of the
Vi.. For eachL € {1,..., H}, we define the set/;, C V;, by Poundary cells, along with an admissible vehicle contrplin
that enables the traversal of this sequence of cells. Thieleeh
UL == {(jo,-...jr) € VL : size(cell(ji)) < d, (14) state is advanced by traversing one cell using this corrtpuiti
for k=0,...,L — 1, andsize(cell(j1)) < g} 7 and the process is repeated until the vehicle reaches the goa
The pseudo-code for the overall motion planner is provided
whered is pre-specified, ansize(cell(j;,)) denotes the size of in Fig. 8. Note that Line 7 of Fig. 8 involves local trajectory
the cell that corresponds to the vertgxin the multi-resolution generation (TLEPLAN) for the particular vehicle dynamical
cell decomposition graph. By (14), the s&t, consists of model considered. We refer the reader to [28] for further
(L+1)-tuples of vertices in the cell decomposition graph sudatetails on finding the shortest path in the lifted graph in
that the sizes of the first cells in each(L + 1)-tuple are conjunction with TLEPLAN.
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Goal
\. LT
Start
\ i
!
(a) Map of the environment. (b) Resultant path. (a) An iteration before the cul- (b) The iteration at which the
de-sac is explored. cul-de-sac is encountered.

Fig. 9. lllustration of the multi-resolution path plannimdgorithm’s ability
to recover from a cul-de-sac: the red-colored cells werdiptylvisited.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present numerical simulation results of
implementations of the proposed multi-resolution pathd an
motion planning schemes. All of these simulations were im-
plemented in thenATLAB ® environment, on a computer with
an Inte Core"™ i5-2410M 2.3 GHz CPU and 4 GB RAM. (c) The location of the vehi- (d) The iteration at which the

cle at the iteration illustrated in  algorithm finds a channel that
Fig. 10(b). contains a path to the goal.

A. Completeness of the path planning algorithm

First, we focus on the path planning algorithm, which doé;%é)r
not consider vehicle dynamics. Figures 9 and 10 illustrate a
simulation example demonstrating the capability of thetmul TABLE |
resolution path planning scheme to recover from a cul-de-sa WINDOW FUNCTION VALUES
This simulation “illustrates” the path planner’s completss.

As shown in Fig. 9(a), we designed the shape of the obstaclé:
and the location of the goal to lead the multi-resolutiorhpat 5; ‘
planning algorithm into the cul-de-sac in the “central’icgy e
of the obstacle, whereas the goal can only be reached from
the “top” region of the obstacle. Figure 10 illustrates some
intermediate iterations in the execution of the multi-teon  simulations with the initial and goal cells chosen randomly
path planning algorithm on this environment. Specificatg for each simulation. We executed the multi-resolution path
algorithm leads the vehicle into the cul-de-sac but in latglanning algorithm proposed in Section Il with each window
iterations, it successfully recovers and finds a path to t&.g function for each simulation (a total df20 simulations for

each window function), withng = —D.
B. Optimality of the path planning scheme Figure 11 shows the distribution of the number of simulated

. ... cases according to percentage sub-optimality, where tsteofo
Whereas we can guarantee the algorithm’s capability o? gtop g P Y

L : ; ath inG by (6) was defined with\; = 1 and\, = 0.1. For
finding afeasiblepath whenever such a path exists, we do ng P 9 oy (6) . B . .)‘2. 0

et have theoretical results on tloptimality of the resultant all three window functions, the sub-optimality in most case
y . i Y . is under20%, with window g3 resulting in the most cases of
path. Here, we present numerical simulation results cornegr

the optimality of paths resulting from the multi-resolutipath low sub-optimality, as intuitively expected..OveraII, F@l .
X . shows that very few cases of extremely high sub-optimality
planning algorithm.

. occurred: these cases typically occurred when the algorith
We compared the cost of the resultant paths with the cos% ypicaly g0

of an optimal path found by executing the® Algorithm on © countered cuk-de-sacs.
1 op P od uting 9 . Figure 12 shows the distribution of the number of simulated
the finest level decomposition graph For these comparative

: : ) ases according to sub-optimality for different values tof t
simulations, we chose an environment represented by t%e g P y

image shown in Fig. 2(a), with three different “Window”COSt function parametera; and )\, all with the window
9 9. £la), : ) function p,. From equation (6), note that simply scales the
functions, as described in Table I. The windaw retains

o . - . . image intensity, wherea, is a constant penalty on each edge
very few significant detail coefficients and results in a inult. g y a5 P Y 9

resolution cell decomposition with high fidelity repressitn in the path. As shown in Fig. 12, the propos_ed mulu-resohm
. : . ath planner results in paths of low sub-optimality morewft
of the environment in a very small neighborhood of th

. . . . or small values of\,. This behavior occurs due to the fact
vehicle’s location, whereas the windows and o3 result in

I : . . that, for each edgé, j) € E(n), the expression (7) involves a
decompositions with progressively larger neighborhoofls o 9¢.J) € E(n) P (7)
high-fidelity representations. We scaled the environmetit W 2ye that Fig. 12 shows a large number of cases of low sulbsafity
D = 6,7,8,9, and for each value oD, we performed30 for all values of)s.

10. Intermediate iterations in the multi-resolutiomttp planning
ithm’s implementation for the environment shown ig.F(a).
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Fig. 11. Histogram showing the distribution according toceatage sub- decomposition graphs with different window functions anhwthe finest-

optimality of simulated cases, for different window furcts. level cell decompositior2.
120 mm): = 0.01 i ) . )
100 §g =0.1] D. Comparisons with other multi-resolution path planners
-Az =10

80 In this section we present a comparison between the pro-

posed multi-resolution motion planning scheme and some of
the standard multi-resolution planners reported in tiegdiure
(e.g. [6], [10], [11]). The comparison will be based on the
numbers of vertices and edges of the resulting graph, as the
main objective of all multi-resolution planners is to prdei

0 ‘ré%b_ot,%?nanlt‘;’,oof fgsoun;n“r}opat?]o?%)gso 00 graph representations of the environment with low compyexi
These graphs are then searched using standard algoritieins su
as the A algorithm. This allows a fair comparison of the
available multi-resolution motion cell decompositions, the
particularsearchalgorithms of the resulting graph are the same
across all such schemes.

The multi-resolution approximations of the environment

60

40

20

0

Number of cases of simulation

Fig. 12. Histogram showing the distribution according tocpatage sub-
optimality of simulated cases, for different values)of with A1 = 1.

worst-case estimatef the number of vertices @ in the path
in G corresponding to the path searchedim). Furthermore,

. . X : reported in the literature belong to either of the followimg
by (7). the multi-resolution path planngrs estimate of thst broad classes: those governed primarily by the environment
of the actual path becomes progressively more conserva

o : ng, and those governed primarily by the vehicle’s location
with increasing values of,. in the environment. The former ones (such as those based on
guadtree decompositions [4]) ensure that the resultiny walt
be entirely obstacle-free, but they tend to create largephs.

C. Performance of the path planning scheme The latter methods (e.g. [6]) result in smaller graphs, but

. ) obstacle-free cells are ensured only in the immediate i#ycin
Figure 13 shows the comparison of the (average) numberg@fine vehicle’s location, and replanning of paths is neasss

vertices in the graphs associated with the multi-resafuti@ll 55 the vehicle moves through the environment. The main
decompositions corresponding to different window fumt$io yjsadvantage of multi-resolution planners that use subfcles

and with the finest-level cell decompositiéh As expected, |ocation-dependent decompositions is that they are prore t
the window functiongs, which has the largest neighborhoog, ik of completeness. The proposed approach in this paper

of high fidelity approximation of the environment (i.e., ®elongs to the second class of planners, but we provide a
large number of significant detail coefficients), resultcall guarantee of its completeness.

decompositions with the largest number of cells among thegp e || provides a qualitative comparison between the pro-

three multi-resolution decompositions. Note, howeveat the 5564 work and the various multi-resolution motion plagnin
numbers of vertices in each of the three multi-resolution d@chemes reported in the literature.

compositions are of the same order of magnitude, whereas th
numbers of vertices ig are one to three orders of magnitud

greaLer tlr;an _thotse n thgtgukl-réest(ﬂutlon CE" de;:omrtx_mmt significantly more cells than vehicle location-dependesit ¢
grapns. ;)6r2'nls42nceh’ wi e s € num eLO \?er IC€S jecompositions, we chose three environment maps: a terrain
In G was 262, 144, w ereas the average number o vert!cqﬁ<e environment similar to Fig. 2(a), an environment cehsi
was only561 for the multi-resolution cell decomposition V\{'thing of a small number of large obstacles, and an environment
wmdolw .Qtl' Ifnthth|s con:_ext, one may recall Iiha‘t/ tEhe tf'meconsisting of a large number of small obstacles (see Fig. 14)
comp e>,<| y of the execution on a sparse _gr@ (V:E) o We used the basic quadtree decomposition described in [4]
Dijkstra’s algorithm and the A_algonthm isO(|V]log|V]), as the basic example of an environment-dependent multi-
whereas the memory complexity &3(|V]) [2]. resolution cell decomposition. Figure 15 shows a compariso
of the number of vertices in the cell decomposition graphs
3This worst-case estimate is necessary for completenese géth planner. arising from this quadtree decomposition, using different

Soillustrate quantitatively our claim (echoed also in [Blat
%nvironment—dependent cell decompositions usually sbasi
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TABLE 1l 107 ] Quad‘tree (Terra_im‘— =5)
COMPARISONS BETWEEN VARIOUS MULT+RESOLUTION MOTION PLANNERS § 1080 = 83:5{[22 gg;;g:g; = gg% ]
= B2 Sladtee Cutereey
Decomposition i Q 10° B ea )
dependz on Completeness cDgr?satrrT;i%?ls S il gy
Ref. [4] | Environment map  Yes No S
Ref. [5] | Environment map  Yed No =
Ref. [10] | Environment map  Ye& No Zz 10°
Ref. [7] | Environment map  Yed No 10
Ref. [6] | Vehicle location No* No
Ref. [9] | Vehicle location No? No 1

D=7 D=8 D=9 D=10 D =11 D =12

Ref. [8] Environment  map

and vehicle location No? Yed Fig. 15. Comparison in the numbers of vertices of the resulell

decompositions of the proposed approach against the g@gadécomposition.

Ref. [11] | Vehicle location No? Yes
Proposed| Vehicle location Yes Yes
#Not addressed. the completeness of the overall path planning schemwis
b Dynamical constraints addressed separately from higél-jeath planning. guaranteed a priori, even though the graph search algorithm
I R used ateach iterationmay b_e complete. Speqifical!y, the path_
I I R B planner can get trapped in loops, where it visits a certain
e '_: i1 L] Tl sequence of cells ad infinitum.
- ‘-'_;_'_E‘.i.'__l_' _'t ~ i'_',' In addition to showing completeness, the most significant
= "‘i:"-l . difference of our work compared to other similar works on
A l_l" - - ';'-' multi-resolution path planning in the literature is the teys-
. ‘ I S - 1 5 W atic incorporation of vehicle kinematic/dynamic consttaiin
at -i.--.l.: .;'_HI- .‘lj"' path planning. In particular, we note in the third column of

- Table Il that most of the other works do not address vehi-
(a) Sparse, large obstacles.  (b) Cluttered, small obstacles.  ¢|a kinematic/dynamic constraints. Reference [8] disesss
Fig. 14. Environment maps used for comparative analysis. receding horizon scheme for incorporating vehicle dynainic
constraints, but this scheme is disconnected from the leiggl-
discrete path planner. Consequently, there is no consisten
threshold$ and levels of decomposition, against those arisirgetween the two levels of planning (i.e., a guarantee that th
from the proposed wavelet-based decomposition, the latpeth found by the high-level planner can be feasibly traagrs
using different window functions. by the vehicle). This issue is addressed in this paper via the
The number of cells from the environment-dependeri-cost motion planning approach discussed in Section IV.
quadtree decomposition for the environment with a sparge[28], we have also provided extensive comparative aiglys
obstacle distribution is an order of magnitude larger thasstablishing the superiority of théf-cost approach using
that obtained by the proposed vehicle-dependent decompaiform cell decompositions over state-of-the-art raneah
sition. Improvements to environment-dependent decomposampling-based algorithms.
tions, such as allowing for large “gray” cells, can reduce
the number of vertices by an order of magnitude [4], arE
hence for this environment with sparse obstacles, we may
consider the two schemes of decomposition to be equallyTo illustrate a typical application of the overall multi-
efficient. However, for the terrain-like environment, waerresolution motion planning scheme that incorporates tie-ve
cell intensities take values in the intervill 1] (as opposed cle dynamic constraints, we consider the problem of naiigat
to binary values in the previous case), the difference in tig@ aircraft amongst a topographic relief of varying elesati
number of cells is up to three orders of magnitude. A simildhe equations of motion and the implementation of a local
observation holds true for the highly cluttered environmefajectory generation algorithm for this vehicle are et
(Fig. 14(b)). Such a large difference in the number of vein detail in [30].
tices in the cell decomposition graph may render infeasibleFigure 16 shows the result of the numerical simulation
the implementation of environment-dependent decompusiti Of the proposed motion planner for the aircraft navigationa
(especially for large environments) for on-board computinmodel. The aircraft speed was assumed to be constant, and
systems with limited processing and memory resources. the control input is the heading angle, which is controlled
Cell decompositions governed by the vehicle’s location iy the bank angle. To show the flexibility of the algorithm
the environment are numerically more efficient. However, & incorporating dynamic constraints, an asymmetric bound
the corresponding graph changes with the vehicle’s motig®i) the bank angle control input was assumed (say, owing
to an aileron failure [38]) as followsi,;, = —45° and
4The thresholdr, appli(:{_;lble for the terrain-like_ environment map, governgy, - — 20°. The Objective was to minimize a cost defined on
the quadtree decomposition as follows: a cell is decompdseder if and . . . . S
the environment (indicated by regions of different intéiasiin

only if the difference in the maximum and minimum intenstief pixels : ) )
within that cell exceeds-. Fig. 16, where the darker regions correspond to higher osts

Multi-resolution motion planning example
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120 vehicle in previous iterations.

100+

VI. CONCLUSIONS

In this paper, we introduced a multi-resolution path- and
motion planning scheme that considers accurate models of
the environment and the vehicle dynamics only for local
planning, and considers coarse models for global planning.
The proposed path planner uses cell decompositions oltaine
from multi-resolution wavelet processing of the envirommne
map. Specifically, we introduced a scheme that encodes in the

e pwT coefficients of the environment map all the necessary
E (km) information about these cell decompositions. We provided a
Fig. 16. Result of motion planning simulation using the mifcnavigational meth(.)d for fast, mcremental updat_es to thes.e cell decqmpos
model. The blue curve corresponds to the resultant stgteivay, while the tiONS in accordance with changes in the vehicle’s location.
channel of cells in black is the result of executing A* algam (without We proved rigorously the completeness of the proposed
vehicle dynamical constraints). The initial position istla¢ top left corner. path planning scheme, where such proofs of completeness

104 have so far been absent in the literature related to dynamic
multi-resolution path planning. Furthermore, we providced
merical simulation data demonstrating that the propos¢id pa
planner results in near-optimal paths in a large majority of
the simulated cases. Finally, we proposed a method, based on
the H-cost approach, for incorporating vehicle kinematic and
o dynamic constraints for planning the vehicle’s motion is it
02 immediate vicinity.

90 Future work includes generalizations of the proposed multi
8 10 12 14 16 18 20 22 . . . N

E (km) resolution path planning scheme to allow a dynamic “window,
() Local perspective: the vehicle’s configu- and the incorporation of a Dlike update of the multi-
ration is indicated in red. resolution environment map based on newly acquired inferma
tion. The generalization of the wavelet-based cell decaipo
1207 tion algorithm for wavelet families other than the Haar fimi
will also be beneficial, especially when the environment map
is processed and encoded using other wavelets.
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APPENDIXA

O a0 o S0 w00 a0 We provide a series of technical results, concerning the
b) Global (km) , algorithm in Fig. 5, that are needed for the proof of Proposi-
(b) Global perspective. tion 1. To this end, we associate with each patlij,, ic.n) =
{io; - ip@m)} in G(n) the setW(r,) defined by
Fig. 17. lllustration of an intermediate iteration of theecall motion planner. P(n)
W) = | Wlip, V(). (A1)
p=0
The algorithm is said toneet a setbacht iterationn if there

Figure 17 illustrates an intermediate iteration of thissim
lation example. Figure 17(a) shows the cells of size at nipst__. o . e
with the boupndarygcells in((jigated in red. The sequence ¢ ce}é's'{s no obstfcle-free pathy, (jn, ic.n) in G(n) satisfying
outlined in blue and the blue-colored curve within this ce (mn) € W(ma)-
sequence are the results of thEcost motion planner. The Proposition 2. Let j € V, and A = MR-APPROX(j). Let
yellow-colored cells indicate the vertices explored dgrthe Q™" and G = (V, E) be, respectively, the multi-resolution
H-cost search. Figure 17(b) shows the overall multi-regmiut cell decomposition and the topological graph associateith wi
cell decomposition at the same iteration. The blue-coloetld A. If there exists an obstacle-free path @& from j to
indicate the optimal path to the goal from the boundary cell;, then there exists an obstacle-free pathdnfrom j :=
chosen by the7-cost motion planner. The blue-colored curveert(cell(j; 2™); G) to iq, Whereig € V is the unique vertex
in Fig. 17(b) indicates the geometric path traversed by thieat satisfiesic € W (ig, V).
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Proof: Let 7(j,ic) = (jo,---,jp) be an obstacle- free Ka(n) =T (m5_1) = T (1) = §(jn—1,jn) = A2, by (6). B
path inG from j, = j to jp = ig. For eachm = 0,..., P,
there exists a unique sBt,,, € {W(j,V)};ev such tha’gm
W, Leti,, € V be such thatV,, = W(i,,, V). S|nce7r is
a path inG, (jm_1,jm) € E for eachm = 1,..., P, and it
follows that eitheriV,,,_, = W,,, or (}m—lazm) E E- Thus, Proof: Suppose, for the sake of contradiction, that the
7(j,ic) == {Jjo,---,jp}, WhereP < P, is a path inG. algorithm visits j € V' infinitely many times at iterations

To show that the pathr is also obs_tacle-free ig, we note p,, ... n... ie. s Jny = Jng --- = J. By Line 8, Kg(jn,) —
that sincer is obstacle-free irg, F(jm)Ag 1 — ¢, for each ’CG(EmH) > 0, and hence there exist¥ € N, such that
m = 0,1,..., P. It follows by (5) thatF'(cell(ji; Q™)) < Kg(jny) = M. It follows that the algorithm terminates in at

(1—¢) foreachm =0,1,..., P, and by (7) that7(7) < M, mostny iterations, which is a contradiction. ]
i.e., w is an obstacle-free path. |

Proposition 4. Let j be an arbitrary vertex in/. Then either
the algorithm never visitg or the algorithm visits; finitely
many times.

_ B Proposition 5. Let 7 (j,, ic.n) = (Jo, - - - ,jp(n ) be the path
Corollary 1. If there exists an obstacle-free path ¢hfrom  found by the algorithm at Line 8 or Line 11 in iterationc N,
the initial Vel‘texzs to the goal VerteXG, then the cost of the and suppose there exists an obstacle-free pam from .]'n. to
initial path 5 computed by the algorithm is finite. ig that is contained within the se¥(r}). Then the algorithm

Proof: By Proposition 2, if there exists an obstacled0€s not visit the vertex, at any future iteration.

free path inG from j 1o ic, then there exists an obstacle-  proof: We note that the cell corresponding to the second
free path m;(is,ic0) in G(0) from the vertexis := vertex in the pathr; is a cell at the finest resolution, and
vert(ce!l(ig;ﬂ);g(O)) to the. Ve_rte)Q'G,o, whereic,o € V(0)iS  hence W(j1,V(n)) = jni1. Then it follows due to (A.1)

the unique vertex that satisfieg € I (ic.0,V(0)). Because ang due to the hypothesis that there exists an obstacle-free
7 is obstacle-freeJ (w) < M, i.e., J(mg) is finite. " path7(j,.ic) = (io,....ip) in G from j, to ig such that

Proposition 3. Suppose that the algorithm does not meet @ = Jn+1. Thus, there exists an obstacle-free patigifrom
setback at iteratiom € N of its execution, and also supposgn-+1 10 ic: in particular, (i1, ..., ip) is such a path. Then it
that VISITED(j,,) = 0. If there exists a path in the gragh(n) follows by Proposition 2 that the algorithm does not execute
from the vertex,, = vert(cell(j,; 2™ (n)); G(n)) to the vertex Line 18 at iteratiom + 1.

G, thenKa(n_1) — Ka(Gn) = A2, Whereig,, € V(n) is By the preceding arguments, the following statement is true

the unique vertex that satisfiég € W (iq.,, V(n)). if there exists an obstacle-free path ¢hfrom 7, to ig
_ e _ contained withinz ., then the algorithm does not execute
Proof: Let 7, (jn,iG,n) = (jo,---,jpm)) denote the |ina 18 at iterations L k + 1.

optimal path in the grapb(n) computed by the algorithm at Now suppose, for the sake of contradiction, that there £xist

!_lne .11' First, suppose that th_e_ cell decompesmjii ( ) is ¢ > 1 such that the algorithm visits vertgx again at iteration
identical to the cell decompositian™*(n — 1) (in particular, N4 L, i€ o = Juie @Nd i1 — juic 1. Then there exists
n — Jn+ n+1l — Jn+

Z:G*"*l = icn). If there existe a path iG(n) from j” to m < ¢ such that for eactk = m,m + 1,..., ¢, the algorithm
ic.n, then there exists an optimal path #(n) from jn 10 o o0 tes Line 18 at iteration + &, i.. joskir = b(jnrs).
'G,n be_caus@(n) IS *f|n|te. Then, by Bellmans prmuple of Due to the statement in the preceding paragraph, it follbas t
optimality, the pathr;, ; (jn-1ic.n-1) = (io;---,iP(n-1)): gither there exists no obstacle-free pattgifrom j,, . to ig,
CSmpF‘ted at iteration —1 of the algorlthm, conf[alns the pathor the second vertex of every obstacle-free patiGifirom
Mo With P(n) = P(n — 1) — 1, and jm_1 = in for each Jnik t0ig is b(jnik). However, neither of these hold true for
m=1,2,...,P(n), and hencey (r,) < J (m;_.). ..« . k=1¢—1, because we showed earlier tha,...,ip) is an
Next, suppose that the cel deeemr:norsménn (n) 1S opstacle-free path i@ from j, 1 = jnie—1 t0 ic, and this
not identical to the cell decompositiof™(n — 1). Let path does not contaif,. Thus we arrive at a contradiction,

g(l (gnéli%g)( andf;"r_els(gg&li{,é?fﬁlywe )pgt?;; (in the) %Laer:]hs and it follows that there exists no> 1 such thatj,, = j,.¢,
n n— . Tn) € Trn—1), . . . = . :

.e., the al thm d t t fut teration.m
due to the second and third terms in the right hand side Ioef € algorithm does not visji, at any future iteration

(7), I (mn) < j(wn 1). In particular, iftW(r}) C W(r:_,), Proof of Proposition 1: Note that because the set of

thenJ (7}) < J (=} ) vertices inV is finite, it follows by Proposition 4 that the
Now supposéV () ¢ W(r:_,). Letm,(jn, ic,,) be any algorithm terminates after a finite number of iterations.

path inG(n) from u, to iGn sat|sfy|ngW(7rn) CW(ri_y). To show completeness, first suppose that there exists an

There exists at least one such path in G(n) because the obstacle-free path ig from ig to ig.

algorithm does not meet a setback at iteration By the Suppose first that the algorithm never visits any vertex in

arguments in the preceding paragraph(r,) < J(v’_,). V more than once, and that the algorithm does not meet any

Furthermore, becausg is an optimal path i (n) from yn to setbacks. By Proposition Xg(j,—1) — Ka(jn) = A2, and

iG.n, J(m}) < J(m,), and it follows that7 (n}) < J(n;_,). the sequenc&c(j,) decreases strictly monotonically. Since
Finally, note that the cell corresponding to the f|rst verteKG(jn) > 0 for eachn € N, and Kg(j1) is finite (by

Jjo € V(n) in the pathr? is the same as the cell correspondin@orollary 1), there exist€) € N, such thatKq(j,) = 0

to the second verte € V(n—1) in 7} _,, and furthermore, for eachn > Q. It follows from Line 22 of Fig. 5 that the

this cell corresponds to the vertgx € V. ThenKq(j,—1) — algorithm terminates aft&p iterations, and sinckc (jg) = 0,
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the algorithm visits the goal; at iteration@. and scaled versions of two scalar functioh@and) of unit

Next, suppose that the algorithm visits some vertices @nergy, called thecaling functiorandmother waveletespec-
V multiple times and that the algorithm never meets arively, which satisfy the so-calledrthogonality and dilation
setbacks. Note that the number of multiply visited verticeaquations(cf. [13]). For eachm,k € Z, we define scalar
is finite because the algorithm terminates after a finite rermbfunctions ¢,,, ;. and ¥, x by ¢ (t) == V272"t — k),
of iterations. Then either of the following statements hol@nd v, () = /2™ (2™t — k). The discrete wavelet
(a) the algorithm terminates at iteratich € N, such thatj, transform of a scalar functionf € L*(R) is defined by
is a multiply visited vertex, or (b) there exist@ € N such amg. i = {(Pmox(t), f(£)), and dp = (W i (1), (1)),
that for eachn = Q + 1,Q + 2,. .., the vertexj, is visited wherem, € Z. The 1-Dreconstruction equatiois
exactly once by the algorithm. If Statement (a) holds, then - -
jo # ic due to Lines 3 and 22 of Fig. 5, which, in turn,
wﬁplles that the algorithm reports failure in Line 16 of Fig. 1) Z ok Prmo k(t) + Z Z o m ()
It follows by Line 15 thatj, = is. Then, by Proposition 2
and Proposition 5 in the Appendix, there exists no admissiblhe scalarsi,,, » andd,, » are known aspproximationand
path in G from ig to ic, which is a contradiction. On the detail coefficients respectively.
other hand, if Statement (b) holds, then by the monotonicity For the 2-D extension of the 1-DwT, a scaling func-
arguments in the preceding paragraph, the algorithm wisits tion is defined by@m,k,e(x,y) = G k(¥)Pm,e(y), and
goal after a finite number of iterations after iteratin three waveletsV!, , ,,..., 92 ., are similarly defined by

Next, suppose that the algorithm never visits any vertgoducts of the 10 scallng function and wavelet. The
in V more than once, and suppose that the algorithm me8sDWT coefficients of a scalar functioF’ e L*(R?)
some setbacks. The number of setbacks met by the algoritAfR amoke = (P re(2,y), F(z,y), and dj, ;. , =
is finite because the algorithm terminates in a finite numbé&¥,,, ; ,(z,v), F(x,y)), for i = 1,2,3, k,¢ € Z, andm >
of iterations. Then either of the following statements holdno € Z. The correspondin@-D reconstruction equatios
(c) the algorithm terminates at iteratiocf € N such that defined analogous to the 1-D case.
the algorithm meets a setback at iteratighor (d) there ~ An example of a pair of scaling function and wavelet is
exists Q € N such that for eacm = Q +1,Q + 2,..., the Haar family [12]. For the 1-D Haar family, the functions
such that the algorithm does not meet any setbacks aftes  and ¢, are compactly supported over the interval
iteration Q. Statement (c) leads to the same contradiction that, . := [27™k,27™(k + 1)], and by consequence, the func-
follows Statement (a), whereas Statement (d) leads to the sdions ®,, ., and ¥,, . , are compactly supported over
conclusion that follows Statement (b).

Next, suppose that the algorithm visits some vertices mul- Smke = Amk X e, (B.2)
tiple times and that algorithm meets some setbacks. We m
combine the arguments in the preceding two paragraphs to
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