
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: PART B 1

Multi-resolution Motion Planning for Autonomous
Agents via Wavelet-Based Cell Decompositions

Raghvendra V. Cowlagi,Member, IEEE,and Panagiotis Tsiotras,Senior Member, IEEE

Abstract—We present a path- and motion planning scheme
that is “multi-resolution,” both in the sense of representing the
environment with high accuracy only locally, and in the sense of
addressing the vehicle kinematic and dynamic constraints only
locally. The proposed scheme uses rectangular multi-resolution
cell decompositions, generated efficiently using the wavelet trans-
form. The wavelet transform is used widely in signal and image
processing, with emerging applications in autonomous sensing
and perception systems. The proposed motion planner enables the
simultaneous use of the wavelet transform in both the perception
and in the motion planning layers of vehicle autonomy, thus
potentially reducing online computations. We prove rigorously
the completeness of the proposed path planning scheme and we
provide numerical simulation results to illustrate its efficacy.

I. I NTRODUCTION

M OTION planning for autonomous terrestrial and aerial
vehicles has been extensively studied [1], [2]. However,

important issues such as dealing with uncertain, partially
known, and/or dynamically changing environments, and the
satisfaction of vehicle kinematic and dynamic constraintsare
yet to be thoroughly and satisfactorily addressed, especially
when considering additional constraints stemming from the
limited computational resources on-board the vehicle.

In this paper, we present a fast multi-resolution motion
planning scheme that guarantees the satisfaction of the ve-
hicle’s kinematic and dynamic constraints. To introduce the
various inter-related aspects of the proposed scheme, we will
use the following terminology: We will use the termpath
to refer to the locus of continuous motion of a point, and
the termtrajectory to refer to a path parameterized by time.
Depending on the context, we will use the termpath to also
refer to a sequence of successively adjacent vertices in a graph.
Finally, we will use synonymously the termsworkspaceand
environmentto refer to a planar region over which the vehicle
moves.

Multi-resolution path planning involves the representation
of the vehicle’s environment with different levels of accuracy.
For example, the popular quadtree method [3]–[5], generates
a planar cell decomposition consisting of small cell sizes that
capture accurately obstacle boundaries, and larger cell sizes
that represent efficiently large areas in the free space. Other
path planning schemes that use multi-resolution cell decom-
positions have appeared, for instance, in [6]; in [7] (triangular
cells); in [8] (receding horizon path planning scheme using
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multi-resolution estimates of object locations); in [9] (multi-
resolution potential field); and in [10] (hierarchy of imaginary
encapsulating spheres for collision avoidance).

We consider planar cell decompositions such that the
environment is represented with high accuracy (i.e., using
small cell sizes) in the agent’s immediate vicinity, and with
lower accuracy in regions farther away, similar to the multi-
resolution grids considered in [6], [11]. Multi-resolution cell
decompositions are compact data structures that encode large
environment maps, and thus enable efficient online path- and
motion planning. Furthermore, multi-resolution decomposi-
tions of the environment capture naturally the graded levels
of uncertainty about the environment as a function of the
distance from the current location of the agent. In other words,
such decompositions encode the notion that theuncertainty
or incomplete knowledgeabout the environment is higher in
regions farther away from the vehicle’s current location.

The discrete wavelet transform (DWT ) is a mathematical
tool used widely in multi-resolution signal processing [12],
[13]. Applications of theDWT to vision-based navigation and
vision-basedSLAM for autonomous vehicles have appeared
recently in [14] (appearance-based vision-onlySLAM); in [15]
and [16] (local feature extraction); and in [17] (stereo image
processing). With the plethora of available sensors, and in
light of the fact that multiple sensors are typically used for
autonomous navigation [11], the wavelet transform may soon
become the common standard for representing and analyzing
signals [18]. In this context, wavelet-based data representation
for path planning problems has been addressed recently in [19]
(occupancy grids); in [20] (standardized representation of road
roughness characteristics); in [21] (terrain depiction for pilot
situational awareness); and in [22] (image registration for
vision-based navigation).

In light of the ubiquitous use of theDWT in signal-
and image processing, and its emerging applications in au-
tonomous sensing and perception, it is natural to investigate
the seamless integration of sensing and path planning using
multi-resolution wavelet analysis. To this end, we proposea
path planning scheme that directly uses aDWT representa-
tion of the environment. Applications of theDWT in multi-
resolution path planning schemes have appeared previously,
for instance, in [23], [24] (preliminary implementations of
the proposed path planning scheme); in [25] (path refinement
based on successively finer approximations of a terrain map);
and in [26], [27] (multi-resolution schemes for vision-based
path planning).
H-Cost Motion Planning: Motion planning schemes often

involve ageometric path plannerthat uses an abstract, discrete



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: PART B 2

representation (e.g., graphs associated with cell decompo-
sitions) of the workspace and deals with the satisfaction
of task specifications such as obstacle avoidance. However,
the resultant geometric path may be found to be infeasible
or unacceptably sub-optimal if the vehicle’s kinematic and
dynamic constraints are ignored. To address this issue, we
introduced in [28] a motion planning approach based on
assigning costs, calledH-costs, to multiple edge transitions
in the cell decomposition graph. TheseH-costs allow the
vehicle’s kinematic and dynamic constraints to be incorporated
in the geometric path planner via the (implicit) construction of
a so-calledlifted graph, which is closely related to the original
cell decomposition graph. In this paper, we discuss a multi-
resolution implementation of thisH-cost motion planning
approach, such that the overall scheme is “multi-resolution,”
both in the sense of representing the environment with high
accuracy only locally,and in the sense of considering the
vehicle dynamical model for path planning only locally.

In summary, the proposed motion planning scheme consists
of the following main elements: (a) A wavelet-based multi-
resolution cell decomposition algorithm that creates and mod-
ifies a graph that represents the environment (see Section II);
(b) A local trajectory generation algorithm called TILEPLAN

that associatesH-costs in the aforesaid cell decomposition
graph to (implicitly) construct a “partially” lifted graph(see
[29], [30]); and (c) A discrete path planner that finds paths
in the “partially” lifted graph, which, in turn, correspondto
trajectories that satisfy the vehicle’s kinematic and dynamic
constraints (see Section IV). The interactions between thevar-
ious models and methods involved in the proposed scheme are
illustrated in Fig. 1: here, hollow arrows indicate the creations
and modifications of various models by the methods shown,
whereas bold arrows indicate the dependencies between the
various models and methods shown. For example, the hollow
arrow from TILEPLAN to the “partially” lifted graph model
indicates modification of the edge transition costs of the latter.

The main contributions of this paper are as follows. Firstly,
we present a multi-resolution cell decomposition technique
that is completely encoded in theDWT coefficients of the
environment map. This approach allows for the development
of highly integrated, efficient navigation and path planning ar-
chitectures, where theDWT coefficients are used as a common
data structure both for scene understanding and for motion
planning. Secondly, we demonstrate one such integrated ap-
proach by proposing a path planning scheme based on the
aforesaid cell decompositions, and we rigorously prove its
completeness. To the best of our knowledge, such proofs of
completeness are absent from other similar multi-resolution
path planning schemes [6], [11]. Finally, we discuss a method
of incorporating vehicle dynamic constraints in the multi-
resolution path planning scheme using theH-cost motion
planning approach of [28]. The issue of consistency between
the geometric and dynamic planning layers is well-known in
the robotics community [31]. To date, this problem has been
addressed by planning in the (high-dimensional) state space,
instead of the workspace, where the obstacles naturally lie.
We show that, for mobile robotic applications, planning can
be restricted to the low-dimensional workspace. The overall
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Fig. 1. Schematic illustration of the proposed motion planning scheme.

motion planning scheme is thus an important step in the
development of an hierarchicallyconsistentautonomous nav-
igation and motion planning system, i.e., one that guarantees
the satisfaction of vehicle kinematic and dynamic constraints
while retaining the computational efficiency of discrete multi-
resolution path planning.

The rest of this paper is organized as follows. In Section II,
we describe the proposed wavelet-based multi-resolution cell
decomposition technique. In Section III, we describe a path
planning scheme using this cell decomposition, and we prove
its completeness. In Section IV, we discuss the inclusion
of vehicle dynamical constraints in the multi-resolution path
planner via theH-cost approach. In Section V, we provide nu-
merical simulation results illustrating the successful operation
of the overall motion planner, and in Section VI, we conclude
the paper with comments on possible future extensions.

II. M ULTI -RESOLUTIONCELL DECOMPOSITIONS USING

THE DISCRETEWAVELET TRANSFORM

Cell decomposition is a common technique used in geomet-
ric path planning [1], that involves partitioning the workspace
into convex regions calledcells. A graph is associated with this
partition, such that each cell corresponds to a unique vertex
and each pair of geometrically adjacent cells corresponds to a
unique edge. The original path planning problem is thus trans-
formed to the problem of finding a path in this graph, which
can be solved, for instance, by the A* algorithm [2]. In what
follows, we introduce a multi-resolution cell decomposition
technique based on the 2-D discrete wavelet transform. We
provide a brief introduction to theDWT in Appendix B, and
we refer the reader to [12], [13] for further details.

A. Multi-resolution cell decompositions

We define animageas a pair(R,F ), whereR ⊂ R2 is a
compact, square region, andF : R → R, F ∈ L2(R), is an
intensity map. We will assume thatR =

[

0, 2D
]

×
[

0, 2D
]

,
with D ∈ Z, and that the image intensity mapF is known at
a finite resolutionmf > −D, i.e., the functionF is piecewise
constant over each of the square regionsSmf ,k,ℓ (defined
in (B.2)), for k, ℓ = 0, 1, . . . , 2D+mf − 1. We will assume,
without loss of generality, thatmf = 0. In the context of path
planning, the intensity mapF may represent, for instance,
terrain elevation [25], a risk measure [23], or a probabilistic
occupancy grid [19], [32].
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We assume that the least cell size of interest is2−mf = 1,
and we define a cell decompositionΩ consisting of uniformly
spaced square cells, each of size1, i.e.,

Ω := {Smf ,k,ℓ : k, ℓ ∈ {0, 1, . . . , 2D − 1}}.
The intention of the geometric path planner is to find a path
in the graph associated withΩ. However, the number of
cells in Ω is 22D, which makes the graph search impractical
whenD is large. To enable fast online computation, multi-
resolution cell decompositions may be used to approximate
large environment maps. Such decompositions correspond to
graphs with significantly fewer vertices, thus requiring lesser
computational resources for path planning at each iteration.
Furthermore, such decompositions also capture naturally the
vehicle’s sensing limitations by relaxing progressively,with
increasing distance from the vehicle’s location, the accuracy
at which the intensities of cells inΩ are known.

Let am0,k,ℓ anddpm,k,ℓ be theDWT coefficients ofF , where
m0 ∈ Z is pre-specified, letA ⊂ {(m, k, ℓ) ∈ Z3 : m0 6

m < 0, 0 6 k, ℓ 6 2D+m} be a set of triplets of integers,
and letd̂pm,k,ℓ be defined by

d̂pm,k,ℓ :=

{

dpm,k,ℓ p = 1, 2, 3, and (m, k, ℓ) ∈ A,
0 otherwise.

Then the image(R, F̂ ), where F̂ is obtained by the recon-
struction ofam0,k,ℓ and d̂pm,k,ℓ, is called theapproximationof
(R,F ) associated with the setA. Informally, an approximation
is obtained by neglecting certain detail coefficients in theDWT

of F : the setA contains the indices of detail coefficients that
are considered “significant”. A specific approximation thatis
of interest in this paper is one that retains detail coefficients
only in the immediate vicinity of the vehicle’s current location
(x0, y0) ∈ R and gradually discards them in regions farther
away. To define precisely this approximation, let̺ : Z → N be
a “window” function that specifies, for each level of resolution,
the distance from the vehicle’s location up to which the detail
coefficients at that level are significant. The setAwin(x0, y0)
of indices of significant detail coefficients is then defined by

Awin(x0, y0) :=
{

(m, k, ℓ) : m0 6 m < 0,

⌊2mx0⌋ − ̺(m) 6 k 6 ⌊2mx0⌋+ ̺(m),

⌊2my0⌋ − ̺(m) 6 ℓ 6 ⌊2my0⌋+ ̺(m)
}

, (1)

wherem0 ∈ Z. An example of an image and its approximation
using (1) is shown in Fig. 2. In this example,m0 = −10,
(x0, y0) = (390, 449), and̺(m) = 4 for eachm0 6 m < 0.

B. Computing Cell Locations and Intensities

The cell decompositionΩmr associated with(R, F̂ ) is a
partition ofR into square cells of different sizes, such thatF̂
is constant over each of the cells. In this section, we describe a
procedure to determine the locations, the sizes, and the values
of F̂ over each of the cells inΩmr.

In this paper, we use the Haar wavelet family, and the Haar
scaling function satisfies the following dilation equation[13]:

φ(t) = φ(2t) + φ(2t− 1). (2)

(a) Original image (b) Approximation

Fig. 2. Example of an image and its multi-resolution approximation.

The dilation equation (2) implies, for the 2-D case, that the
square support of the scaling functionsΦm,k,ℓ is exactly the
union of the supports ofΦm+1,k,ℓ, Φm+1,k−1,ℓ, Φm+1,k,ℓ−1,
andΦm+1,k−1,ℓ−1. Consequently, a mapF is constant over the
support ofΦm,k,ℓ if and only if the detail coefficients ofF at
levelm and at higher-resolution levelsm+1,m+2, . . . are all
zero. Furthermore, for the Haar scaling function and wavelet,
one may associate with each detail coefficient a regions inR2,
such that this coefficient affects the values of the map only in
this region. Specifically, we make the following association:

dpm,k,ℓ ↔ Sm,k,ℓ = 2−m ([k, (k + 1)]× [ℓ, (ℓ+ 1)]) , (3)

for eachm0 6 m < mf = 0, wherem0 ∈ Z is pre-specified.
Based on the preceding observations, we formulate the

following Rules to determine the locations and the sizes of
cells in the cell decompositionΩmr associated with a setA
of indices of the significant detail coefficients.
1) {S

m0,k̂,ℓ̂
: 0 6 k̂, ℓ̂ < 2D+m0} ∈ Ωmr. If A is empty,

then these cells form a uniform decomposition.
2) {S

m+1,k̂,ℓ̂ : k̂ ∈ {2k, 2k + 1}, ℓ̂ ∈ {2ℓ, 2ℓ + 1}} ∈ Ωmr

whenever(m, k, ℓ) ∈ A. This Rule arises from the
fact that the support of the Haar scaling function at each
resolution level is equal to the union of the supports of the
scaling functions at the next higher resolution level.

3) {S
m̂+1,k̂,ℓ̂ : k̂ ∈ {⌊2m̂−mk⌋ − 1, ⌊2m̂−mk⌋}, ℓ̂ ∈

{⌊2m̂−mℓ⌋ − 1, ⌊2m̂−mℓ⌋},m0 6 m̂ < m} ∈ Ωmr,
whenever(m, k, ℓ) ∈ A. This Rule decomposes into
squares non-convex regions that arise when the indices of
a detail coefficient at the levelm is in A, but the indices
of coefficients associated with the same region (given by
(3)) at all levels lower thanm are not inA.

4) {S
m̂,k̂,ℓ̂

: k̂ = ⌊2m̂−mk⌋, ℓ̂ = ⌊2m̂−mℓ⌋, m0 6 m̂ 6

m} /∈ Ωmr, whenever(m, k, ℓ) ∈ A. This Rule indicates
that a cell, once decomposed, cannot belong toΩmr.

Exclusions fromΩmr prescribed by Rule 4) take precedence
over inclusions prescribed by Rule 3). Note that the preceding
Rules are valid only for the Haar system.

Figures 3 and 4 illustrate the application of the
preceding Rules for the approximation associated with
A = {(−2, 0, 2), (−2, 3, 2), (−1, 3, 4), (−1, 4, 2), (−1, 4, 3),
(−1, 5, 2), (−1, 6, 5)}. In Fig. 3(a), the cells with dotted bor-
ders are due to Rule 1), and the cells with solid borders are due
to the Rule 2) for the indices withm = −2. The shaded cells
in Fig. 3(b) illustrate the non-convex regions that may arise
due to non-zero coefficients at higher resolution levels, which
need to be decomposed using Rule 3). The shaded cells in
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(a) Rule 2) for m =

−2.
(b) Rule 2) for m =

−1.

Fig. 3. Computations of cell locations and dimensions fromA.

(a) Rule 3) for m =

−1.
(b) Overall decomposi-
tion.

Fig. 4. Computations of cell locations and dimensions fromA.

Fig. 4(a) are those which arise twice: due to Rule 2) for level
m = −2 coefficients and due to Rule 3) for levelm = −1
coefficients. Figure 4(b) shows the final cell decomposition.
After determining the elements of the multi-resolution cell
decomposition, i.e., the locations and sizes of all the cells,
the adjacency relations between cells can be determined by
geometric arguments (cf. [24]). To calculate the cell intensities,
we use recursively the following relation:








F̂ (Sm+1,2k,2ℓ)

F̂ (Sm+1,2k+1,2ℓ)

F̂ (Sm+1,2k,2ℓ+1)

F̂ (Sm+1,2k+1,2ℓ+1)









= 2m0E









2−mF̂ (Sm,k,ℓ)
d1m,k,ℓ

d2m,k,ℓ

d3m,k,ℓ









, (4)

for 0 6 k, ℓ < 2D+m, with F̂ (Sm0,k,ℓ) = 2m0am0,k,ℓ for 0 6

k, ℓ < 2D+m0 , whereE is a constant matrix. The intensities
of the cells due to Rule 2) for a triplet(m, k, ℓ) ∈ A are
given by (4). The intensities of cells due to Rule 3) for a
triplet (m, k, ℓ) ∈ A, are each equal toF (Sm1,k1,ℓ1), where
(m1, k1, ℓ1) ∈ A is the triplet with the greatestm1 < m
satisfyingSm,k,ℓ ⊂ Sm1,k1,ℓ1 . If no such triplet exists, then the
intensities of these cells are each equal toF (Sm0,k1,ℓ1), where
k1, ℓ1 are the unique indices satisfyingSm,k,ℓ ⊂ Sm0,k1,ℓ1 .

We re-emphasize thatall information needed to completely
define the cell decompositionΩmr is encoded in the setA, and
it is straightforward to extract this information. Furthermore,
the expression (1) lends itself to a fast update of the setA in
accordance with the changes in the vehicle’s position in the
environment, as we will demonstrate in Section III-B.

III. M ULTI -RESOLUTIONPATH PLANNING

We denote byḠ = (V̄ , Ē) the graph associated with the
cell decompositionΩ, such that each cell inΩ corresponds to
a unique vertex in̄V . We will denote bycell(j; Ωmr) the cell
in Ωmr associated with a vertexj ∈ V̄ , and byvert(c; Ḡ) the
vertex of Ḡ associated with a cellc ∈ Ωmr. Two vertices are

adjacent if the corresponding cells are geometrically adjacent,
and Ē is the collection of all ordered pairs(̄i, j̄) of vertices
in V̄ , such that̄i and j̄ are adjacent. In what follows, we will
distinguish by an overline symbols denoting vertices, paths,
or functions associated withΩ or Ḡ. We introduce an edge
cost functionḡ : Ē → R+ that assigns to each edge ofḠ a
non-negative cost of transitioning this edge.

For given initial and terminal vertices̄iS, īG ∈ V̄ , an
admissible path̄π(̄iS, īG) in Ḡ is a finite sequence(̄i0, . . . , īP̄ )
of vertices (with no repetition) such that{īk−1, īk} ∈ Ē for
eachk = 1, . . . , P , with ī0 = īS andīP = īG. For brevity, and
when there is no ambiguity, we will henceforth suppress the
arguments in̄π. The costJ̄ (π̄) of an admissible path̄π in Ḡ is
the sum of costs of edges in̄π, and thepath planning problem
is to find an admissible path̄π∗(̄iS, īG) with minimum cost.

Next, we associate with the multi-resolution cell decompo-
sition Ωmr a graphG = (V,E) such that each cell inΩmr

corresponds to a unique vertex inV . Note that each vertex
j ∈ V corresponds to a setW (j, V ) ⊂ V̄ , and the collection
{W (j, V )}j∈V is a partition ofV̄ . Specifically:

W (j, V ) :=
{

j̄ ∈ V̄ : cell(j̄; Ω) ⊆ cell(j; Ωmr)
}

.

The multi-resolution cell decomposition graphG approximates
the graphḠ by representing each set of verticesW (j, V ) ⊂ V̄
with a single vertexj ∈ V . For the Haar wavelet, it can be
shown that for eachj ∈ V ,

F̂ (cell(j; Ωmr)) =
1

|W (j, V )|
∑

j̄∈W (j,V )

F (cell(j̄; Ω)). (5)

Finally, two verticesi, j ∈ V are said to be adjacent inG, i.e.,
(i, j) ∈ E, if and only if there exist̄i ∈ W (i, V ) and j̄ ∈
W (j, V ) such that{ī, j̄} ∈ Ē. We will denote bycell(j; Ωmr)
the cell in Ωmr associated with the vertexj ∈ V , and by
vert(S;G) the vertex inG associated with the cellS ∈ Ωmr.

A. Path Planning Algorithm

We present an algorithm that finds iteratively an admis-
sible pathπ̄ in Ḡ by first constructing multi-resolution cell
decompositions, then by finding paths in these multi-resolution
cell decompositions, and and then by moving along these
paths. The proposed algorithm is a modification of the multi-
resolution path planning algorithm presented in [23] and these
modifications ensure that the proposed algorithm is complete.

We assume thatF (cell(j̄; Ω)) ∈ [0, 1] for eachj̄ ∈ V̄ , such
that more favorable cells in the environment have a lower
intensity, and such thatcell(j̄; Ω) represents an obstacle if
F (cell(j̄; Ω)) > 1 − ε, for some pre-specifiedε ∈ (0, 1). We
define the transition cost of an edge(̄i, j̄) ∈ Ē by

ḡ((̄i, j̄)) :=

{

λ1F (cell(j̄; Ω)) + λ2, F (cell(j̄; Ω)) 6 1− ε,
M, otherwise,

(6)
whereλ1, λ2 ∈ (0, 1] andM ≫ 2|V̄ | are constants.

We denote byF̂n the approximation of the environment
constructed at iterationn of the proposed algorithm, by
A(n) the associated set of detail coefficients, byΩmr(n)
the associated multi-resolution cell decomposition, and by
G(n) = (V (n), E(n)) the associated topological graph. We
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define the goal vertexiG,n ∈ V (n) as the unique vertex that
satisfies̄iG ∈ W (iG,n, V (n)).

For each vertex̄j ∈ V̄ , the proposed algorithm maintains
an estimateKG(j̄) of the least cost of any path in̄G from the
vertexj̄ to the goal vertex̄iG, and a recordKS(j̄) of the least
cost of any path in̄G from the initial vertex̄iS to the vertex̄j.
The algorithm also associates with each vertexj̄ ∈ V̄ another
vertexb(j̄) ∈ V̄ called thebackpointerof j̄. At each iteration,
the algorithm performs a computation (Line 18 or Line 20
in Fig. 5) whose result is a unique vertex in̄V . We refer to
this computation as avisit to this vertex, and we denot bȳjn
the vertex visited at iterationn, with j̄0 := īS. Finally, let
jn := vert(cell(j̄n; Ω

mr(n));G(n)).
An admissible pathπn(jn, iG,n) in G(n) is a finite se-

quence (i0, . . . , iP (n)) of vertices (with no repetition) in
V (n) excluding b(j̄n) and excluding vertices inV (n) cor-
responding to cells in the path from̄iS to j̄n. Note that this
definition precludes cycles in the concatenation of the path
(j0, . . . , jn−1) with the pathπn. We introduce an edge cost
functiongn : E(n)→ R+, which assigns to each edge ofG(n)
a non-negative cost of transitioning this edge, defined by

gn((i, j)) :=

{

(λ1F̂j + λ2)|W (j, V (n))|, F̂j 6 1− ε,
M, otherwise,

(7)

whereF̂j := F̂ (cell(j; Ωmr(n))). The costJ (πn) of the path
πn is the sum of the costs of edges in the path. Note that,
by (5) and (7), the cost of an obstacle-free path inG(n) is
less than or equal to2|V̄ |, and hence an admissible pathπn
in G(n) is obstacle-free if and only ifJ (πn) < M.

The proposed algorithm associates with each vertexj̄ ∈ V̄
a binary valueVISITED(j̄) that records whether the vertexj̄
has previously been visited by the algorithm: at any iteration
of the algorithm’s execution, for each̄j ∈ V̄ , VISITED(j̄) = 0
indicates that the algorithm has never visitedj̄ in any previous
iteration, whereasVISITED(j̄) = 1 indicates that the algorithm
has visitedj̄ during a previous iteration. The algorithm also
maintains a cumulative cost̄J (π̄) of the path π̄(̄iS, j̄n) in
Ḡ. The proposed multi-resolution path planning algorithm is
described by the pseudo-code in Fig. 5. Herex(j̄) and y(j̄)
denote, respectively, thex andy coordinates of the center of
cell(j̄; Ḡ), andMR-GRAPH denotes the procedure described in
Section II-B to obtain the cell decomposition graph associated
with a set of indices of significant detail coefficients.

Remark 1. The constrained optimization problem in Line 8
can be solved by an algorithm that finds theK shortest paths
in a graph. Such algorithms have been reported, for instance,
in [33]. We assume that theK shortest paths will have
strictly increasing costs. This assumption is not requiredfor
the algorithm’s successful execution, but it enables a concise
statement of the algorithm.

Remark 2. Due to Line 9, the cost of “back-tracking” is not
added to the cumulative cost̄J (π̄). Also, it follows from (7)
and Line 21 thatKG(j̄) = 0 if and only if j̄ = īG.

We may now state the main result of this section as follows.

Proposition 1. The proposed algorithm is complete: if there
exists an obstacle-free path in̄G from īS to īG, then the

Multi-resolution Path Planning Scheme

procedureMR-APPROX(j̄)

1: A ← Awin(x(j̄), y(j̄))

procedure MAIN

1: π̄ ← īS, j̄0 ← īS, n← 0, AtGoal← 0, J̄ (π̄)← 0
2: For each̄j ∈ V̄ , VISITED(j̄)← 0
3: while ¬AtGoal and J̄ (π̄) < M andKG(j̄n) < M do
4: b(j̄n)← j̄n−1

5: A(n)← MR-APPROX(j̄n)
6: G(n)← MR-GRAPH(A(n))
7: if VISITED(j̄n) = 1 then
8: π∗

n ← argmin {J (π) : π obstacle-free inG(n)},
subject toJ (π∗

n) > KG(j̄n)
9: J̄ (π̄)← KS(j̄n)

10: else
11: π∗

n ← argmin {J (π) : π obstacle-free inG(n)}
12: KS(j̄n)← J̄ (π̄)
13: VISITED(j̄n)← 1
14: if π∗

n does not existthen
15: if j̄n = īS then
16: Report failure
17: else
18: j̄n+1 ← b(j̄n)
19: else
20: j̄n+1 ← vert(cell(i1;G(n)); Ḡ)
21: KG(j̄n)← J (π∗

n)
22: AtGoal← (KG(j̄n) = 0),
23: π̄ ← (π̄, j̄n)
24: J̄ (π̄)← J̄ (π̄) + ḡ(j̄n, j̄n+1)
25: n← n+ 1
26: if J̄ (π̄) >M or KG(j̄n) >M then
27: Report failure

Fig. 5. Pseudo-code for the proposed path planning algorithm.

algorithm finds an obstacle-free path in a finite number of
iterations. Otherwise, the algorithm reports failure after a
finite number of iterations.

Proof: See Appendix A.

B. Efficient Updates ofA(n) andG(n)
The setA(n) of the significant detail coefficient indices, and

the associated multi-resolution cell decomposition graphboth
depend on the vehicle’s current position. Consequently, both
A(n) andG(n) are updated (Lines 5–6 in Fig. 5) at each iter-
ation of the algorithm. To enable faster computations, we de-
scribe, in this section, a method to obtainA(n) incrementally
from A(n− 1). Specifically, we first compute the elements of
the setsB1 := A(n)∩Ac(n−1) andB−1 := A(n−1)∩Ac(n),
and we then evaluateA(n) = A(n − 1) ∪ B1\B−1. To this
end, we observe that for eachj̄ ∈ V̄ , x(j̄) = ⌊x(j̄)⌋+1/2. It
follows that for everym 6 0,

⌊2mx(j̄n)⌋ = ⌊2m(⌊x(j̄)⌋+ 1/2)⌋. (8)

Next, we note that⌊x(j̄n)⌋ = ⌊x(j̄n−1)⌋ + ∆x, where, at
iterationn, ∆x = 1 if the vehicle moves one cell to the right,
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Recomputation of Multi-resolution Cell Decomposition

procedure MOD-MR-APPROX(A)

1: ComputeB−1 andB1 with (12)
2: A(n)← A(n− 1) ∪ B1\B−1

procedureMOD-MR-GRAPH(Ωmr(n− 1),B−1,B1)
1: Ωmr

−1 ← ∅, Ωmr
1 ← ∅

2: for all (m, k, ℓ) ∈ B1 do
3: Ωmr

1 ← Ωmr
1 ∪ {Sm+1,k̂,ℓ̂ : k̂ ∈ K, ℓ̂ ∈ L}

4: Ωmr
−1 ← Ωmr

−1 ∪ {Sm̂,k̂,ℓ̂
: k̂ = ⌊2m̂−mk⌋, ℓ̂ =

⌊2m̂−mℓ⌋, m0 6 m̂ 6 m}
5: for all (m, k, ℓ) ∈ B−1 do
6: Ωmr

−1 ← Ωmr
−1 ∪ {Sm+1,k̂,ℓ̂ : k̂ ∈ K, ℓ̂ ∈ L}

7: Ωmr
1 ← Ωmr

1 ∪ {Sm,k,ℓ}
8: Ωmr(n)← Ωmr(n− 1) ∪ Ωmr

1 \Ωmr
−1

Fig. 6. Pseudo-code for the procedureMOD-MR-GRAPH.

∆x = −1 if the vehicle moves one cell to the left, and∆x = 0
otherwise. From (8), it may be shown [30] that

⌊2mx(j̄n+1)⌋ = ⌊⌊2mx(j̄n)⌋+ 2m∆x + rmx ⌋, (9)

wherermx := 2m (⌊2mx(j̄n)⌋+ 1/2)− ⌊2mx(j̄n)⌋. Similarly,

⌊2my(j̄n+1)⌋ = ⌊⌊2my(j̄n)⌋+ 2m∆y + rmy ⌋, (10)

wherermy := 2m (⌊2my(j̄n)⌋+ 1/2) − ⌊2my(j̄n)⌋. The ele-
ments of the setsB1 andB−1 are then determined from (9)-
(10) as follows. We first define the scalarsδx andδy by

δα :=







−1, 0 > 2m∆α + rmα ,
0, 0 6 2m∆α + rmα < 1,
1, 1 6 2m∆α + rmα ,

for α ∈ {x, y}, (11)

and, forp ∈ {−1, 1}, we define the setsBm,x
p andBm,x

p by

Bm,x
p := {(m, k, ℓ) : k = ⌊2mx(j̄n)⌋+ pδx,

⌊2my(j̄n)⌋ − ̺(m) 6 ℓ 6 ⌊2my(j̄n)⌋+ ̺(m)} ,
Bm,y
p := {(m, k, ℓ) : ℓ = ⌊2my(j̄n)⌋+ pδy,

⌊2mx(j̄n)⌋ − ̺(m) 6 k 6 ⌊2mx(j̄n)⌋+ ̺(m)} .
Then the setsB−1 andB1 are given by the following equation:

Bp =
⋃

α∈{x,y}

⋃

m06m<0

Bmα
p , p ∈ {−1, 1}. (12)

The advantage of computingA(n) using the modified
procedureMOD-MR-APPROX described in Fig. 6 instead of
the procedureMR-APPROX, is that the setsB−1 andB1 have
significantly fewer elements thanA(n). More precisely, the
number of elements in the setA(n) is O(¯̺2), whereas the
numbers of elements in the setsB−1 andB1 are bothO(¯̺),
where ¯̺ := maxm06m60{̺(j)}.

Figures 7(a) and 7(b) show data that confirm the preceding
observations: these figures show the ratio of the execution
time required by the combination of the proceduresMR-
APPROX andMR-GRAPH to the execution time required by the
combination of the proceduresMOD-MR-APPROX and MOD-
MR-GRAPH for computing the graphG(n). The data shown in
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Fig. 7. Sample data illustrating benefits of incremental updates toA andG.

Figs. 7(a) and 7(b) are averages computed over30 simulations.
As it is evident from these results, the multi-resolution path
planning algorithm with the modified procedures of construc-
tion ofA(n) andG(n) executes up to10 times faster than that
with the original procedures.

IV. M ULTI -RESOLUTIONH -COST MOTION PLANNING

It has been noted in several previous works [34]–[36],
including ours [28], that single-edge transition costs in cell
decomposition graphs cannot capture adequately the vehicle’s
kinematic and dynamic constraints. In light of this observation,
we introduced in [28] a motion planning approach based on
assigning costs tomultiple edge transitions (calledhistories)
in cell decomposition graphs.

Consider the multi-resolution cell decomposition graph1

G = (V,E) at any iteration of the path planning algorithm
previously discussed. To formalize the concept of cell histo-
ries, we define, for every integerH > 0, the set

VH := {(j0, . . . , jH) : {jk−1, jk} ∈ E, k = 1, . . . , H,

jk 6= jℓ, for k, ℓ ∈ {0, . . . , H}, with k 6= ℓ} .
An element ofVH+1 is called anH-history. Let I ∈ VH and
denote by[I]k the kth element of this(H + 1)-tuple, and by
[I]ℓk the tuple ([I]k, [I]k+1, . . . , [I]ℓ), for k < ℓ 6 H + 1.
We associate with eachH a non-negative cost function
gH : VH+1 → R+, and state a shortest path problem with
transition costs defined on histories as follows.

Problem 1 (H-Cost Shortest Path Problem). Let H > 0,
and let iS, iG ∈ V be initial and goal vertices such that any
admissible path inG contains at leastH+1 vertices. TheH-
cost of an admissible pathπ = (j0, . . . , jP ) in G is defined by

JH(π) :=

P
∑

k=H+1

gH ((jk−H−1, jk−H , . . . , jk)) . (13)

Find an admissible pathπ∗ in the graph G such that
JH(π∗) 6 JH(π) for every admissible pathπ in G.

Problem 1 may be transformed into an equivalent standard
shortest path problem on alifted graphGH . The vertices ofGH
are the elements ofVH , and the edge setEH of the lifted graph
GH is the set of all ordered pairs(I, J), such thatI, J ∈ VH ,
with [I]k = [J ]k−1, for everyk = 2, . . . , H + 1, and [I]1 6=
[J ]H+1. For given initial and terminal verticesiS, iG ∈ V ,

1For the sake of clarity, we drop from the notation of the cell decomposition
graph the explicit reference to thenth iteration.
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an admissible pathΠ in GH is a finite sequence(J0, . . . , JQ)
of vertices (with no repetition) such that(Jk−1, Jk) ∈ EH ,
for eachk = 1, . . . , Q, with [J0]1 = iS, and [JQ]H+1 =
iG. Note that every admissible pathΠ = (J0, . . . , JQ) in GH
corresponds uniquely to an admissible pathπ = (j0, . . . , jP )
in G, with P = Q +H and [Jk]ℓ = jkH+ℓ−1, for eachk =
0, 1, . . . , Q− 1, andJQ = (jP−H , . . . , jP ).

We introduce a non-negative cost functiong̃H : EH → R+

defined byg̃H((I, J)) := gH
(

([I]H+1
1 , [J ]H+1)

)

, for every
pair (I, J) ∈ EH . It follows that Problem 1 is equivalent to
the standard shortest path problem onGH , where the cost of
an edge(I, J) ∈ EH given by g̃H((I, J)). However, solving
theH-cost shortest path problem by first transforming it to the
standard problem is computationally intensive, because|GH |
is large and grows exponentially withH .

In [30], we discuss an efficient and flexible algorithm for
solving theH-cost shortest path problem, as well as a mo-
tion planning framework that incorporates vehicle kinematic
and dynamic constraints by obtainingH-costs from a local
trajectory generation algorithm called thetile motion planner
(TILEPLAN ). A precise statement of the tile motion planning
problem and its solution based on model predictive control
are available in [30]. Briefly, we specify TILEPLAN as an
algorithm that takes as the input a sequence of cells and an
initial state, and returns as the output a control input (if it
exists) that enables the vehicle’s traversal through the given
sequence of cells from the given initial state.

The overall motion planner searches forH-cost shortest
paths in the multi-resolution cell decomposition graphs de-
scribed in Section III. However, it is unnecessary and computa-
tionally expensive to consider history-based transition costs on
the entire multi-resolution cell decomposition graph due to the
following reasons: (a) large cells inΩmr correspond to coarse
information about the environment in the regions associated
with those cells, and hence trajectories passing through large
cells will be refined and/or replanned in future iterations,and
(b) curvature-constrained paths are guaranteed to exist [37]
in rectangular channels wider than a certain threshold width
(compared to the upper bound on curvature).

In light of the preceding observations, and in keeping with
the multi-resolution idea of using high-accuracy information
only locally, the proposed motion planner searches forH-
cost shortest paths on a “partially” lifted graph, such that
the vehicle dynamical constraints are considered (via history-
based transition costs) only locally. To state precisely this
notion of a “partially” lifted graph, we define, for each
J = (j0, . . . , jH) ∈ VH , and eachL ∈ {1, . . . , H − 1}, the
projectionPL(J) of J onto VL, by PL(J) := (j0, . . . , jL) ∈
VL. For eachL ∈ {1, . . . , H}, we define the setUL ⊆ VL by

UL :=
{

(j0, . . . , jL) ∈ VL : size(cell(jk)) < d̄, (14)

for k = 0, . . . , L− 1, and size(cell(jL)) 6 d̄
}

,

whered̄ is pre-specified, andsize(cell(jk)) denotes the size of
the cell that corresponds to the vertexjk in the multi-resolution
cell decomposition graph. By (14), the setUL consists of
(L+1)-tuples of vertices in the cell decomposition graph such
that the sizes of the firstL cells in each(L + 1)-tuple are

Multi-resolution Motion Planning

1: i← vert(cell(̄iS; Ω);G), AtGoal← 0
2: while ¬AtGoal do
3: DefineV6d̄ :=

{

j ∈ V : size(cell(j)) 6 d̄
}

,
V>d̄ :=

{

j ∈ V : size(cell(j)) > d̄
}

4: Find the set of boundary verticesVbd defined by

Vbd :=
{

j ∈ V : ∃ i1 ∈ V6d̄, i2 ∈ V>d̄

such that(i1, j) ∈ E, (i2, j) ∈ E}

5: For eachj ∈ Vbd, defineK(j) := minimum cost of a
path inG from j to the goal vertexiG

6: Define V S
H := {I ∈ ṼH : [I]1 = i}, V G

H := {I ∈
ṼH : [I]last ∈ Vbd}

7: Find the shortest pathΠ∗ = (I0, . . . , IP ) in G̃H from
any vertexIS ∈ V S

H to any vertex inIG ∈ V G
H , with

terminal penaltyK([IG]last)
8: i← [I0]2
9: if cell(i; Ωmr) = cell(̄iG; Ω) then

10: AtGoal← 1

Fig. 8. Pseudo-code describing the overall motion planner.

strictly lower thand̄, whereas the size of the(L + 1)th cell
is at mostd̄. This definition alludes to the previously stated
notion of including in the “partially” lifted graph only thecells
small enough for the curvature constraints to be significant.
The “partially” lifted graphG̃H = (ṼH , ẼH) is then defined by

ṼH :=
⋃H

L=1UL\PL(UH),

ẼH :=
⋃H

L=1

{

(I, J) : I ∈ UL, J ∈ UL−1, [I]
L
1 = J

}

.

The overall motion planner then operates as follows. At
each iteration, a multi-resolution cell decomposition is first
constructed. The cells in this decomposition may be catego-
rized into two classes: cells with sizes at mostd̄, and cells
with sizes greater than̄d. We defineboundary cellsas the
cells of sizes at most̄d that have at least one neighboring cell
in each of the two previously defined classes (see Fig. 17(a)).
A multiple-source, single-goal implementation of the A∗ algo-
rithm may be used to determine the costs of optimal paths in
the multi-resolution cell decomposition graph from the vertices
associated with each of the boundary cells to the goal vertex.
These costs are then used as terminal penalty costs in the
execution of theH-cost path planner on the “partially” lifted
graph previously discussed. ThisH-cost path planner returns
a sequence of cells from the current location to one of the
boundary cells, along with an admissible vehicle control input
that enables the traversal of this sequence of cells. The vehicle
state is advanced by traversing one cell using this control input,
and the process is repeated until the vehicle reaches the goal.

The pseudo-code for the overall motion planner is provided
in Fig. 8. Note that Line 7 of Fig. 8 involves local trajectory
generation (TILEPLAN ) for the particular vehicle dynamical
model considered. We refer the reader to [28] for further
details on finding the shortest path in the lifted graph in
conjunction with TILEPLAN .
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Start

Goal

(a) Map of the environment. (b) Resultant path.

Fig. 9. Illustration of the multi-resolution path planningalgorithm’s ability
to recover from a cul-de-sac: the red-colored cells were multiply visited.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present numerical simulation results of
implementations of the proposed multi-resolution path- and
motion planning schemes. All of these simulations were im-
plemented in theMATLAB r environment, on a computer with
an Intelr CoreTM i5-2410M 2.3 GHz CPU and 4 GB RAM.

A. Completeness of the path planning algorithm

First, we focus on the path planning algorithm, which does
not consider vehicle dynamics. Figures 9 and 10 illustrate a
simulation example demonstrating the capability of the multi-
resolution path planning scheme to recover from a cul-de-sac.
This simulation “illustrates” the path planner’s completeness.

As shown in Fig. 9(a), we designed the shape of the obstacle
and the location of the goal to lead the multi-resolution path
planning algorithm into the cul-de-sac in the “central” region
of the obstacle, whereas the goal can only be reached from
the “top” region of the obstacle. Figure 10 illustrates some
intermediate iterations in the execution of the multi-resolution
path planning algorithm on this environment. Specifically,the
algorithm leads the vehicle into the cul-de-sac but in later
iterations, it successfully recovers and finds a path to the goal.

B. Optimality of the path planning scheme

Whereas we can guarantee the algorithm’s capability of
finding afeasiblepath whenever such a path exists, we do not
yet have theoretical results on theoptimality of the resultant
path. Here, we present numerical simulation results concerning
the optimality of paths resulting from the multi-resolution path
planning algorithm.

We compared the cost of the resultant paths with the cost
of an optimal path found by executing the A∗ algorithm on
the finest level decomposition graph̄G. For these comparative
simulations, we chose an environment represented by the
image shown in Fig. 2(a), with three different “window”
functions, as described in Table I. The window̺1 retains
very few significant detail coefficients and results in a multi-
resolution cell decomposition with high fidelity representation
of the environment in a very small neighborhood of the
vehicle’s location, whereas the windows̺2 and ̺3 result in
decompositions with progressively larger neighborhoods of
high-fidelity representations. We scaled the environment with
D = 6, 7, 8, 9, and for each value ofD, we performed30

(a) An iteration before the cul-
de-sac is explored.

(b) The iteration at which the
cul-de-sac is encountered.

(c) The location of the vehi-
cle at the iteration illustrated in
Fig. 10(b).

(d) The iteration at which the
algorithm finds a channel that
contains a path to the goal.

Fig. 10. Intermediate iterations in the multi-resolution path planning
algorithm’s implementation for the environment shown in Fig. 9(a).

TABLE I
WINDOW FUNCTION VALUES

m -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

̺1 1 1 2 2 2 2 2 2 3 3 4 4
̺2 1 2 2 3 4 5 6 7 7 7 8 8
̺3 3 3 5 5 6 7 8 8 9 9 10 10

simulations with the initial and goal cells chosen randomly
for each simulation. We executed the multi-resolution path
planning algorithm proposed in Section III with each window
function for each simulation (a total of120 simulations for
each window function), withm0 = −D.

Figure 11 shows the distribution of the number of simulated
cases according to percentage sub-optimality, where the cost of
a path inḠ by (6) was defined withλ1 = 1 andλ2 = 0.1. For
all three window functions, the sub-optimality in most cases
is under20%, with window̺3 resulting in the most cases of
low sub-optimality, as intuitively expected. Overall, Fig. 11
shows that very few cases of extremely high sub-optimality
occurred: these cases typically occurred when the algorithm
encountered cul-de-sacs.

Figure 12 shows the distribution of the number of simulated
cases according to sub-optimality for different values of the
cost function parametersλ1 and λ2, all with the window
function̺1. From equation (6), note thatλ1 simply scales the
image intensity, whereasλ2 is a constant penalty on each edge
in the path. As shown in Fig. 12, the proposed multi-resolution
path planner results in paths of low sub-optimality more often2

for small values ofλ2. This behavior occurs due to the fact
that, for each edge(i, j) ∈ E(n), the expression (7) involves a

2Note that Fig. 12 shows a large number of cases of low sub-optimality
for all values ofλ2.
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Fig. 11. Histogram showing the distribution according to percentage sub-
optimality of simulated cases, for different window functions.
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Fig. 12. Histogram showing the distribution according to percentage sub-
optimality of simulated cases, for different values ofλ2 with λ1 = 1.

worst-case estimate3 of the number of vertices of̄G in the path
in Ḡ corresponding to the path searched inG(n). Furthermore,
by (7), the multi-resolution path planner’s estimate of thecost
of the actual path becomes progressively more conservative
with increasing values ofλ2.

C. Performance of the path planning scheme

Figure 13 shows the comparison of the (average) number of
vertices in the graphs associated with the multi-resolution cell
decompositions corresponding to different window functions
and with the finest-level cell decompositionΩ. As expected,
the window function̺ 3, which has the largest neighborhood
of high fidelity approximation of the environment (i.e., a
large number of significant detail coefficients), results incell
decompositions with the largest number of cells among the
three multi-resolution decompositions. Note, however, that the
numbers of vertices in each of the three multi-resolution de-
compositions are of the same order of magnitude, whereas the
numbers of vertices in̄G are one to three orders of magnitude
greater than those in the multi-resolution cell decomposition
graphs. For instance, withD = 9, the number of vertices
in Ḡ was 262, 144, whereas the average number of vertices
was only561 for the multi-resolution cell decomposition with
window ̺1. In this context, one may recall that the time
complexity of the execution on a sparse graphG = (V,E) of
Dijkstra’s algorithm and the A∗ algorithm isO(|V | log |V |),
whereas the memory complexity isO(|V |) [2].

3This worst-case estimate is necessary for completeness of the path planner.
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Fig. 13. Comparison of the number of vertices in the multi-resolution cell
decomposition graphs with different window functions and with the finest-
level cell decompositionΩ.

D. Comparisons with other multi-resolution path planners

In this section we present a comparison between the pro-
posed multi-resolution motion planning scheme and some of
the standard multi-resolution planners reported in the literature
(e.g. [6], [10], [11]). The comparison will be based on the
numbers of vertices and edges of the resulting graph, as the
main objective of all multi-resolution planners is to provide
graph representations of the environment with low complexity.
These graphs are then searched using standard algorithms such
as the A∗ algorithm. This allows a fair comparison of the
available multi-resolution motion cell decompositions, as the
particularsearchalgorithms of the resulting graph are the same
across all such schemes.

The multi-resolution approximations of the environment
reported in the literature belong to either of the followingtwo
broad classes: those governed primarily by the environment
map, and those governed primarily by the vehicle’s location
in the environment. The former ones (such as those based on
quadtree decompositions [4]) ensure that the resulting path will
be entirely obstacle-free, but they tend to create larger graphs.
The latter methods (e.g. [6]) result in smaller graphs, but
obstacle-free cells are ensured only in the immediate vicinity
of the vehicle’s location, and replanning of paths is necessary
as the vehicle moves through the environment. The main
disadvantage of multi-resolution planners that use such vehicle
location-dependent decompositions is that they are prone to a
lack of completeness. The proposed approach in this paper
belongs to the second class of planners, but we provide a
guarantee of its completeness.

Table II provides a qualitative comparison between the pro-
posed work and the various multi-resolution motion planning
schemes reported in the literature.

To illustrate quantitatively our claim (echoed also in [6])that
environment-dependent cell decompositions usually consist of
significantly more cells than vehicle location-dependent cell
decompositions, we chose three environment maps: a terrain-
like environment similar to Fig. 2(a), an environment consist-
ing of a small number of large obstacles, and an environment
consisting of a large number of small obstacles (see Fig. 14).
We used the basic quadtree decomposition described in [4]
as the basic example of an environment-dependent multi-
resolution cell decomposition. Figure 15 shows a comparison
of the number of vertices in the cell decomposition graphs
arising from this quadtree decomposition, using different
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TABLE II
COMPARISONS BETWEEN VARIOUS MULTI-RESOLUTION MOTION PLANNERS.

Decomposition
depends on Completeness Dynamical

constraints

Ref. [4] Environment map Yes No
Ref. [5] Environment map Yesa No

Ref. [10] Environment map Yesa No
Ref. [7] Environment map Yesa No
Ref. [6] Vehicle location Noa No
Ref. [9] Vehicle location Noa No

Ref. [8] Environment map
and vehicle location Noa Yesb

Ref. [11] Vehicle location Noa Yes
Proposed Vehicle location Yes Yes
a Not addressed.
b Dynamical constraints addressed separately from high-level path planning.

(a) Sparse, large obstacles. (b) Cluttered, small obstacles.

Fig. 14. Environment maps used for comparative analysis.

thresholds4 and levels of decomposition, against those arising
from the proposed wavelet-based decomposition, the latter
using different window functions.

The number of cells from the environment-dependent
quadtree decomposition for the environment with a sparse
obstacle distribution is an order of magnitude larger than
that obtained by the proposed vehicle-dependent decompo-
sition. Improvements to environment-dependent decomposi-
tions, such as allowing for large “gray” cells, can reduce
the number of vertices by an order of magnitude [4], and
hence for this environment with sparse obstacles, we may
consider the two schemes of decomposition to be equally
efficient. However, for the terrain-like environment, where
cell intensities take values in the interval[0, 1] (as opposed
to binary values in the previous case), the difference in the
number of cells is up to three orders of magnitude. A similar
observation holds true for the highly cluttered environment
(Fig. 14(b)). Such a large difference in the number of ver-
tices in the cell decomposition graph may render infeasible
the implementation of environment-dependent decompositions
(especially for large environments) for on-board computing
systems with limited processing and memory resources.

Cell decompositions governed by the vehicle’s location in
the environment are numerically more efficient. However, as
the corresponding graph changes with the vehicle’s motion,

4The thresholdτ , applicable for the terrain-like environment map, governs
the quadtree decomposition as follows: a cell is decomposedfurther if and
only if the difference in the maximum and minimum intensities of pixels
within that cell exceedsτ .
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Fig. 15. Comparison in the numbers of vertices of the resultant cell
decompositions of the proposed approach against the quadtree decomposition.

the completeness of the overall path planning scheme isnot
guaranteed a priori, even though the graph search algorithm
used ateach iterationmay be complete. Specifically, the path
planner can get trapped in loops, where it visits a certain
sequence of cells ad infinitum.

In addition to showing completeness, the most significant
difference of our work compared to other similar works on
multi-resolution path planning in the literature is the system-
atic incorporation of vehicle kinematic/dynamic constraints in
path planning. In particular, we note in the third column of
Table II that most of the other works do not address vehi-
cle kinematic/dynamic constraints. Reference [8] discusses a
receding horizon scheme for incorporating vehicle dynamical
constraints, but this scheme is disconnected from the high-level
discrete path planner. Consequently, there is no consistency
between the two levels of planning (i.e., a guarantee that the
path found by the high-level planner can be feasibly traversed
by the vehicle). This issue is addressed in this paper via the
H-cost motion planning approach discussed in Section IV.
In [28], we have also provided extensive comparative analysis
establishing the superiority of theH-cost approach using
uniform cell decompositions over state-of-the-art randomized
sampling-based algorithms.

E. Multi-resolution motion planning example

To illustrate a typical application of the overall multi-
resolution motion planning scheme that incorporates the vehi-
cle dynamic constraints, we consider the problem of navigating
an aircraft amongst a topographic relief of varying elevation.
The equations of motion and the implementation of a local
trajectory generation algorithm for this vehicle are described
in detail in [30].

Figure 16 shows the result of the numerical simulation
of the proposed motion planner for the aircraft navigational
model. The aircraft speed was assumed to be constant, and
the control input is the heading angle, which is controlled
by the bank angle. To show the flexibility of the algorithm
in incorporating dynamic constraints, an asymmetric bound
on the bank angle control input was assumed (say, owing
to an aileron failure [38]) as follows:φmin = −45◦ and
φmax = 20◦. The objective was to minimize a cost defined on
the environment (indicated by regions of different intensities in
Fig. 16, where the darker regions correspond to higher costs).
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Fig. 16. Result of motion planning simulation using the aircraft navigational
model. The blue curve corresponds to the resultant state trajectory, while the
channel of cells in black is the result of executing A* algorithm (without
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(b) Global perspective.

Fig. 17. Illustration of an intermediate iteration of the overall motion planner.

Figure 17 illustrates an intermediate iteration of this simu-
lation example. Figure 17(a) shows the cells of size at mostd̄,
with the boundary cells indicated in red. The sequence of cells
outlined in blue and the blue-colored curve within this cell
sequence are the results of theH-cost motion planner. The
yellow-colored cells indicate the vertices explored during the
H-cost search. Figure 17(b) shows the overall multi-resolution
cell decomposition at the same iteration. The blue-coloredcells
indicate the optimal path to the goal from the boundary cell
chosen by theH-cost motion planner. The blue-colored curve
in Fig. 17(b) indicates the geometric path traversed by the

vehicle in previous iterations.

VI. CONCLUSIONS

In this paper, we introduced a multi-resolution path- and
motion planning scheme that considers accurate models of
the environment and the vehicle dynamics only for local
planning, and considers coarse models for global planning.
The proposed path planner uses cell decompositions obtained
from multi-resolution wavelet processing of the environment
map. Specifically, we introduced a scheme that encodes in the
DWT coefficients of the environment map all the necessary
information about these cell decompositions. We provided a
method for fast, incremental updates to these cell decomposi-
tions in accordance with changes in the vehicle’s location.

We proved rigorously the completeness of the proposed
path planning scheme, where such proofs of completeness
have so far been absent in the literature related to dynamic
multi-resolution path planning. Furthermore, we providednu-
merical simulation data demonstrating that the proposed path
planner results in near-optimal paths in a large majority of
the simulated cases. Finally, we proposed a method, based on
theH-cost approach, for incorporating vehicle kinematic and
dynamic constraints for planning the vehicle’s motion in its
immediate vicinity.

Future work includes generalizations of the proposed multi-
resolution path planning scheme to allow a dynamic “window,”
and the incorporation of a D∗-like update of the multi-
resolution environment map based on newly acquired informa-
tion. The generalization of the wavelet-based cell decomposi-
tion algorithm for wavelet families other than the Haar family
will also be beneficial, especially when the environment map
is processed and encoded using other wavelets.
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APPENDIX A

We provide a series of technical results, concerning the
algorithm in Fig. 5, that are needed for the proof of Proposi-
tion 1. To this end, we associate with each pathπn(jn, iG,n) =
{i0, . . . , iP (n)} in G(n) the setW(πn) defined by

W(πn) :=

P (n)
⋃

p=0

W (ip, V (n)). (A.1)

The algorithm is said tomeet a setbackat iterationn if there
exists no obstacle-free pathπn(jn, iG,n) in G(n) satisfying
W(πn) ⊆ W(π∗

n−1).

Proposition 2. Let j̄ ∈ V̄ , and A = MR-APPROX(j̄). Let
Ωmr and G = (V,E) be, respectively, the multi-resolution
cell decomposition and the topological graph associated with
A. If there exists an obstacle-free path in̄G from j̄ to
īG, then there exists an obstacle-free path inG from j :=
vert(cell(j̄; Ωmr);G) to iG, whereiG ∈ V is the unique vertex
that satisfies̄iG ∈ W (iG, V ).



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: PART B 12

Proof: Let π̄(j̄, īG) = (j̄0, . . . , j̄P̄ ) be an obstacle-free
path in Ḡ from j̄0 = j̄ to j̄P̄ = īG. For eachm = 0, . . . , P̄ ,
there exists a unique setWm ∈ {W (j, V )}j∈V such that̄jm ∈
Wm. Let im ∈ V be such thatWm = W (im, V ). Sinceπ̄ is
a path inḠ, (j̄m−1, j̄m) ∈ Ē for eachm = 1, . . . , P̄ , and it
follows that eitherWm−1 = Wm, or (im−1, im) ∈ E. Thus,
π(j, iG) := {j0, . . . , jP }, whereP 6 P̄ , is a path inG.

To show that the pathπ is also obstacle-free inG, we note
that sinceπ̄ is obstacle-free inḠ, F (j̄m) 6 1 − ε, for each
m = 0, 1, . . . , P̄ . It follows by (5) that F̂ (cell(jm; Ωmr)) <
(1− ε) for eachm = 0, 1, . . . , P , and by (7) thatJ (π) < M ,
i.e., π is an obstacle-free path.

Corollary 1. If there exists an obstacle-free path in̄G from
the initial vertex̄iS to the goal vertex̄iG, then the cost of the
initial path π∗

0 computed by the algorithm is finite.

Proof: By Proposition 2, if there exists an obstacle-
free path inḠ from j̄ to īG, then there exists an obstacle-
free path π∗

0(iS, iG,0) in G(0) from the vertex iS :=
vert(cell(̄iS; Ω);G(0)) to the vertexiG,0, whereiG,0 ∈ V (0) is
the unique vertex that satisfiesīG ∈ W (iG,0, V (0)). Because
π∗
0 is obstacle-free,J (π∗

0) < M , i.e.,J (π∗
0) is finite.

Proposition 3. Suppose that the algorithm does not meet a
setback at iterationn ∈ N of its execution, and also suppose
that VISITED(j̄n) = 0. If there exists a path in the graphG(n)
from the vertexjn = vert(cell(j̄n; Ω

mr(n));G(n)) to the vertex
iG,n, thenKG(j̄n−1) − KG(j̄n) > λ2, whereiG,n ∈ V (n) is
the unique vertex that satisfiesīG ∈ W (iG,n, V (n)).

Proof: Let π∗
n(jn, iG,n) = (j0, . . . , jP (n)) denote the

optimal path in the graphG(n) computed by the algorithm at
Line 11. First, suppose that the cell decompositionΩmr(n) is
identical to the cell decompositionΩmr(n− 1) (in particular,
iG,n−1 = iG,n). If there exists a path inG(n) from jn to
iG,n, then there exists an optimal path inG(n) from jn to
iG,n becauseG(n) is finite. Then, by Bellman’s principle of
optimality, the pathπ∗

n−1(jn−1, iG,n−1) = (i0, . . . , iP (n−1)),
computed at iterationn−1 of the algorithm, contains the path
π∗
n, with P (n) = P (n − 1) − 1, and jm−1 = im for each
m = 1, 2, . . . , P (n), and henceJ (π∗

n) 6 J (π∗
n−1).

Next, suppose that the cell decompositionΩmr(n) is
not identical to the cell decompositionΩmr(n − 1). Let
πn(jn, iG,n) and πn−1(jn−1, iG,n−1) be paths in the graphs
G(n) andG(n− 1) respectively. IfW(πn) ⊆ W(πn−1), then
due to the second and third terms in the right hand side of
(7), J (πn) 6 J (πn−1). In particular, ifW(π∗

n) ⊆ W(π∗
n−1),

thenJ (π∗
n) 6 J (π∗

n−1).
Now supposeW(π∗

n) *W(π∗
n−1). Let πn(jn, iG,n) be any

path inG(n) from un to iG,n satisfyingW(πn) ⊆ W(π∗
n−1).

There exists at least one such pathπn in G(n) because the
algorithm does not meet a setback at iterationn. By the
arguments in the preceding paragraph,J (πn) 6 J (π∗

n−1).
Furthermore, becauseπ∗

n is an optimal path inG(n) from jn to
iG,n, J (π∗

n) 6 J (πn), and it follows thatJ (π∗
n) 6 J (π∗

n−1).
Finally, note that the cell corresponding to the first vertex

j0 ∈ V (n) in the pathπ∗
n is the same as the cell corresponding

to the second vertexi1 ∈ V (n− 1) in π∗
n−1, and furthermore,

this cell corresponds to the vertexj̄n ∈ V̄ . ThenKG(j̄n−1)−

KG(j̄n) = J (π∗
n−1)−J (π∗

n) > ḡ(j̄n−1, j̄n) > λ2, by (6).

Proposition 4. Let j̄ be an arbitrary vertex in̄V . Then either
the algorithm never visits̄j or the algorithm visits̄j finitely
many times.

Proof: Suppose, for the sake of contradiction, that the
algorithm visits j̄ ∈ V̄ infinitely many times at iterations
n1, . . . , nk . . ., i.e., j̄n1

= j̄n2
. . . = j̄. By Line 8,KG(j̄nk

)−
KG(j̄nk−1

) > 0, and hence there existsN ∈ N, such that
KG(j̄nN

) >M . It follows that the algorithm terminates in at
mostnN iterations, which is a contradiction.

Proposition 5. Let π∗
n(jn, iG,n) = (j0, . . . , jP (n)) be the path

found by the algorithm at Line 8 or Line 11 in iterationn ∈ N,
and suppose there exists an obstacle-free path inḠ from j̄n to
īG that is contained within the setW(π∗

n). Then the algorithm
does not visit the vertex̄jn at any future iteration.

Proof: We note that the cell corresponding to the second
vertex in the pathπ∗

n is a cell at the finest resolution, and
hence,W (j1, V (n)) = j̄n+1. Then it follows due to (A.1)
and due to the hypothesis that there exists an obstacle-free
path π̄(j̄n, īG) = (̄i0, . . . , īP̄ ) in Ḡ from j̄n to īG such that
ī1 = j̄n+1. Thus, there exists an obstacle-free path inḠ from
j̄n+1 to īG: in particular,(̄i1, . . . , īP̄ ) is such a path. Then it
follows by Proposition 2 that the algorithm does not execute
Line 18 at iterationn+ 1.

By the preceding arguments, the following statement is true:
if there exists an obstacle-free path in̄G from j̄n+k to īG
contained withinπ∗

n+k, then the algorithm does not execute
Line 18 at iterationn+ k + 1.

Now suppose, for the sake of contradiction, that there exists
ℓ > 1 such that the algorithm visits vertexj̄n again at iteration
n+ ℓ, i.e., j̄n = j̄n+ℓ and j̄n+1 = j̄n+ℓ−1. Then there exists
m < ℓ such that for eachk = m,m+ 1, . . . , ℓ, the algorithm
executes Line 18 at iterationn + k, i.e. j̄n+k+1 = b(j̄n+k).
Due to the statement in the preceding paragraph, it follows that
either there exists no obstacle-free path inḠ from j̄n+k to īG,
or the second vertex of every obstacle-free path inḠ from
j̄n+k to īG is b(j̄n+k). However, neither of these hold true for
k = ℓ − 1, because we showed earlier that(̄i1, . . . , īP̄ ) is an
obstacle-free path in̄G from j̄n+1 = j̄n+ℓ−1 to īG, and this
path does not contain̄jn. Thus we arrive at a contradiction,
and it follows that there exists noℓ > 1 such that̄jn = j̄n+ℓ,
i.e., the algorithm does not visit̄jn at any future iteration.

Proof of Proposition 1: Note that because the set of
vertices in V̄ is finite, it follows by Proposition 4 that the
algorithm terminates after a finite number of iterations.

To show completeness, first suppose that there exists an
obstacle-free path in̄G from īS to īG.

Suppose first that the algorithm never visits any vertex in
V̄ more than once, and that the algorithm does not meet any
setbacks. By Proposition 3,KG(j̄n−1) − KG(j̄n) > λ2, and
the sequenceKG(j̄n) decreases strictly monotonically. Since
KG(j̄n) > 0 for each n ∈ N, and KG(j̄1) is finite (by
Corollary 1), there existsQ ∈ N, such thatKG(j̄n) = 0
for eachn > Q. It follows from Line 22 of Fig. 5 that the
algorithm terminates afterQ iterations, and sinceKG(j̄Q) = 0,
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the algorithm visits the goal̄iG at iterationQ.
Next, suppose that the algorithm visits some vertices in

V̄ multiple times and that the algorithm never meets any
setbacks. Note that the number of multiply visited vertices
is finite because the algorithm terminates after a finite number
of iterations. Then either of the following statements hold:
(a) the algorithm terminates at iterationQ ∈ N, such that̄jQ
is a multiply visited vertex, or (b) there existsQ ∈ N such
that for eachn = Q + 1, Q + 2, . . . , the vertexj̄n is visited
exactly once by the algorithm. If Statement (a) holds, then
j̄Q 6= īG due to Lines 3 and 22 of Fig. 5, which, in turn,
implies that the algorithm reports failure in Line 16 of Fig.5.
It follows by Line 15 thatj̄Q = īS. Then, by Proposition 2
and Proposition 5 in the Appendix, there exists no admissible
path in Ḡ from īS to īG, which is a contradiction. On the
other hand, if Statement (b) holds, then by the monotonicity
arguments in the preceding paragraph, the algorithm visitsthe
goal after a finite number of iterations after iterationQ.

Next, suppose that the algorithm never visits any vertex
in V̄ more than once, and suppose that the algorithm meets
some setbacks. The number of setbacks met by the algorithm
is finite because the algorithm terminates in a finite number
of iterations. Then either of the following statements hold:
(c) the algorithm terminates at iterationQ ∈ N such that
the algorithm meets a setback at iterationQ or (d) there
existsQ ∈ N such that for eachn = Q + 1, Q + 2, . . . ,
such that the algorithm does not meet any setbacks after
iterationQ. Statement (c) leads to the same contradiction that
follows Statement (a), whereas Statement (d) leads to the same
conclusion that follows Statement (b).

Next, suppose that the algorithm visits some vertices mul-
tiple times and that algorithm meets some setbacks. We may
combine the arguments in the preceding two paragraphs to
conclude that either the algorithm visits the goal after a finite
number of iterations, or (by contradiction) that there exists no
obstacle-free path in̄G from īS to īG.

Finally, suppose that there exists no obstacle-free path inthe
graphḠ from the initial vertex̄iS to the goal vertex̄iG. The
set of verticesV̄ is finite, hence it follows by Proposition 4
that the algorithm terminates after a finite number of iterations.
Suppose, on the contrary, that the algorithm erroneously finds
a path π̄ from the initial vertex īS to the goal vertex̄iG.
Then J̄ (π̄) > M , since π̄ is not obstacle-free. It follows
by Line 24 of Fig. 5 thatJ̄ (π̄) > M at some intermediate
iteration of the algorithm. However, by Line 3 of Fig. 5, the
algorithm terminates whenever̄J (π̄) > M , thus leading to a
contradiction. Thus, the algorithm does not erroneously find
a path fromīS to īG if no obstacle-free path exists, and by
Line 26 of Fig. 5, it reports failure in this case.

APPENDIX B

Multi-resolution analysis of a scalar function of one variable
is the construction of a hierarchy of functional approxima-
tions by projecting the function onto a sequence of nested
linear spaces. TheDWT provides a framework for such multi-
resolution analysis (MRA) of a function. In this framework,
the sequence of nested linear spaces is generated by translated

and scaled versions of two scalar functionsφ andψ of unit
energy, called thescaling functionandmother waveletrespec-
tively, which satisfy the so-calledorthogonality and dilation
equations(cf. [13]). For eachm, k ∈ Z, we define scalar
functionsφm,k and ψm,k by φm,k(t) :=

√
2mφ(2mt − k),

and ψm,k(t) :=
√
2mψ(2mt − k). The discrete wavelet

transform of a scalar functionf ∈ L2(R) is defined by
am0,k := 〈φm0,k(t), f(t)〉, and dm,k := 〈ψm,k(t), f(t)〉,
wherem0 ∈ Z. The 1-Dreconstruction equationis

f(t) =

∞
∑

k=−∞

am0,kφm0,k(t) +

∞
∑

m=m0

∞
∑

k=−∞

dm,kψm,k(t).

The scalarsam0,k anddm,k are known asapproximationand
detail coefficients respectively.

For the 2-D extension of the 1-DDWT, a scaling func-
tion is defined byΦm,k,ℓ(x, y) := φm,k(x)φm,ℓ(y), and
three waveletsΨ1

m,k,ℓ, . . . ,Ψ
3
m,k,ℓ are similarly defined by

products of the 1-D scaling function and wavelet. The2-
D DWT coefficients of a scalar functionF ∈ L2(R2)
are am0,k,ℓ := 〈Φm0,k,ℓ(x, y), F (x, y)〉, and dim,k,ℓ :=
〈Ψi

m,k,ℓ(x, y), F (x, y)〉, for i = 1, 2, 3, k, ℓ ∈ Z, andm >

m0 ∈ Z. The corresponding2-D reconstruction equationis
defined analogous to the 1-D case.

An example of a pair of scaling function and wavelet is
the Haar family [12]. For the 1-D Haar family, the functions
φm,k and ψm,k are compactly supported over the interval
Im,k := [2−mk, 2−m(k + 1)], and by consequence, the func-
tionsΦm,k,ℓ andΨm,k,ℓ are compactly supported over

Sm,k,ℓ := Im,k × Im,ℓ, (B.2)

which is a square of size2−m, for k, ℓ ∈ Z.
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