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ABSTRACT   

Teleoperated vehicles are playing an increasingly important role in a variety of military functions.  While advantageous 
in many respects over their manned counterparts, these vehicles also pose unique challenges when it comes to safely 
avoiding obstacles.  Not only must operators cope with difficulties inherent to the manned driving task, but they must 
also perform many of the same functions with a restricted field of view, limited depth perception, potentially disorienting 
camera viewpoints, and significant time delays. In this work, a constraint-based method for enhancing operator 
performance by seamlessly coordinating human and controller commands is presented. This method uses onboard 
LIDAR sensing to identify environmental hazards, designs a collision-free path homotopy traversing that environment, 
and coordinates the control commands of a driver and an onboard controller to ensure that the vehicle trajectory remains 
within a safe homotopy. This system's performance is demonstrated via off-road teleoperation of a Kawasaki Mule in an 
open field among obstacles.  In these tests, the system safely avoids collisions and maintains vehicle stability even in the 
presence of "routine" operator error, loss of operator attention, and complete loss of communications. 
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1. INTRODUCTION  
Teleoperated unmanned ground vehicles (UGVs) are playing an increasingly important role in the nation’s next-
generation ground forces. Their ability to grant access to areas that are unsafe for or inaccessible to humans has led to 
their integration in a variety of military functions, ranging from surveillance and reconnaissance to the detection and 
removal of hazardous materials.   

While the advantages of teleoperation are compelling from tactical and human capital perspectives, the challenges 
associated with remotely operating a vehicle given current technology are daunting. Teleoperated vehicles are typically 
operated from a control station in which an operator monitors data transmitted from the vehicle and issues commands to 
it. Not only must the human operator cope with the challenges inherent to the manned driving task, but he/she must 
perform many of the same functions with a restricted field of view (FOV), limited depth perception, potentially 
disorienting camera viewpoints, and significant time delays. Telenavigating a ground vehicle under these conditions 
while monitoring the vehicle’s health status, the status of the mission/tasks, and the condition of the environment leads 
to high failure rates. In a study of 10 field tests, UGV performance was shown to be relatively low, with mean time 
between failures ranging from 6 to 20 hours [1]. Given standard USAR and Department of Defense shifts of 12 and 20 
hours, respectively, these results suggest that today’s UGVs cannot be reliably depended upon to complete an entire shift 
[1]. 

Semi-autonomous control offers a unique opportunity to improve the human performance through the exploitation of 
human-automation synergies. As originally published in 1951 [2] and widely discussed since, humans and automation 
are uniquely well suited to specific types of tasks [3]. Whereas automation excels at responding quickly and precisely to 
well-defined or repetitive control objectives, humans tend to make more mistakes as the frequency and complexity of the 
control task increase. Conversely, humans have the unique ability to detect and contextualize patterns and new 
information, reason inductively, and adapt to new modes of operation, whereas automation typically struggles at these 
tasks. The goal of semi-autonomy is to exploit synergies in the abilities of humans and automation to improve planning 
and control performance of the combined system and – where possible – the actors therein. 
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2.1 Vision-based identification of homotopic classes 

In this work, a vehicle-mounted Velodyne LIDAR is used to identify collision hazards in the vehicle’s environment. 
These hazards are circumscribed by bounding boxes, and the remaining free space is partitioned into a complete set of 
adjacent rectangular cells. An optimal “channel” (a sequence of dynamically-reachable cells with the greatest total area) 
spanning from the vehicle’s current location to the distal edge of the sensing window is then calculated using dynamic 
programming. Figure 2 illustrates these cells and the constraints designed to bound homotopy 
Η = A1 ∪A2 ∪A3 ∪A4 ∪A7 ∪A6 ∪ A9 . 

 

Figure 2: Illustration of environment map, homotopy selection, and constraint delineation. Yellow regions indicate obstacles, green 
lines indicate upper and lower bounds on the lateral position of the vehicle, and the red dotted trajectory represents the MPC 

prediction. 

2.2 Threat assessment from homotopy constraints 

In the previous section, an objective function was defined to assess the goodness of a given homotopy. Once a desired 
homotopy has been identified, vehicle position constraints circumscribing the homotopy must be converted into semi-
autonomously enforceable constraints on the human operator’s control inputs as the vehicle traverses the constrained 
region.  

To calculate these limits, a finite-horizon model predictive (MPC) controller incorporating the aforementioned position 
constraints is used to predict the vehicle state evolution under a stability-optimal control input sequence. The nearness of 
this predicted trajectory to stability limits is then used to compute the steering constraint applied at the vehicle and the 
torque feedback returned to the operator. 

The controller used in this work bases its predictions on a 4-wheeled vehicle model with slip and yaw dynamics. 
Defining vehicle states, outputs, inputs, and disturbances by x, y, u, and v, respectively, discrete plant dynamics are 
described by 

kvkukk vBuBAxx ++=+1
 (1)

kvkk vDCxy += . 
(2)

A quadratic objective function over a prediction horizon of p sampling intervals is defined as 
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where Ry, Ru, and R∆u represent diagonal weighting matrices penalizing deviations from yi = ui = Δu i = 0 , ρε represents 
the penalty on constraint violations, n denotes the number of free control moves, and ε represents the maximum 
constraint violation over the prediction horizon p. Inequality constraints on vehicle position (y), inputs (u), and input 
rates (Δu) are then defined as: 
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where the vector ∆u represents the change in input from one sampling instant to the next, the superscript “(●)j ” 
represents the jth component of a vector, k represents the current time, and the notation (●)j(k+i|k) denotes the value 
predicted for time k+i based on the information available at time k. The vector V allows for variable constraint softening 
over the prediction horizon, p, when ε is included in the objective function. The vectors yy

min and yy
max are sampled from 

the edges of the constrained channel Hn. Also note that input constraints enforced in the MPC calculation are simply 
those imposed by available actuation. 

The state trajectory vx predicted by the MPC solution represents the state evolution of maximum stability that can be 
achieved given the vehicle’s current position, dynamics, and homotopy constraints (imposed by Hn). As such, the 
nearness of this prediction’s stability-critical states to their physical limits provides a useful indication of the need for 
intervention and a natural boundary for the current vehicle input. Here, we define by “threat”, Φ, the maximum predicted 
value of a stability-critical state (front wheel sideslip in this case). We then adjust the steering command seen by the 
vehicle to  

( ) ( )( ) driverMPCvehicle uKuKu Φ−+Φ= 1 , (5) 

where K ∈ [0 1]  is computed using a piecewise linear function which ensures that at low threat, the vehicle closely 
matches operator commands, and at high threat (when the safest maneuver satisfying homotopy constraints approaches 
the limit of vehicle stability), the vehicle steering command tracks the optimal command predicted by the MPC 
controller. For a complete treatment of the threat assessment and the shared control method used in (5), the reader is 
referred to the authors’ previous work in [17]. 

In addition to the constraint imposed on (or adjustment made to) the vehicle steering (which is transparent to the human 
operator), experimental tests also fed back a tactile set of “soft” constraints on the position of the steering wheel. This 
feedback provides a greater situational awareness to the human operator, particularly in teleoperation scenarios, as it 
indicates not only where the input constraints lie, but also how urgently they must be satisfied in order to avoid collision 
or loss of control. The resistance torque applied to the operator’s steering wheel is calculated as  

Τ = kmaxK δdriver −δMPC
 (6) 

where kmax represents the maximum available steering wheel torque and is used to re-dimensionalize K. Figure 3 
illustrates the response of the torque restoring function to increasingly threatening MPC predictions. 

    
Figure 3. Scenario illustration showing the response of the restoring torque function as a vehicle successively approaches a hazard 

from behind 

Notice that as time progresses (denoted by ti labels on the host vehicle), the threat posed by the optimal maneuver 
prediction increases in severity. Additionally, the immediate steering command required to track this optimal trajectory 
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begins to drift leftward. The combined effect of an increasingly-urgent, and progressively-leftward uMPC 
recommendation increases ks and shifts the torque resistance trough. In the limiting case for which only the optimal 
steering command can reasonably be expected to avoid both the hazard and loss of control (sometime shortly after t4), 
the controller exerts the maximum available torque on the operator’s steering wheel, essentially ensuring that the 
operator not only cedes to the requirements of the controller, but is also aware of exactly what steering action is being 
taken by the vehicle. 

Figure 4 shows block diagrams for the semi-autonomous control system with and without torque feedback.  The basic 
configuration is referred to as Scaled intervention (Figure 4a). Figure 4b shows a configuration of the system with torque 
feedback to the user. Figure 4c shows a hybrid system that combines scaled intervention with torque feedback. 

 
(a)      (b) 

 
(c) 

Figure 4: a) Block diagram for direct “Scaled Intervention” (SI) system b) torque-based feedback system, and c) combined system 

 

(a)                                                (b)     

Figure 5: (a) Kawasaki 4010 Mule Test Platform;  (b) Local constraint planner and MPC implementation: Planned local constraints 
(cyan) and predicted path (red) displayed in camera and LIDAR views, respectively. 
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3. EXPERIMENTAL RESULTS 
Experimental testing was performed on a Kawasaki 4010 Mule (see Figure 5a) fitted with steering and braking actuators, 
an omnidirectional video head, Velodyne LIDAR, NavCom GPS, and a triaxial IMU. An onboard Linux PC ran 
controller code and transmitted video and other data to a teleoperator control station over an 802.11g wireless link. At 
the remote control station, a teleoperator received video and state feedback data on a computer monitor and issued 
steering commands through a Logitech G27 steering wheel. Torque constraints were applied to the steering wheel via its 
dual-motor force feedback mechanism capable of applying 0-3.1 N-m of torque in either direction. Barrels were 
arranged on an open field as obstacles and the teleoperator was instructed to navigate the vehicle without hitting them. 

Results under two experimental scenarios are discussed below. First, the scaled intervention (SI) system (Figure 4(a)) is 
assessed under artifically induced time delays to assess performance in  long-range remote tele-operation. Second, high-
speed obstacle avoidance performance of the different control configurations shown in Figure 4 is compared. 

 In the first set of experiments, a fixed artificial time delay was introduced and the operator was instructed to navigate 
the vehicle between selected waypoints at increasing time delays while avoiding obstacles. Figure 6(a)-(b) shows the 
trajectories under different artificially induced time delays with (b) and without (a) operator assistance.  

 
Figure 6:  (a)(b) Results of assisted and unassisted waypoint navigation tests conducted with varying time delays. Waypoints are 

shown as black circles. (c)(d) Comparison of high speed obstacle avoidance under different operator assistance configurations. Note 
that the obstacles shown in the figures are transformations of locally sensed obstacles into the global frame. The obstacle locations are 

only approximate due to a mediocre navigation solution with a low cost IMU.  

Figure 7 compares key performance metrics across assisted and unassisted runs. Notice that for all communication 
delays, the assisted system outperformed its unassisted control group. The top left plot shows average velocity of the 
runs which is improved under assisted operation. With assistance, the operator was able to drive faster given an 
increased confidence in his ability to avoid collisions. The remaining plots (RMS vehicle steer angle - bottom left; Max 
vehicle steer angle – top right; avg. steer angle commanded by the driver – bottom right), demonstrate a reduction in the 
intensity of steering corrections from the driver to avoid obstacles. The user’s control inputs were more moderate, 
leading to more consistent routes and fewer run-ins with hard steering constraints (±30°). 
 
The second set of experiments required the operator to traverse a dense obstacle field at speeds close to 18 km/hr without 
hitting obstacles. In this test, neither waypoints nor a specific route were specified; the operator’s mission was to reach a 
goal line at the distal edge of the field. Figure 6(c)-(d) shows the trajectories of navigation tests with (d) and without (c) 
torque feedback in the obstacle field.  

Table 1 summarizes the success rate of navigation tests conducted with varying control strategies and in the presence of 
various communication-related challenges.  Navigation without any assistance resulted in a 5% success rate. Under 
direct SI, a success rate of 70% was achieved.  Torque feedback alone only demonstrated a success rate of 40%. In 
isolation, the torque feedback mechanism is not able to address loss of communication and time delays. However, a 

(b) (d) (a) (c) 
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combined system of SI and torque feedback (shown in Figure 4b) demonstrated a success rate of 70% which is on par 
with the SI system. In addition, the combined system provides the operator with improved situational awareness, 
resulting in his report of an improved understanding of the control actions being taken/suggested by the controller.  
 
The failures observed under semi-autonomous control were due to sensing limitations; in regions with high obstacle 
density, the 3m x 3m blind spot of the Velodyne sensor lost track of obstacles, resulting in constraints that did not 
preclude their position. Upgrading the inertial navigation hardware should allow the sensing algorithm to maintain 
obstacle locations in a global frame and thereby avoid failures like these.  

        
Figure 7: Comparison of assisted and unassisted performance as a function of communication time delay 

Table 1: Minefield results summary 

Success Rate (%)* No Assistance Direct SI Torque Assistance Direct SI + Torque 
Loss of Vision 5% 70% 40% 70%
Loss of Comms 5% 70% − 70%
Delay 0%** 63%** − −

* Sample size = 10                               ** Sample size = 8 
 

4. CONCLUSION 
Semi-autonomous navigation requires planning and control methods capable of identifying desirable path homotopies 
and ensuring that the controlled system remains within them. This paper has illustrated a methodology for achieving 
minimally-restrictive, homotopy-based control through the planning and enforcement of constraints – rather than 
reference paths – on the states and control inputs of the vehicle. Experimental results were presented that assessed 
multiple semi-autonomous control architectures on an unmanned Kawasaki Mule operating in an outdoor environment 
under various communication-related challenges. A torque feedback mechanism in isolation was shown to be 
insufficient as it did not compensate for loss of communication and cannot handle time delays.  In contrast, the scaled 
intervention architecture was shown to effectively assist a human driver in avoiding collisions even under severe time 
delays. A combined architecture was proposed that coupled scaled intervention with torque feedback. This architecture 
provides the same guarantees as the SI methodology while providing improved situational awareness to the user. Finally, 
while the results shown here are promising, further work studying the feasibility and “goodness” of path homotopies and 
the effects of various input constraint enforcement techniques on the performance and situational awareness of human 
drivers remain to be conducted. 
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