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Humans use visual context to improve object recognition. Yet, many machine
vision algorithms still focus on local object features, discarding surrounding
features as unwanted clutter. Here we study the impact of learning contextual cues
while training an object classifier. In a new image database with 10 object categories
and 28,800 images, objects were presented in contextual or uniform backgrounds.
Both the fraction of contextual backgrounds during training and the spatial extent
of context were analysed. Local object features and broader context features were
extracted by two biologically inspired algorithms, previously used for object and
scene classification, respectively: HMAX, applied to a tight window around every
object, and a ‘‘Gist’’ algorithm, applied to a larger yet still localized window.
The descriptors from both algorithms were combined and processed by a Support
Vector Machine. The recognition rate increased from 29%, without contextual cues,
to 43% for objects presented in their context.
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Every day we use contextual cues to more efficiently find objects like our

keys next to our wallet on our table. A growing number of studies of human

perception (visual cognition and cognitive neuroscience) demonstrate the
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useful relationships between the objects present in a visual scene and the

context in which they are present. It is easier to find and recognize objects

that are embedded in a consistent scene rather than in an inconsistent one

(Biederman, 1981; Joubert, Fize, Rousselet, & Fabre-Thorpe, 2008). Con-

versely, scene recognition can also be facilitated by the presence of consistent
objects (Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007; Mack & Palermi,

2010). Even without scene context, presenting an isolated object among a set

of other isolated but contextually related objects improves object recognition

(Auckland, Cave, & Donnelly, 2007). It was also shown that context can

improve reading efficiency (Bicknell & Levy, 2012) and that without context

(meaningless sentences) readers have different viewing strategy compared to

normal text (Schad & Engbert, 2012). Neurologically, fMRI studies have

shown the use of contextual cues by humans (Bar, 2004).
Contextual information can be provided by different sources. Biederman

(1981) suggested that no more than five classes of relations are needed to

characterize the organization between an object and its setting in real-world

scenes: Support (objects do not float in air), interposition (objects occlude their

background), probability (objects tend to be found in some particular context,

for example, a car on a road and not in the sky), position (objects tend to

occupy specific positions in a congruent scene, e.g., cars lie mostly in the lower

part of images and birds in the upper part), and finally size (objects have a
restricted range of sizes compared to others, e.g., a mug is smaller than a chair).

From these relations we can derive different kinds of contextual information

that can be used and combined in different ways, and which raised the main

questions to be answered: How to combine context with object classification?

What kind of context to consider? What spatial extent of context to use?

Historically, in computer vision, objects to be classified were presented as

isolated from their context, which was considered as clutter. Recently, more

and more studies have investigated context as an interaction, and
how context can improve object recognition. Context can be used in

pre-processing to restrict the region to analyse in an image, reducing false

alarms and processing time. When context refers to global information of the

scene, e.g., ‘‘Gist’’, it can provide an oracle for the type of objects to expect in

the scene and guide the search to their most probable locations and scales

before the actual classification step (Ehinger, Hidalgo-Sotelo, Torralba, &

Oliva, 2009; Torralba, 2003; Torralba, Oliva, Castelhano, & Henderson,

2006; Torralba & Sinha, 2001). Gist can also be used to improve a local
feature classifier by providing a prior on the most probable location of the

object that is combined with the object features in a probabilistic framework

(location priming; Chikkerur, Serre, Tan, & Poggio, 2010; Torralba, Murphy,

& Freeman, 2004, 2010). In Heitz and Koller (2008), contextual cues (such as

road, tree, etc.) are used to modulate the output of an object detector in a

probabilistic framework using a set of hand-labelled relation candidates to
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judge the congruence of the object and the context. A car identified on a

road would be more probable than one in the sky. Context can also be

processed in terms of interactions between the different objects in a scene. In

2007, Rabinovich, Vedaldi, Galleguillos, Wiewiora, and Belongie leveraged

semantic context among objects in a postprocessing step that influences the
raw score of an object detector. Ambiguous outputs of the detector that are

not congruent with the context given by other object detection will be

changed to a more suitable object. For example, a ‘‘lemon’’ recognized next

to a tennis racket and a person will be corrected as a ‘‘tennis ball’’. In all

these studies contextual information is a high-level semantic knowledge

(classification of the scene category, semantic background segmentation and

a set of hard-coded possible relations between object and context, object

label, and their set of relations) that may require complex processing (texture
and object recognition).

Several studies have investigated which contextual cues to use and their

possible combination. Perko and Leonardis (2010) compared the contribu-

tion of object cooccurrence, geometric cues (expressed as ground, vertical

structure and sky presence maps), texture cues (anisotropy, polarity, and

texture contrast maps) and their combination. They found that texture was

better than geometry and object cooccurrence and that combining all the

cues outperformed each single one. In 2009, Divvala, Hoeim, Hays, Efros,
and Herbert used scene Gist, three dimensional (3-D) geometric context,

semantic context, photogrammetric context to compute a scene context cue

(object presence, location, and size information) and a spatial support cue

(better bounding box and shape estimation given its presence, location, and

size in the image). They compared a given object detector to that detector

enhanced with scene context or with scene context and spatial support and

also quantified the impact of each context source independently. They

concluded that context reduced the overall detection errors and that the
remaining errors were more reasonable (confusion between similar classes,

e.g., between bicycles and motorcycles). A study from Wolf and Bileschi

(2006) compared contextual cues from low-level features (colour and texture

descriptors) and high semantic level (segmentation of buildings, trees, roads,

and skies). They showed that accurate context could be determined from low

level features and that high level semantic context was superfluous. They also

concluded that even if the context was useful for predicting the location of

the objects, context only marginally impacted object detection when objects
were clearly visible, which is in contradiction with all the previous studies.

Even if most studies agreed that contextual cues help object recognition, the

choice of the cues to consider is still a highly debated topic.

In addition to selecting the right contextual cues, the spatial extent of

context to integrate has also been explored. In 2009, Blaschko and Lampert,

both a local context considering a tight neighbourhood around the object
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and a global context considering the whole image are combined with an

object classifier in a bag-of-words framework. Their work showed that

integration of local and global context improved object detection. Uijlings,

Smeulders, and Scha (2009) proposed to investigate more finely the spatial

extent of an object by varying the window size used for object and context

analysis. The context was defined as a compact box randomly selected in the

image and with no overlap with the object’s bounding box. Their

recommendations on the size of the bounding box to consider are that rigid

objects were best recognized if the bounding box was tight around the object,

nonrigid objects showed no significant influence of contextual informations,

and finally objects that were defined by their function (e.g., chair, horse,

boat, etc.) benefited from more spatial context. They were also interested in

the influence of localization accuracy of the bounding box around the

detected object, showing that precise location improved recognition. The

question of the spatial extent of context has instigated few studies and would

benefit from more investigation.
To build further on previous work, we propose a new database where

objects were photographed while presented on top of a contextual or a

uniform background. This database allows us to investigate parametrically

the influence of the spatial extent of the contextual window on the proposed

model for different testing conditions. This database also enables us to raise

the question of the influence of the fraction of images with contextual

background in the training data. Previous studies have compared object

detection with or without context, but, to the best of our knowledge, none has

investigated the fraction of contextual cues that should be learned. What

happens when learning a mix of isolated objects and objects presented in their

congruent context? This situation may occur as some available database

contains objects isolated and another contains objects embedded in congruent

context. Finally, the database allows us to evaluate the influence of context in

the classification error patterns for the different object classes. This allows us

to derive new conclusions and guidelines for how congruent context can be

exploited while training and testing object recognition algorithms.

The next section of this paper presents the algorithms used for extracting

the local object features, the context features, and how to combine them into

a context-enhanced object classifier. Then the database used for training and

testing the algorithms is described. The role of context is then analysed in the

evaluation section. Finally, the findings are discussed before the conclusion.

INCORPORATING CONTEXT IN OBJECT CLASSIFIER

Our proposed model extracts features both specifically for object classifica-

tion and for contextual cues; these features are then combined and learned
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together (see Figure 1). For this purpose, two biologically inspired algorithms

were chosen: HMAX for object detection, and Gist for contextual cues.

Features for object classification

The features used for object detection are extracted using HMAX, a

state-of-the-art biologically inspired object detector available online

(Riesenhuber & Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio,

2007). HMAX is based on an architecture inspired by current theory of the

feed-forward path of object classification in the ventral stream of the primate
visual cortex. It is a hierarchical system that builds an increasingly complex

feature representation via alternating template matching (using Gaussian-

like tuning) and maximum pooling operations, achieving a trade-off between

selectivity and invariance. The result of HMAX is a feature vector that

represents the strongest features of an object and can be used to train a

classifier, e.g., a Support Vector Machine (SVM), to recognize the object’s

category.

Figure 1. Schema of proposed model for object classification, and previous studies. Saliency studies:

Frintop, Nutcher, Surmann, and Hetzberg (2004), Kanan and Cottrell (2010), Walther, Itti,

Riesenhuber, Poggio, and Koch, C. (2002); object and location priming: Torralba (2003), Torralba

et al. (2001, 2004, 2010); saliency, object, and location priming: Chikkerur et al. (2010), Ehringer et al.

(2009), Torralba et al. (2006). To view this figure in colour, please see the online issue of the Journal.
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HMAX was chosen for its ability to generalize over different instances of

objects within a class. It is more robust to intraclass variation than other

approaches such as SIFT (Lowe, 2004) which are limited to recognizing

specific object instances. HMAX was also shown to outperform several

state-of-the-art algorithms (e.g., SIFT, histogram of gradient, etc.) on
standard databases (Serre et al., 2007). In this study we use the HMAX as

our object detector, but the proposed approach is general and could be

applied just as well to other object detection algorithms such as a histogram

of gradient, deformable part model, bag-of-word, etc.

Features for contextual cues

The contextual cues are provided by a Gist algorithm. The Gist is computed
using a biologically plausible algorithm available online (Siagian & Itti,

2007). The approach is to exploit statistical summaries of colour and texture

measurements in predetermined image subdivisions, as different types of

scenes may exhibit large differences in these distributions (e.g., the

distribution of colours in forest vs. city scenes). The algorithm uses a

multiscale set of early visual features (intensity, orientation, and colour)

usually used to compute saliency maps (Itti, Koch, & Niebur, 1998). For each

of these feature maps, a Gist vector is extracted by averaging feature
responses over fixed subregions of that feature map.

Gist algorithms have been previously used as a source of contextual

information (Dalal & Triggs, 2005; Torralba, 2003; Torralba et al., 2004,

2010). In these papers the Gist is used to categorize to whole scene from

which the object ‘‘probability’’ and ‘‘position’’ as named by Biederman

(1981) are inferred.

Our purpose here is to extract more local contextual information,

spatially confined to the neighbourhood of an object (see Figure 1). This
enables us to gather ‘‘probability’’ information from the near context of an

object, e.g., a car is usually found on a road independently of the road being

close to a lake, a desert, or a forest. Furthermore, the database we used

contains shots from an aerial viewpoint; no ‘‘position’’ information could be

extracted from the knowledge of the scene category.

Combining object and context

Here we consider images where objects are centred within the frame and fit

within a bounding box. We note that, for more general use, the object

classifier proposed could be coupled with an attentional processing step that

will be able to select pertinent regions in an image for object detection (using

the saliency map generated in the computation of the contextual cues).

Indeed, it has been shown (Elazary & Itti, 2010) that interesting objects are
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salient; therefore, attentional processing based on saliency can be used to

highlight candidate regions of interest for objects, removing the need for a

brute force approach such as sliding-window (Frintrop et al., 2004; Kanan &

Cottrell, 2010; Walther et al., 2002).

HMAX extracts local object features within its bounding box (256�256

pixels, this choice is discussed later in the Results), represented in red in

Figure 2 at the centre of the frame. Meanwhile, the Gist algorithm extracts

contextual cues in the object’s surrounding in a larger window. Two different

sizes of windows are considered to evaluate the contextual influence: A small

one (512�512 pixels, in green in Figure 2) and a big one (720�720 pixels, in

blue in Figure 2).

The two feature vectors generated by the two algorithms are then

concatenated to form a single feature vector gathering the object and

contextual information (see Figure 1). An SVM classifier then processes this

vector. Thus, information about the object and the context are learned

together while training the classifier. Therefore, object classification is done

in a common step without requiring pre- or postprocessing of the object

features by the context features. The SVM classifier used in this paper is a

multiclass classifier with radial basis functions, which gives, for each feature

vector, the probability that the corresponding object belongs to each

category of objects (Chang & Lin, 2001).

IMAGE DATABASE

Many image databases have been proposed to evaluate object detectors and

are available online (Caltech 101, Caltech 256, LabelMe, ALOI, PASCAL

VOC, etc.). These databases present different numbers of object categories,

Figure 2. Example of bounding boxes for objects (red) and the context (green and blue), on samples

object of the database: (a) Car, (b) plane, (c) boat, (d) helicopter, (e) train, (f) bus, (g) equipment, (h)

tank, (i) Formula 1 car, (j) military vehicle. To view this figure in colour, please see the online issue of

the Journal.
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ranges of variation in appearance inside the same category, object scale, and

also different background conditions (isolated objects or in clutter).

However, the size of the area surrounding of the objects can be highly

variable and sometimes too narrow, especially when the image contains a

close view of the object. Moreover, in each of these databases, objects are

presented in isolation or in context, but none of them presents the same

object categories in different context conditions (isolated and present in

congruent, neutral, or incongruent contextual scenes).

We thus introduce a new database (available online1) of 28,800 images

where objects are presented with both a consistent context and a uniform

background. This enables us to investigate learning with different propor-

tions of images with contextual information or with uniform background.

The database is composed of 10 different object classes: Car, plane, boat,

helicopter, train, bus, equipment, tank, Formula 1 car, and military vehicle

(see Figure 2). Each class contains 10 different items. To stay as close as

possible to real-world conditions while retaining control of context

information, the database is composed of top and near top views of

Micro-Machines vehicle models on printed aerial maps that correspond to

the scale of the models. Each item is present at the centre of the frame, which

correspond to the centre of the printed map, with 12 different backgrounds:

Six uniform backgrounds of different colours and six backgrounds with

contextually congruent information. These six uniform backgrounds are the

same for all the different classes, and so cannot give any information

regarding the class of object present. The contextual backgrounds are the

same within a class (same printed maps), but different between different

classes. For each of these conditions, 24 views (960�720 pixels) are taken,

comprised of three different camera positions (one top and two near-top

views) and eight rotations of the scene. The contexts for the nonuniform

backgrounds are defined as follows:

1. Car: On road (urban and countryside)

2. Plane: On runway, tarmac

3. Boat: On the sea

4. Helicopter: Different terrain and runway
5. Train: On rail track

6. Bus: On road

7. Equipment: Construction equipment on trail in various terrain

8. Tank: On different trail and terrain

9. Formula 1 car: On circuit road

10. Military vehicles: On road in various terrain.

1 www.ilab.usc.edu

8 MARAT AND ITTI

D
ow

nl
oa

de
d 

by
 [

U
SC

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a]
 a

t 1
5:

54
 1

8 
A

pr
il 

20
12

 

www.ilab.usc.edu


Different classes could share a common context, e.g., car and bus on roads.

In those cases, the pictures of the road backgrounds used for the different

classes were different. There is no background picture overlap between the

different classes.

For each class, the 10 different models are split into two groups: Those
used for training the classifier (‘‘learned items’’) and those for which

the classifier is not trained on (‘‘new items’’). Similarly, the 12 backgrounds

are separated into the ‘‘learned backgrounds’’ group, which is used for

training, and the ‘‘new backgrounds’’ group. Each set contains three uniform

backgrounds and three contextually congruent backgrounds. This enables us

to perform three different evaluations:

� The ‘‘all new set’’: Both the items and the backgrounds are different
than the ones learned for the training (‘‘new items’’ and ‘‘new

backgrounds’’)
� The ‘‘learned item set’’: Only the backgrounds are different from the

training data, while the items are identical to ones used for the training

(‘‘learned items’’ and ‘‘new backgrounds’’)
� The ‘‘learned background set’’: Only the items are different; they are

placed on the same backgrounds as used in the training (‘‘new items’’

and ‘‘learned backgrounds’’).

This setting could help us evaluate independently the contribution of

learning the background and the items.

RESULTS

First we present some general remarks and the influence of the analysis
window size on the different algorithms and their combination when training

was done only on images presenting objects within their congruent context,

as is usually the case in studies on context. Then, the influence of the amount

of contextual exemplars learned as an aid to object classification is studied.

Finally the influence of context on the classification error pattern is

discussed.

Influence of the analysis window size for objects presented in
their context

Tables 1 and 2 present the average, over the 10 classes, of the true positive

detection rate across the different subsets of the database (‘‘all new set’’,

‘‘learned item set’’, and ‘‘learned background set’’). Training was done with

objects presented with contextual background and testing was done with

objects presented in contextual background (see Table 1) or in uniform

CONTEXT AND OBJECT CLASSIFICATION 9
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background (see Table 2). These tables compare the results of SVM

classifiers trained on features provided by HMAX alone (HMAX k, where

k is the size of the window used for HMAX features extraction), the Gist

algorithm alone (Gist l, where l is the size of the window used for the Gist

features extraction), or the combination of these two features vectors

(HMAX k Gist l).

Evaluation when using only HMAX features. First, we note that the

results on our testing data with contextual background using the ‘‘all new

set’’ (see Table 1) are lower than reported in the literature (Serre et al., 2007).

This could be explained by the challenging nature of our image database,

specifically that it presents objects at eight different orientations.

The classifier learned is therefore required to generalize to both the different

items of each class and also for their diverse poses. In the testing data with

contextual backgrounds in the ‘‘learned item set’’ the results are closer to the

ones reported in Serre et al. (2007).

TABLE 1
Mean classification on images with contextual background

HMAX

256

HMAX

512

HMAX

720

Gist

512

Gist

720

HMAX 256

Gist 512

All new set 39.36 33.97 31.75 42.72 31.86 42.58

Learned item set 87.16 84.27 80.50 64.63 51.77 79.83

Learned background set 46.50 44.22 46.30 80.61 87.25 68.11

Percentage of true positive with training images that contain only objects in contextual

background for classification using different features on different portion of the dataset: ‘‘All new

set’’ (new item on new background), ‘‘learned item set’’ (learned item on new background),

‘‘learned background set’’ (new item on learned background).

TABLE 2
Mean classification on images with uniform background

HMAX

256

HMAX

512

HMAX

720

Gist

512

Gist

720

HMAX 256

Gist 512

All new set 34.00 31.97 29.91 37.94 27.19 36.11

Learned item set 75.50 75.50 72.75 47.63 35.61 62.08

Learned background set 34.14 29.55 27.86 34.94 24.88 39.38

Percentage of true positive with training images that contain only objects in contextual

background for classification using different features on different portion of the dataset: ‘‘All new

set’’ (new item on new background), ‘‘learned item set’’ (learned item on new background),

‘‘learned background set’’ (new item on learned background).
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HMAX is used to extract object features within a narrow window around

the object (256�256 pixels). Because HMAX extracts features in the whole

window surrounding the object, it may also extract some contextual features

from the surrounding background. To study this behaviour, HMAX features

were computed on the same windows as the ones used for the Gist context
(512�512 and 720�720 pixels) to evaluate the impact of the size of the

neighbourhood on classification using only HMAX features. Increasing

the window size for HMAX features extraction lowers classification

performance when evaluation is done on objects atop a contextual back-

ground (see Table 1), as more differing contextual information is processed

in the HMAX window. The ‘‘learned background set’’ shows closer

performance independently of the window size. In this case, the backgrounds

are the same for training and testing. Thus, learning the background is no
more penalizing, but it is not improving either. The evaluation of objects in

uniform backgrounds (see Table 2) shows less impact of the size of the

analysis window than the evaluation with contextual backgrounds as there is

no more context in testing. HMAX cannot simultaneously and efficiently

retain information of the object and information of the context. When the

object covers a smaller fraction of the analysis window, object features

become less prevalent and classification accuracy may suffer.

Therefore, in accordance with its purpose, HMAX principally relies on
object features and considers the context to a lesser extent. Therefore, the

narrower window (256�256 pixels) is the best suited for HMAX.

Evaluation when using only Gist features. Although we aim to use Gist

features as a contextual complement to local HMAX features, it is possible

that these features alone may already be able to classify objects. Thus, here

we explore classification accuracy when only using Gist features. Increasing

the window size of the Gist analysis gives mixed results on classification
accuracy. Table 1 shows that a larger analysis window lowers classification

accuracy for the ‘‘all new set’’ and the ‘‘learned item set’’, but improves it for

the ‘‘learned background set’’. Testing objects in a uniform background

(see Table 2) shows that widening the analysis window penalizes the result

for every testing condition. Extracting the Gist on an overly large window

takes into account a wider context which improves performance when the

context is similar to the one learned, but lowers performance when the

context is different from the learned one, even for semantically congruent
contexts. For example, a small analysis window will capture the road as

context for a car, but a bigger window will also capture the divergent context

such as a house or a forest near the road.

While testing on a uniform background (see Table 2), the best results were

obtained for the ‘‘learned item set’’. Just as HMAX was unintentionally

sensitive to context features within its window, the Gist algorithm is also

CONTEXT AND OBJECT CLASSIFICATION 11
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sensitive to object features since the object is present in the window used for

the context. This also explains the fact that, in Table 1, the ‘‘learned item set’’

yields better results than the ‘‘all new set’’.

Although the Gist algorithm was not designed for object classification, it

can still outperform HMAX, not only in the case of the ‘‘learned
background set’’ but also for the ‘‘all new set’’ (see Table 1). Surprisingly,

Gist can also outperform HMAX even when testing on uniform back-

grounds (see Table 2). The coarse information given by the Gist features,

extracted on a spatially limited neighbourhood of the object, appears to be

sufficient to classify objects even when the background of the tested object is

uniform. Absent any context information, the Gist features will be extracted

only from the objects. The coarse signature of the object, extracted by the

Gist algorithm, may be more robust to intraclass variation than HMAX.
Moreover, unlike HMAX, the Gist considers colour information, which can

explain the Gist performance. Some objects tend to have specific colours

(boat, tank, helicopter, etc.), similar between training and testing, which may

improve the Gist results. However, the Gist is less efficient in recognizing

particular items than HMAX (as shown by the ‘‘learned item set’’ in Tables 1

and 2).

In conclusion, Gist features are helpful for integrating contextual

information about the neighbourhood of the object. However, analysis
windows that are too wide may include context information outside the

proximal surrounding of the object, which may penalize classification when

the context is not consistent at larger distances.

Evaluation when using HMAX and Gist features combined. HMAX is

more suited to extracting object information and Gist is more adapted to

extracting contextual information in a spatially limited neighbourhood.

The combination of HMAX and Gist (HMAX 256 Gist 512) improves the
performances by being more robust to the different testing condition and

giving overall the best results (see Tables 1 and 2).

As proposed by Uijlings et al. (2009), we tested the robustness of the

classifier to the localization of the object (see Table 3). As before, the patches

to be classified are the same size as previously (256�256 pixels for HMAX

and 512�512 pixels for the Gist), but instead of being centred on the object,

the patches are shifted with an offset of 20 pixels on the right (7.8% of the

HMAX window). The training data is the same as previously and not
shifted. The offset is arbitrarily chosen to the right but would have lead to

the same results if considering the left side as the different images contain

different orientations of the scene, so a 20 pixels offset to the right for

orientation 08 corresponds to a 20 pixels offset to the left for orientation 1808.
The performance of the combination of HMAX and Gist is slightly lower

on the shifted test set compared to the nonshifted test set. The results of
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HMAX 256 Gist 512 on the shifted test set are still overall better than for

HMAX and Gist considered independently on the nonshifted test set.

The combination of HMAX and Gist is robust to such a shift of the

bounding box around the object.

Influence of the percentage of contextual exemplars
considered

The amount of contextual cues is manipulated by varying, in the training

process, the percentage of images that contain objects in their consistent

context (called pcontext in the following) and in a uniform background.

pcontext varies from 0% (all training images contain only objects in uniform

background) to 100% (all training images contain only objects in congruent

contexts). From the pool of training images, which by definition contain

‘‘learned items’’ on ‘‘learned backgrounds’’, a training set is randomly

chosen which have the desired pcontext. The results of classification presented

in the following are averaged over 10 evaluations2 with different randomiza-

tions of the training set with the desired pcontext. As previously, testing is

done on different subsets of the testing part of the database and with

contextually congruent backgrounds (see Figure 3) and uniform back-

grounds (see Figure 4).

Figures 3 and 4 present the results as the average, over the 10 classes, of

the true positive detection rate (phit). This is calculated both as a function of

the percentage of training images that contain objects in congruent context

(pcontext) and across different testing conditions.

TABLE 3
Mean classification on shifted images

HMAX 256 Gist 512

Object background Context shifted Uniform shifted

All new set 40.87 34.84

Learned item set 78.68 61.99

Learned background set 66.25 37.82

Percentage of true positive with training images that contain only objects not shifted in

contextual background for classification of images with shifted objects on contextual or uniform

backgrounds on different portion of the dataset: ‘‘All new set’’ (new item on new background),

‘‘learned item set’’ (learned item on new background), ‘‘learned background set’’ (new item on

learned background).

2 Note that for pcontext�0% and pcontext�100% the whole corresponding pool of training

image is used resulting in 10 identical selections.
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Evaluation when using only HMAX features. The evaluation of the ‘‘all

new set’’ of objects in contextual backgrounds (see Figure 3a) shows that

HMAX performance varies with pcontext. The difference in performance for

HMAX (independently of the window size) for pcontext�0% and 100% is

weakly significant, F(1, 59) �4.45, p �.039. However, Figure 3(b) and (c)

shows significant improvement with increased pcontext, F(1, 59) �12.24,

p B.001, and F(1, 59) �366.11, p B.001, respectively. In contrast, evaluating

the classifier with objects in uniform context (see Figure 4) shows lower

performance with increased pcontext, F(1, 59) �507.06, p B.001 for the ‘‘all

new set’’, F(1, 59) �1719.9, p B.001 for the ‘‘learned item set’’, and F(1,

59) �576.14, p B.001 for the ‘‘learned background set’’. As said previously,

HMAX considers also contextual features inside the analysis window, which

makes it sensible to a small extent to pcontext variation in the training data.

Figure 3 and Figure 4 also show that the conclusion on the analysis

window size presented in the previous section for pcontext�100% can be

Figure 4. Mean classification on images with uniform background. Percentage of true positive (phit)

as a function of the percentage of training images that contain object in contextual background

(pcontext) for classification using different features on different portion of the dataset: (a) ‘‘All new set’’

(new item on new background), (b) ‘‘learned item set’’ (learned item on new background), (c) ‘‘learned

background set’’ (new item on learned background). To view this figure in colour, please see the online

issue of the Journal.

Figure 3. Mean classification on images with contextual background. Percentage of true positive

(phit) as a function of the percentage of training images that contain object in contextual background

(pcontext) for classification using different features on different portion of the dataset: (a) ‘‘All new set’’

(new item on new background), (b) ‘‘learned item set’’ (learned item on new background), (c) ‘‘learned

background set’’ (new item on learned background). To view this figure in colour, please see the online

issue of the Journal.
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extended to all the pcontext. For the evaluation with objects presented in

context Figure 3, HMAX 256 outperforms HMAX 512 and HMAX 720,

F(2, 329) �881.43, p B.001 for the ‘‘all new set’’, F(2, 329) �398.14,

p B.001 for the ‘‘learned item set’’, and F(2, 329) �11.11, p B.001 for the

‘‘learned background set’’. HMAX 512 is significantly better than HMAX
720 when testing on images with contextual background for the ‘‘all new set’’

and the ‘‘learned item set’’, F(1, 219) �198.19, p B.001, and F(1,

219) �222.48, p B.001, respectively, but not for the ‘‘learned background

set’’ or when testing with uniform background (see Figure 4),

F(1, 219) �2.57, p �.11, F(1, 219) �3.65, p �.057), F(1, 219) �0.72,

p �.39, and F(1, 219) �1.32, p �.25, respectively.

HMAX can be influenced by both the size of the window analysis and by

pcontext. However, considering the smallest window analysis (HMAX 256)
enables it to be more robust to the variation of pcontext.

Evaluation when using only Gist features. By design, Gist features are

expected to be more sensitive to different pcontext than HMAX. When

learning with an increasing pcontext, classification accuracy on the testing set

with contextual backgrounds is invariably improved (see Figure 3). Gist

classifiers tested on the ‘‘all new set’’ with objects in contextual backgrounds

benefit from higher pcontext (see Figure 3a). The difference in performance for
Gist (independently of the window size) for pcontext�0% and 100% is

significant, F(1, 39) �205.03, p B.001. Notably, learning only 10% of

images with objects in context is sufficient to boost classification compared

to learning only isolated objects, F(1, 39) �163.55, p B0.001. The same

conclusion can be reached from Figure 3(b) with the ‘‘learned item set’’,

F(1, 39) �446.73, p B.001 for the difference between pcontext�0% and

100%, and F(1, 39) �224.08, p B0.001 for the difference between

pcontext�0% and 10%. The ‘‘learned background set’’ (see Figure 3c) shows
a larger influence of pcontext, F(1, 39) �2964.4, p B.001 for the difference

between pcontext�0% and 100%, and F(1, 39) �1503, p B.001 for the

difference between pcontext�0% and 10%. For the ‘‘learned background set’’,

most of the increase in performance is still acquired with the first 10% of

images with objects in context, F(1, 39) �1503, p B.001 for the difference

between pcontext�0% and 10%. However, increasing pcontext from 10% to

100% improves more object classification than for the ‘‘all new set’’,

F(1, 39) �778.65, p B.001 or the ‘‘learned item set’’, F(1, 39) �476.43,
p B.001. Since the contextual backgrounds considered are the same for

training and testing, the more contextual backgrounds are included in the

training, the better the performance.

Turning to testing objects in a uniform background (see Figure 4) shows

that learning too much unused contextual information penalizes classifica-

tion performance. The decrease in performance for Gist (independently of
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the window size) for pcontext�0% and 100% is significant, F(1, 39) �209.52,

pB.001 for the ‘‘all new set’’, F(1, 39) �438.47, pB.001 for the ‘‘learned

item set’’, and F(1, 39) �587.99, pB.001 for the ‘‘learned background set’’.

Learning unused context lowers the performance, but the scores are still

better than when the context is present but not learned.

The conclusions about the analysis window size can be extended to all

pcontext. Gist 512 outperforms Gist 720 for the ‘‘all new set’’ and ‘‘learned

item set’’ (see Figure 3a and b), F(1, 219) �127.52, pB.001, and

F(1, 219) �68.70, pB.001, respectively, and Gist 720 outperforms Gist

512 for the ‘‘learned background set’’ for pcontext�10% (see Figure 3c),

F(1, 199) �26.36, pB.001, even if they are not significantly different, when

considering all the pcontext, F(1, 219) �3.54, p�.06. For the evaluation on

uniform background, Gist 512 still outperforms Gist 720 for the ‘‘all new

set’’, F(1, 219) �26.26, pB.001, and the ‘‘learned item set’’,

F(1, 219) �18.42, pB.001 (see Figure 4a and b), even if the difference

between Gist 512 and Gist 720 is smaller than when testing on contextual

background (see Figure 3). The difference is not significant for the ‘‘learned

background’’, F(1, 219) �4.26, p�.04.

It can also be noted that contextual cues influence more the results than

the size of the analysis window. For the ‘‘all new set’’ with contextual

background (see Figure 3a), considering pcontext�10% improves the results

from 19.61 for Gist 512 and pcontext�0% to 37.93 and from 12.72 from Gist

720 and pcontext�0% to 28.67. But increasing the window size from 512 to

720 drop the mean performance over pcontext from 40.70 to 30.83.

Evaluation when using HMAX and Gist features combined. HMAX has

been shown to be more robust to the variations of the amount of context

learned (see Figure 3). Gist takes the maximum advantage of increasing

pcontext when contextual backgrounds are also present in testing, but

increasing pcontext can also penalize isolated object classification. Both the

evaluation of HMAX features alone and Gist features alone have shown that

using an appropriate size for the analysis window, e.g., not too big, is also

important. The proposed concatenation of HMAX and Gist features is a

good compromise of the two algorithms taking advantage of the context

learned when it is helpful and not too much when the object is not in its

usual context. The most important testing condition is the ‘‘all new set’’ with

contextual background (see Figure 3), which represents a testing condition

with contextual background and with testing and training that are not

overlapping. In this condition the combination of HMAX and Gist (HMAX

256 Gist 512) is significantly better than HMAX alone (HMAX 256),

F(1, 219) �17.18, pB.001, and significantly better than Gist alone

(Gist 512), F(1, 219) �5.57, p�.019.
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Influence of the context onto classification error patterns

To study the classification errors made by the proposed model and to see

their evolution with pcontext, we plot the confusion matrices that show the

repartition of predictions for each class of objects for the ‘‘all new set’’.

A confusion matrix represents the predicted classes as a function of the

ground truth classes. A perfect classification algorithm corresponds to a

diagonal matrix.

Figure 5 presents the confusion matrices for the classification using

HMAX and Gist, HMAX alone and Gist alone with a pcontext�0%. The

first thing to be pointed out is that when the learning is done with all the

objects on uniform backgrounds (pcontext�0%), and the testing is done with

objects placed on their natural context (see Figure 6a) classification is

seriously impaired. This could be expected as Figure 3(a) shows a very low

percentage of true positives for the average over all the classes. When

pcontext�0%, only the object features are learned, but on the testing data the

classifier tries to identify both the object category and the context features,

and so tries to classify context features using object ones. This could be seen

in Figure 5(b) where using only HMAX (so mostly object features) shows a

better classification for every class. The use of only the Gist information

(considering more the context) gives more impaired results, as we can see in

Figure 5. Confusion matrices for object classification in the ‘‘all new set’’ using different features

and considering different pcontext, all except (d) are evaluated on contextual background. (a) Using

HMAX and Gist with pcontext � 0%, (b) using only HMAX with pcontext � 0%, (c) using only Gist

with pcontext � 0%, (d) using HMAX and Gist with pcontext � 100% evaluated on uniform

background, (e) using HMAX and Gist with pcontext � 10%, (f) using HMAX and Gist with pcontext

� 100%. The class numbers are given in the description of the different classes section. To view this

figure in colour, please see the online issue of the Journal.
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Figure 5(c) where the classifier predicts almost only helicopter (4) and train

(5). Thus, it is not appropriate to try to classify objects that are presented in

natural context while learning them only on uniform backgrounds.

At the opposite end from context-free training, Figure 5(d) presents the

confusion matrix for the classification of objects on uniform backgrounds

while learning objects in their natural context (pcontext�100%). The results

are less impaired than the ones for the classification of object in uniform

background while training with pcontext�0% (see Figure 5a),

F(1, 199) �4.44, p�.03. More objects are well identified and there is no

particular object bias as in the context-free case. Thus, learning objects in

context is a better strategy, even while testing on uniform background, rather

than training on uniform background and testing on contextual objects. We

will now focus on the impact of pcontext learned while the testing objects are

presented in their natural background for the ‘‘all new set’’. Figure 5(e) and

(f) show the results for classification of objects presented in contextual

background for pcontext of 10% and 100%, respectively. Classification

performance is improved compared to Figure 5(a) with pcontext�0%,

F(1, 199) �12.09, pB.001, and F(1, 199) �14.56, pB.001, respectively.

As seen on the average curve (see Figure 4a), learning 10% of object in

congruent background is sufficient to get almost all the improvement due to

contextual cues. The difference between pcontext�10% and pcontext�100% is

not significant, F(1, 199) �0.01, p�.90. When considering more context

during learning, the results are stronger on the diagonal, which is a sign of

better classification, the errors also seems to be less spread but higher for

some particular object classes.

To understand better the confusion matrix for our model with pcontext

�100%, we can also look at the confusion matrices meeting the same testing

condition (contextual background, ‘‘all new set’’, pcontext�100%) for the

HMAX features only (see Figure 6b) and the Gist features only (see Figure

6c). First we can see that, for our combined model, learning objects always

embedded in context leads the classifier to misclassify objects as cars (1)

more often (see Figure 6a). The fact that this bias is also present in both the

Figure 6. Confusion matrices with pcontext � 100% evaluated on context background with (a)

HMAX and Gist, (b) HMAX alone, and (c) Gist alone. To view this figure in colour, please see the

online issue of the Journal.
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HMAX and the Gist results suggests that the bias arises from the objects

and/or the conjunction of the object and its close context. While comparing

HMAX and Gist results, it can be noticed that the HMAX confusion matrix

has errors more spread over the different classes, whereas Gist usually has

less sources of error which tend to be stronger than the HMAX errors. The

Gist disambiguates classification of ambiguous objects with different context

such as: Train vs. bus, tank vs. car, and Formula 1 vs. equipment. Sometimes,

using only the Gist can also increase the confusion if the natural contexts

share similar features such as: Equipment (7) and tank (8), equipment (7),

and military vehicle (10), or, less intuitively, car (1) and boat (3). Using only

HMAX, cars (1) can be confused as military vehicles (10) (and the opposite)

as the objects share similar features.

The confusion matrices enable us to see that integrating contextual

information can decrease the confusion of the classifier between different

object classes that share similar object features. We also see that considering

the context leads to fewer sources of error, but these errors tend to be

stronger. Using context information, these errors are thus more coherent

with the similarities of the different contexts.

DISCUSSION

In this study we have shown that learning context while learning to recognize

objects improves object classification when the objects are presented in

semantically congruent context. Like Uijlings et al. (2009), we found that the

conclusion of Wolf and Bileschi (2006) did not generalize on our data. In

their study, Wolf and Bileschi found only a marginal help from the context

when the target object was unambiguously visible. They concluded that

context might be a useful cue when the object appearance was ‘‘weak’’, e.g.,

low resolution or very noisy images. In our study, we found that contextual

information helps in recognizing the different classes of objects presented in

their context, even if they are unambiguously visible, and penalizes the

classification of isolated objects. This is in accordance with the literature on

human perception, where it has been shown that objects are classified more

reliably and rapidly when presented in congruent context than incongruent

context (Davenport & Potter, 2004; Joubert et al., 2008) or even when

presented isolated or in meaningless context (Sun, Simon-Dack, Gordon, &

Teder, 2011). This is also consistent with Bicknell and Levy (2012) findings.

They concluded that context facilitates reading by allowing readers to reach

a given confidence about the word presented more rapidly than for random

words.

Using the ‘‘learned item set’’ and ‘‘learned background set’’ show that

learning the same instances of image or context as the ones presented in
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testing improved classification compared to learning different instances of

the same semantic category. In the cognitive literature, similar conclusions

have been drawn; presenting a brief preview of the same instance of a scene

improved the performance of object detection compared to no scene or a

contextually similar scene (Castelhano & Heaven, 2010). The improvement

was conjectured to come from the preview of the same scene as the search

scene that was guiding attention toward the most likely position of the

object. When the identical instance of an object was presented prior to

search, search to that particular object was facilitated (Castelhano &

Heaven, 2010; Wolfe, Horowitz, Kenner, Hyle, & Vasan, 2004). Wolfe et

al. (2004) concluded that the human visual system could be biased toward

the features of the object for more rapid and accurate recognition. Our

findings are compatible with this conclusion. HMAX recognized the same

items as the ones present in the training more reliably, as it would be biased

to recognize more easily the same features as the ones extracted during the

training.

In this study we were also interested in the influence of the size of the

analysis window for the context. Results showed that a tighter window

around the object was better than a wider one. This seems to be counter-

intuitive as the Gist is usually used for processing the whole image. In prior

studies, Gist was used to determine the basic category of the scene as a

whole, from which the probability of different object classes and their

position would be inferred (Dalal & Triggs, 2005; Torralba, 2003; Torralba et

al., 2004; Torralba & Sinha, 2001). Thus, a car would have a higher

probability to occur in a street scene than in a countryside scene, and the car

would be more likely to appear at the bottom of the image. In our

experiment the context was defined more locally, such as a car is present on a

road in urban or countryside scene. This can explain the fact that the

classification is thus better for a smaller context focusing on the road than

integrating too divergent information. This is in accordance with the fact

that the Gist has been shown to be valuable as spatial layout cues for target

search even without semantic congruence with the object (Castelhano &

Heaven, 2011). Therefore, it is easier to find keys on a countertop even if it is

in a bathroom scene. It would also be interesting to investigate the impact of

the variation of the spatial extent of context in human perception.

We have shown that learning a small amount of context (pcontext�10%) is

sufficient to grasp enough contextual information for efficient object

classification in contextual background. A small amount of contextual

exemplars is sufficient for our model to generalize to other congruent

context. Learning more contextual exemplars has a bigger influence for the

‘‘learned background set’’ where the exemplar where the same as the training

and testing. Therefore, learning more context was not improving the
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generalization to other context, but the specialization to the particular

exemplars learned.

The impact of the object presence in context analysis window could also

be questioned. As when the Gist is applied on whole scenes, our use of Gist

features also considered not only the objects’ surroundings but also the

objects present in the scene. Thus, it included the local features of the object

at the same time that it captured the summary features of the context. This

could seem redundant as HMAX is already providing object features for

object detection. However, as it has been shown in the literature, the presence

of consistent and inconsistent objects affects scene perception. Our results

reinforced the idea that the objects themselves influence the perception of a

scene in a categorization task. Scenes that contained congruent objects were

categorized more accurately (Davenport & Potter, 2004; Joubert et al., 2007;

Mack & Palermi, 2010). Interestingly, Mack and Palermi (2010) also reached

the same conclusion as human studies using a model of scene classification

based on Gist information (Oliva & Torralba, 2001), which is compatible

with our findings. Even the global scene statistics alone were able to reflect

the presence of consistent or inconsistent objects. As object�scene consis-

tency is apprehendable by both a Gist model based on global image statistics

and by human observers, we chose to include the object in the extracted

patch as part of the contextual information in the Gist model.

CONCLUSION

In this paper we studied the influence of contextual feature integration on

object classification in two ways: (1) By varying the percentage of the

training images that contained objects in contextually congruent contexts

rather than uniform backgrounds, and (2) by varying the size of the window

used for context features extraction. Both the local features object detector

(HMAX) and the context feature extractor (Gist) were evaluated indepen-

dently with different test data. HMAX showed weak ability to integrate

contextual information, whereas Gist was, as expected, more sensitive to

context information and more helpful when considering a tighter bounding

box around the object. A concatenated feature vector of HMAX and Gist

feature descriptors, fed into an object classifier using a Support Vector

Machine, enhanced classification results when the context was consistent

between the training and testing. Classification results were lowered when

training and testing contexts were inconsistent (for example, learning object

in uniform background but classifying them in contextual background).

Learning objects in contextual background helped classification for object in

their natural context; furthermore, only a small amount of object in context

was sufficient to improve the results. Considering the context reduced the
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sources of error and tended to give more strength to the few remaining,

producing more understandable errors.
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