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In conversation, women have a small advantage in decoding non-verbal communication compared to
men. In light of these findings, we sought to determine whether sex differences also existed in visual
attention during a related listening task, and if so, if the differences existed among attention to high-level
aspects of the scene or to conspicuous visual features. Using eye-tracking and computational techniques,
we present direct evidence that men and women orient attention differently during conversational lis-
tening. We tracked the eyes of 15 men and 19 women who watched and listened to 84 clips featuring
12 different speakers in various outdoor settings. At the fixation following each saccadic eye movement,
we analyzed the type of object that was fixated. Men gazed more often at the mouth and women at the
eyes of the speaker. Women more often exhibited ‘‘distracted’’ saccades directed away from the speaker
and towards a background scene element. Examining the multi-scale center-surround variation in low-
level visual features (static: color, intensity, orientation, and dynamic: motion energy), we found that
men consistently selected regions which expressed more variation in dynamic features, which can be
attributed to a male preference for motion and a female preference for areas that may contain nonverbal
information about the speaker. In sum, significant differences were observed, which we speculate arise
from different integration strategies of visual cues in selecting the final target of attention. Our findings
have implications for studies of sex in nonverbal communication, as well as for more predictive models of
visual attention.

Published by Elsevier Ltd.
1. Introduction

‘‘Look at me when I’m talking to you!’’ is a familiar complaint
issued by women to their husbands, and a possible illustration that
men and women pay attention in different ways. As listeners,
women maintain a small but consistent advantage over men at
interpreting nonverbal cues during communication (Hall, 1978;
McClure, 2000). Women are also popularly believed to be stronger
non-verbal communicators than men, not only in interpreting non-
verbal communication but also in maintaining gaze at the other
person (Briton & Hall, 1995). Since eye gaze is also predominantly
steered by visual attention, especially in task contexts (Land &
Hayhoe, 2001), eye movements serve both as social indicators of
attention and as locations of interest for detailed visual processing.
Therefore, sex differences in nonverbal communication ability may
be affected by visual attentional selection mechanisms.

In conversation, early studies showed that men make less eye
contact than women when listening (Argyle, Alkema, & Gilmour,
1971; Frances, 1979); however, measures of eye-contact were
Ltd.

pollux.usc.edu (L. Itti).
made by third-party observation and not eye-tracking. Other
studies suggest that listeners alternate between fixating the eyes
and the mouth in stereotypical patterns (Vatikiotis-Bateson et al.,
1998). In addition, male observers fixate longer at the nose com-
pared to female observers when faces are displayed in an emotion
discrimination task (Vassallo, Cooper, & Douglas, 2009). Since pre-
vious eye-movement research on sex differences has predomi-
nantly focused on passive viewing of static images, and because
sex differences in communication are already known, we chose
to study sex differences through a listening task with long clips
of interviews to elicit these differences.

At first glance, any sex differences in gaze during listening seem
likely to be induced by the nature of the listening task. For example,
in Vassallo, Cooper, and Douglas (2009), women attended more to
visual cues that were task-relevant. Corresponding with findings
in nonverbal communication, sex differences in gaze led to faster
response times for women, although they did not lead to significant
differences in task accuracy. On the other hand, conspicuous visual
stimuli may also steer attention in different tasks (Itti & Koch, 2001;
Itti, Koch, & Niebur, 1998; Parkhurst, Law, & Niebur, 2002). Several
studies have assessed the contribution of saliency to attention to fa-
cial expressions or other stimuli containing humans as minimal
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(Birmingham, Bischof, & Kingstone, 2009; Fletcher-Watson et al.,
2009; Neumann et al., 2006). However, to the best of our knowl-
edge, no study has examined the differential engagement of men
and women to stimulus conspicuity in these tasks. If the stimu-
lus-driven attentional component in men is different than in wo-
men during a task involving one-way communication, then this
may contribute to the sex differences in sensitivity to nonverbal
cues.

For this reason, visual attention should be studied both from a
task-centric and stimulus-centric perspective in more natural social
environments. Over several different tasks, task-dependent motiva-
tions interact with both target feature knowledge and the visual
contents of the scene to guide shifts of attention (Kollmorgen
et al., 2010). Vincent, Baddeley, and Correani (2009) suggested that
stimulus conspicuity plays a minimal role in directing attention
using mixture modeling. However, using similar techniques, Mital
et al. (2010) have noted that coherent motion, which is a conspicu-
ous cue, tends to correlate with cognitively relevant objects, sug-
gesting a confound between objects and motion. Therefore, we
studied how fixations correlate to bottom-up features, as defined
by the Itti video saliency model (Itti, 2004), as well as to task-rele-
vant entities such as the face or eyes. We did this in order to fully
describe fixation patterns during listening, especially those that
distinguish male from female behavior.

Our goal is to quantitatively capture how men and women at-
tend to dynamic scenes in a task relevant to everyday conversation.
In the present study, participants watch pre-recorded first-person
interviews and answer questions based on the interview content,
while we retrieve both object-level information and feature-level
statistics at their point of gaze. Admittedly, our task is not equiva-
lent to face-to-face communication, as real-life people elicit a dif-
ferent pattern of eye movements compared to recordings of
people (Laidlaw et al., 2011). However, our task is similar to con-
versation because we ask participants to actively listen to the
interviews and give them a followup question after each trial.

Based on the aforementioned observations about conversation
(Argyle, Alkema, & Gilmour, 1971; Frances, 1979), we hypothesize
that women, more than men, engage in eye contact, and that more
generally women fixate areas of the speaker that reveal possible
nonverbal signals. We also hypothesize, based on shared experi-
ence, that men and women have differing patterns of gazing away
from the face of the speaker, a behavior that could be called ‘‘dis-
tracted’’ away from the speaker. Furthermore, by examining static
and dynamic feature statistics, we measure the degree to which
men and women might weigh bottom-up features differently in
attentional selection. In other words, the gaze of men and women
should be more easily captured by different stimuli, which should
be reflected in the predictive performance of saliency feature mod-
els. These results will clarify the nature of different gaze behavior
between men and women and also illustrate the interplay between
task-driven and stimulus-driven modes of attention.
2. Methods

All experimental procedures were approved by the University of
Southern California Institutional Review Board (IRB).
2.1. Stimuli

Twelve volunteers, six male and six female, were filmed and
interviewed at various locations in Los Angeles (Fig. 1A). Locations
were selected such that the scene background would contain inter-
esting objects, i.e., pedestrians, vehicles, etc. which might attract
attention. The video camera (Canon HF-11) was set immobile
and each speaker was placed in the foreground of the shot, about
1.5–2 m away. The interviews were then cut into 84 clips
(MPEG-4, 1080p, non-interlaced) of varying duration (6–60 s,
mean 24 s). In each clip, the volunteer spoke in answer to a ques-
tion posed by the camera operator. Instead of positioning each
speaker at the center of the shot, the speaker was filmed at various
locations in the shot to guard against explicit center bias due to
photography (Tatler, 2007; Tseng et al., 2009). This is reflected in
the uncentered distribution of fixation endpoints over all clips
(Fig. 1B). All speakers gave verbal consent for the recorded materi-
als to be used.

In the experiment, a question was presented following each
clip, testing the recall of either the spoken content of the clip or
a visual detail about the speaker (Fig. 1C). Sixteen possible answers
were then presented at pre-chosen random locations in a 4 � 6
grid (choice array), with one answer always being ‘‘I don’t know’’.

2.2. Participants

Thirty-four participants (age 18–53, 15 male, 19 female), all dis-
tinct from the 12 volunteers, took part in the main experiment. All
participants were compensated and naı̈ve to the purpose of the
experiment, and gave written consent in compliance with IRB reg-
ulations. Participants were told to ‘‘listen to and watch the video’’
and informed that they would have to answer a question about the
clip’s contents immediately after each clip, by searching for and
fixating the correct answer within the choice array. Ten partici-
pants underwent only one of the two one-hour sessions.

2.3. Experimental procedures

Stimuli were displayed on a 107-cm color monitor 98 cm in
front of the participant, corresponding to a 54.8� � 32.7� field of
view. The audio track of the stimuli was played over headphones.
Participants’ heads were stabilized with a chinrest. Clips were
played in random order with the constraint that the clips from
each interview were kept in sequence, i.e., an interview clip would
appear only after clips which preceded it in the interview had been
presented. Participants were allowed to rest after every 15 clips,
which comprised one block. Three blocks comprised one of two
1-h sessions, and blocks of clips were evenly divided such that only
six speakers, three male and three female, were seen in each block.

Data were acquired with an infrared video-based eye tracker
(ISCAN RK-464). The pupil and corneal reflections of the right eye
were tracked at a nominal frequency of 240 Hz. Where runs were
tracked at an actual confirmed rate slower than 240 Hz, all calcula-
tions were adjusted for the slower sample rate: this occurs in less
than 2% of the data. A nine-point calibration was performed at the
start of each session, and a fixation cross for drift correction was
presented before each video clip, before each question, and before
each choice array. Calibration data were used to fit a thin-plate-
spline transformation in the same manner as (Itti, 2004), with a
target mean calibration error of 0.5� and no more than 1� for a gi-
ven calibration point. The fixation cross that appeared at the start
of every trial was used to verify calibration. Data were discarded
where initial calibration was off by more than 1�; this occurred
for about 5% of the data.

Participants were told that eye-tracking took place only during
the presentation of the question testing recall and the choice array
of possible answers, but was turned off during the presentation of
the video clip. While the question and answer arrays were pre-
sented, a red LED turned on below the eye-tracker. Participants
were told that the LED indicated that the eye-tracker was recording
their eye-movements. This measure of deception was taken to at-
tempt to minimize any possible self-monitoring; participants may
have altered their gaze behavior if they knew that they were being
recorded while watching the video clips. At the end of the
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Fig. 1. (A) Stimuli were clips of pre-recorded interviews of speakers. (B) A fixation heat map showing the distribution of fixations across all videos. Note that peaks
correspond to locations of the face in the videos, not the center of the screen. (C) Following each interview, a question was presented in order to validate the listening task.
Participants were told that eye-tracking only occurred during presentation of a red LED seated on the eye-tracker as a deceptive measure, in order to remove awareness of
eye-tracking as a possible confound during video watching. Fixation crosses were interposed between viewing periods to verify calibration. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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experiment, each participant was given full disclosure of the
deception component, and was given the option to withdraw their
collected data, in accordance with IRB guidelines. No participant
exercised this option.

During the presentation of the answer array, participants were
asked to press the space bar when holding fixation at the correct
choice; in addition to verifying the listening behavior, this proce-
dure was also used to motivate the eye-tracking apparatus for
the participants, since they had been told that the eye-tracker
was turned off during the video clips. The success rate of male
(M = 52.7% ± 7.01%) and female (M = 53.2% ± 5.14%) participants
did not differ significantly (t-test: t32 = �0.17, p > 0.05), and was
well above chance (p = 1/15 � 6.67%) for all participants.
1 For interpretation of color in Figs. 1–9, the reader is referred to the web version of
this article.
3. Data analysis

3.1. Marking saccades

In-house MATLAB software was used to parse the eye position
on the screen after calibration; the algorithm is described in Berg
et al. (2009). Calibrated data were smoothed at 63 Hz with a
Butterworth filter in order to attenuate any possible line noise.
Afterwards, saccade regions were marked as the minimal eye-trace
sub-sequences satisfying the following criteria. First, the ratio of
minimum variance to maximum variance in a principal component
analysis (PCA) of the samples in 2D coordinates (known as the con-
dition), rPCA had to be less than 0.1. Second, the peak velocity on the
screen must be greater than 13 deg/s, and the minimum amplitude
had to be 0.7�. Regions with greater rPCA or lesser amplitude were
designated as fixations, and regions with lesser peak velocity were
designated as smooth pursuit.
3.2. Region labeling

To obtain an object-level representation of the stimuli, Label-
Me online video software was used to manually annotate regions
of interest (ROI) in every clip (Yuen et al., 2009) (Fig. 2A)1. The face,
eyes, and body were labeled in all clips. All moving objects and per-
sons in the background were also labeled, as well as other objects
that the authors thought might be fixated, and all major segments
of the background frame, such as trees, road, grass, and sky. Objects
were allowed to overlap in the annotation. Less than 1% of fixations
landed in between background segments due to limitations in the
labeling; these were put into a background category.

Because the eye tracker calibration has a mean accuracy of 0.5�,
ROIs were loosely fit to their objects with a correspondingly wide
margin (which was approximately 15–20 pixels on screen). In
many videos, ROIs moved to track interviewees and other actors
in the scene. Moving targets in the background were annotated
as rectangles in order to save labor and aid in interpolation. Objects
in the foreground were annotated as more general polygons. Anno-
tations were saved as XML files.

We collected saccade targets and subsequent fixations over all
eyetraces recorded while watching videos and for each participant
(Fig. 3). For each fixation, we recorded the regions of interest (ROIs)
at the target location, e.g. mouth, body, eyes, etc. These fixations
are marked as circles in Fig. 3A. In other words, a region was con-
sidered fixated if the the saccade endpoint was within the ROI at
the time of the saccade initiation. Afterwards, these ROIs were cat-
egorized into a small set of regions, or ROI types, as follows:



Fig. 2. (A) Calibrated eye-traces are shown super-imposed on a sample frame of the clips. Red traces represent female participants and blue traces represent male
participants. For every clip, moving region-of-interest (ROI) outlines around important areas (face, eyes, mouth, body, other people in the scene, and background regions)
were drawn, using LabelMe Video online software (Yuen et al., 2009). Highlighted ROIs are regions that are being targeted for a saccade within the display time of this frame.
A 1� circular window is drawn around each upcoming saccade target in the appropriate color. (B) Feature maps from both static cues (i.e. color, intensity, and orientation
variance) and dynamic cues (i.e. motion energy) were calculated by frame for all clips (SI Movie 1). The combined feature map is drawn here. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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� face: the face ROI, consisting of

– mouth: the mouth ROI
– eyes: the eyes ROI
– mask: the face ROI, excluding the mouth and eyes ROIs
� scene: the total video excluded by the face ROI, consisting of

– body: the region outlined by the body ROI, excluding the

face ROI
– people: the regions outlined by any person ROIs, exclud-

ing that of the main speaker
– background: everything else, including any objects but

excluding the ROIs of any person including the speaker
In the case that ROIs overlapped, the region that was fixated
was determined by the depth ordering of the ROIs, which is listed
in the above list of ROI types from front to back. This order was
consistent because no objects or people moved between the cam-
era and the speaker.

For the answer arrays, ROIs were defined as equally sized adja-
cent rectangles, centered on the 4 � 6 grid on which the choices
were superimposed. An answer was labeled as correct if the last
point of eye gaze was inside the box containing the correct
answer.

3.3. Group fixation maps

Fixation maps were computed with the method described in
Blais et al. (2008). Individual fixation maps were generated and
registered for each participant for each set of clips belonging to a
given interview. Fixations inside the face ROI were selected, Gauss-
ian smoothed at a FWHM of 1�, and re-centered in a parallel coor-
dinate frame, where the origin was always the midpoint between
the center of mass of the mouth ROI and that of the eyes ROI for
that frame. These formed individual participant fixation maps.
Group fixation maps were then calculated for each participant
sex and each of the 12 speakers by averaging across participants
and z-normalizing. The difference map is the renormalized
difference of the male and female group fixation maps. We used
the Pixel test (Chauvin et al., 2005) to determine the appropriate
threshold Zcrit such that, from a difference map generated from
such a smoothed difference field containing random points, the
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probability of finding a pixel intensity greater than Zcrit is the Type I
error (a = 0.05). In our case, Zcrit = 3.37.

3.4. Feature correlations to the model

We employ a well-used model of visual attention (Itti, 2004;
Itti, Koch, & Niebur, 1998) that is inspired from neurophysiology
studies of the primate visual system. We use this model in its com-
pletely bottom-up form, that is, without providing any contextual
guidance or feature biasing. In early visual cortical areas, specific
features are calculated in retinotopic maps; these features include
intensity, orientation, color, and motion. Instead of encoding a
purely local value, such as a pixel value in a graphics file, each loca-
tion in cortex encodes a local contrast between a small central area
and a larger surround. The scale of both the center and surround
vary in different cortical areas. Analogously, we calculate the
pixel-wise values for each of the aforementioned features at
multiple scales, and then subtract filtered features at a small scale
with filtered features at larger scales to create scaled center-sur-
round neural feature maps.

Once these maps are generated, we find the locations that are
most conspicuous among multiple scales and features by allowing
the maps to compete for representation (Itti & Koch, 2001). To do
so, the scaled feature maps are first normalized to a common dy-
namic range, and then nonlinearly combined across scales but
within a feature. This non-linear combination mirrors lateral com-
petition for representation in cortical maps. These multi-scale
feature maps are again non-linearly combined in similar fashion
to create a saliency map. Details of the scaling and combination
algorithms can be found in Itti, Koch, and Niebur (1998) and Itti
and Koch (2001).

Therefore, for example, in the static condition, the initial scaled
center-surround feature maps are calculated for luminance,
red–green opponency, blue–yellow opponency, and orientation at
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0�, 45�, 90�, and 135�. These maps are first combined within fea-
tures, but across scales, and then combined a second time across
features to create the final map (Fig. 2B).

We use a common measure of correlation related to signal
detection theory, the ordinal dominance curve, sometimes re-
ferred to as the receiver operating characteristic (ROC), to deter-
mine how well feature maps correlate to human fixations
(Fig. 3A–C). While the ROC measure is often used to evaluate a
model’s ability to predict human fixations, we use the model for
descriptive purposes; here we presume that the model accurately
represents the image’s feature expression, and evaluate how well
human fixations correlate to those features. The resulting AUC
score is calculated by comparing hit rates for normalized saliency
map values at fixated locations with those of other randomly se-
lected fixations from other videos (Fig. 3B). In our work, both hu-
man fixations and control random fixations are foveated across a
1� radius window to extract the maximum feature value within
the window. The feature values for human fixations are compiled
into a histogram, as are the feature values for control random fix-
ations (Fig. 3C). Instead of directly calculating a difference mea-
sure between histograms, we calculate the ordinal dominance
curve by plotting hit rates for human fixations against those of
random fixations at all possible thresholds, where fixations with
feature values above the threshold constitute hits (Fig. 3D). The
area under the ordinal domimnance curve, or AUC score, is the fi-
nal measure of correlation. In practice, the AUC score is an average
of AUC scores over 100 iterations of randomly matched control
fixation sets.

All measures of feature correlation, as well as oculomotor and
region-based measures of eye movements, were subject to an
unbalanced, fixed-effect, 3-factor ANOVA (MATLAB) of participant
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Table 1
All fixation durations.

2 � 2 � 2 ANOVA F(1,133) p

Main effects
Listener sex 38 7 � 10�9⁄

Speaker sex 0.91 0.34
Face/scene 210 4 � 10�29⁄

Interactions
Listener � speaker 0.03 0.86
Listener � face/scene 8.5 0.004⁄

Speaker � face/scene 0.024 0.88

⁄ Significant at p = 0.05.
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made to those regions (Fig. 5A). We employed a 2 (listener sex) by
2 (speaker sex) by 2 (face/scene) between-participant fixed-
effect ANOVA with interactions measure any effects on fixation
duration. The sex of the participant interacted with whether the
participant fixated a scene or face region (F(1,133) = 8.5,
p = 0.0043). There were also strong main effects of both participant
sex (F(1,133) = 38, p < 0.0001) and face/scene (F(1,133) = 210,
p < 0.0001), but no other effects (Table 1). This indicated that
men tended to make longer fixations to both the face and the
scene, but especially to the face. Also, fixation durations were long-
er to the face than to the scene, independent of any other factor.

We expanded the analysis by examining fixation durations at
each ROI type. To do so, we ran 2 (participant sex) � 2 (speaker
sex) between-participant ANOVAs for each ROI type, which in-
cluded the mask, mouth, eyes, body, people, and background (see
Section 2). We used S̆idák–Bonferroni correction for multiple com-
parisions at the p = 0.05 confidence level. As listeners, men fixated
all regions longer, except the background (Table 2). This confirms
that male gaze dwelt longer than female gaze at nearly all times
while listening, especially at the face.

In addition to the average fixation duration, the frequency that
an ROI is fixated also indicates relative attentional priority. There-
fore, for a given ROI type, we calculated its likelihood of fixation for
each participant when the participant was watching both males
and females (Fig. 5B). The likelihood that sub-regions of the face
were fixated is reported conditionally over the likelihood of fixa-
tion to the face, and similarly for sub-regions of the scene. This re-
flects the view that attention to the face is governed, although not
wholly driven by, distinct cognitive pathways from those govern-
ing other influences on attention (Kanwisher, McDermott, & Chun,
1997; Sergent, Ohta, & MacDonald, 1992).

We performed the same 2 � 2 � 2 between-participant ANOVA
as reported in Table 1 on saccade frequency to the face and scene,
but found no significant results. Nevertheless, we performed a
2 � 2 ANOVA separately on saccade frequency for each ROI type,
and for the face and the scene, correcting for multiple comparisons
as before. We found differences in the likelihood that men and wo-
men fixated different regions of the face (Table 3). Specifically,
males were more likely to fixate the mouth (2-way ANOVA,
F(1,66) = 13, p = 0.00069) and less likely to fixate the eyes
(F(1,66) = 7.7, p = 0.0073). This finding supported our initial
hypothesis that men preferentially gazed at the mouth while listen-
ing, while women preferentially targeted the eyes. Also, men were
not more likely to fixate the face than women were regardless of
the sex being viewed, but the face was clearly fixated more often
than the scene (Fig. 5B).

We also noted that the likelihood that scene regions were fix-
ated depended upon the sex of the speaker. When the speaker
was female, the body of the speaker was more likely to be fixated
(F(1,66) = 14, p = 0.00035), and consequently, the background was
less likely to be fixated (F(1,66) = 9.7, p = 0.0028). However, we
found no interactions between participant sex and speaker sex
on saccade frequency.

4.3. Listening engagement

We sought to determine whether or not visual gaze behaviors
were related to performance on the listening task by computing,
for each trial, the fraction of time that participants fixated the face.
This percentage we name the face engagement (Fig. 6A and B). If
face or mouth engagement was lower on incorrect trials, we could
infer that face engagement was correlated with listening. We also
made an analogous measure of the percent of time that partici-
pants looked at the mouth, which we named the mouth engage-
ment. For this analysis, we estimate that once a person fixates a
region, they are looking at that region until the next fixation. We
treated each trial as a separate block, with either a correct or incor-
rect result.

We analyzed all trials under a 3-way mixed-effect ANOVA with
interaction, testing for effects of trial outcome, participant sex, and
speaker sex on face engagement. We found that men maintained
more face gaze than women (3-way ANOVA, main effect of partic-
ipant sex, F(1,1) = 14.68, p = 0.0001), with no other effect reaching



Table 2
Fixation durations at each ROI type.

2 � 2 ANOVA Region Listener sex Speaker sex Interaction

F(1,66) p F(1,66) p F(1,66) p

Mask 29 1 � 10�6⁄ 0.026 0.87 0.31 0.58
Mouth 16 0.0002⁄ 0.24 0.63 1.5 0.23
Eyes 23 8 � 10�6⁄ 1.7 0.20 0.14 0.71
Body 10 0.002⁄ 0.28 0.60 0.096 0.76
People 13 0.0006⁄ 0.065 0.80 0.11 0.74
Background 6.6 0.012 13 0.0005⁄ 3.6 0.063

⁄ Significant at p � 0.0085, S̆idák–Bonferroni corrected for a = 0.05.

Table 3
Saccade frequency at each ROI type.

2 � 2 ANOVA
Region

Participant sex Speaker sex Interaction

F(1,66) p F(1,66) p F(1,66) p

Face/scene 0.23 0.63 0.31 0.58 0.42 0.52
Mask 0.55 0.42 1.2 0.27 0.14 0.71
Mouth 13 0.0007⁄ 0.57 0.45 1.8 0.18
Eyes 7.7 0.007⁄ 1.7 0.19 2.0 0.16
Body 1.6 0.21 14 0.0004⁄ 1.6 0.21
People 4.3 0.041 9.7 0.003⁄ 3.4 0.069
Background 1.4 0.24 2.0 0.16 0.65 0.042

⁄ Significant at p � 0.0073, S̆idák–Bonferroni corrected for a = 0.05.
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significance (all p > 0.1). When examining the 2-way ANOVA on
correct trials only, we found that men maintained more face gaze
on correct trials (2-way ANOVA, main effect, F(1,1) = 16.32,
p = 0.0001). This effect did not persist on incorrect trials (2-way
ANOVA, main effect, F(1,1) = 2.24, p = 0.13). Therefore, men looked
at the face for a longer time than women did while listening,
partially due to their longer fixations. However, it is not necessarily
incorrect correct
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Fig. 6. (A) The fraction of time spent gazing at the face during the whole video for correc
around when a question was answered for correct and incorrect trials. Men look at the fac
outcome on the listening task. (C) The fraction of time spent gazing at the mouth during t
the mouth during the 2 s around when a question was answered for correct or incorrect
performance on the listening task.
true that men had greater face engagement when listening versus
when not listening.

It may be that participants were listening for only a portion of
the video, and our result would be confounded by whether or
not they had listened when the answer was given. In order to
examine this possibility, we measured the face engagement only
during a 2-s window where an answer was spoken, also called
the relevant face engagement (Fig. 6B). Again, we analyzed all rele-
vant trials in a 3-way ANOVA with interaction, testing across fac-
tors of trial outcome, participant sex, and speaker sex. We found
again that men maintained more face gaze than women (main ef-
fect of participant sex, F(1,1) = 6.51, p = 0.011). No other effect was
significant (all p > 0.05). Therefore, although visual behavior is still
indicative of visual attention, we cannot confirm the hypothesis
that looking at the face correlates with better listening.

We performed the same analysis on mouth engagement, de-
fined as the fraction of time spent fixating the mouth over the
length of the clip. We tested a 3-way ANOVA with interaction for
effects of trial outcome, participant sex, and speaker sex (Fig. 6C).
We found a main effect of participant sex, males showing greater
mouth engagement (F(1,1) = 56.2, p < 0.0001), of speaker sex, fe-
male speakers eliciting more mouth engagement (F(1,1) = 10.22,
incorrect correct
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trials. Unlike gaze to the face, greater total gaze durations to the mouth improved



Table 4
Two-state transition rates of distracted and recovered saccades.

2-sample t-test Saccade rates (#/min) t32 p

Saccade type Male Female

Distracted 7.83 ± 0.66 10.22 ± 0.88 �2.218 0.021
Recovered 7.17 ± 0.51 9.47 ± 0.78 �2.406 0.011
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p = 0.001), and of trial outcome, correct trials showing greater
engagement (F(1,1) = 6.5, p = 0.011). There were no interactions
between any of the factors. A similar pattern was found when we
examined mouth engagement over only the relevant portion of
the clip, at the time the answer was being given (Fig. 6D). We
found a main effect of participant gender on mouth engagement
(F(1,1) = 96.1, p < 0.0001) and of incorrect vs. correct trials
(F(1,1) = 4.4, p = 0.037). There were no interactions in the ANOVA.
This additionally shows that participants more often gave a correct
answer to the listening task when they increased fixation to the
mouth, regardless of the sex of the participant.
4.4. Saccade transition analysis

Gaze durations and saccade rates are complementary measures
of visual attentional priority. However, we wanted to examine
more specifically how men and women also transitioned from
observing the speaker to observing the background. It may be that
men or women move more frequently from fixating the face to fix-
ating the scene, or vice versa. This would indicate a different view-
ing strategy that could not be captured by looking at fixations
alone. In colloquial terms, we called the transition from the face
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Fig. 7. Saccade transition rates in counts per minute between ROI types, for (A) men an
between men and women. Differences are significant at the 0.05 confidence level when jt
jt32jP 2.53.
to the scene a ‘‘distracted’’ saccade, and a transition from the scene
to the face a ‘‘recovered’’ saccade.

We measured how many times a minute the average male and
female participant made distracted and recovered saccades (Table
4). We ignored saccades that were made either within the face or
within the scene. Women made more saccades between the face
and the scene compared to men (t32 = �2.27, p = 0.015), and in
both directions (distracted, t32 = �2.22, p = 0.021, and recovered,
t32 = �2.41, p = 0.011). This may reflect a different approach to lis-
tening where men maintain more fixed visual attention and wo-
men employ more fluid visual attention.

In addition to transitions between the face and the scene, we
reasoned that saccades between subregions of the face and the
scene may indicate more specific viewing strategies. Instead of
analyzing the full scanpath of each participant, we treated the suc-
cessive ROI types targeted by each saccade as part of a Markov pro-
cess, where saccades play the natural role of transitions. Our goal
was to see if the estimated transition rates of men and women dif-
fered across various ROI types.

For this analysis we included transition rates made from one ROI
type to the same ROI type. We then found the average transition
rate matrix across male participants (Fig. 7A) and female partici-
pants (Fig. 7B). The pairwise differences are reported as t-test statis-
tics for each entry in the transition matrix (Fig. 7C). Significance was
determined by a two-tailed t-test, S̆idák–Bonferroni corrected for
six comparisons across each different saccade source at a = 0.05.

We found that men usually made more saccades from the
mouth region to the mouth region, which is in line with the main
conclusion that men fixate the mouth more often (t32 = �2.962,
p = 0.017, S̆idák–Bonferroni corrected). More interestingly, women
made more saccades between the eyes and the body (to the eyes,
t32 = 2.906, p = 0.020, to the body, t32 = 3.089, p = 0.012). Women
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also saccaded more to the eyes from the background, (t32 = 2.947,
p = 0.018). Therefore, we include the body of the speaker as a re-
gion of interest that women preferentially fixate over men.
Whether these saccades to the eyes or the body follow a more spe-
cific scanpath, either to different sub-regions of the face or body, or
at different times, remains to be investigated.

4.5. Direct fixation comparisons

While our ROI data revealed significant differences in gaze
behavior across the sexes, we also confirmed our hypotheses inde-
pendently of object-based annotations. To do this, we determined
sex differences in attended locations within the face via direct
comparison of fixation locations. We prepared group fixation maps
to compare under the Pixel test for each speaker (Blais et al., 2008;
Chauvin et al., 2005) (Section 2). Then we calculated the difference
between male and female group maps, re-normalized, and super-
pose the difference map over a typical frame of the speaker’s face
(Fig. 8A). In the difference maps, the regions that significantly dif-
fer by frequency of fixation (Pixel test, jZcritj > 3.37, p < 0.05) recover
a consistent pattern of male gaze towards the mouth and female
gaze towards the eyes. This is most clearly seen when the differ-
ence between male and female participant fixations is composed
over all stimuli (Fig. 8B).

4.6. Feature-based analysis

While we have shown that men and women look at face sub-re-
gions differently, suggesting that the visual information within
those sub-regions influences visual attention, we now ask the ques-
tion, do men and women fixate feature-level attributes with differ-
Fig. 8. (A) Fixation difference maps for each speaker. Saccade targets to the face were
aggregated into group fixation maps for male and female participants (see Section 2). Loc
in blue and red, respectively. Level contours are drawn where the difference field is equal
the Pixel test. Pixels exceeding Zcrit are shown at maximum color saturation. (B) When the
a male-biased region of fixation, while the eyes emerge as a female-biased region. Figure b
Perrett, 2001).
ent specificity? If this is true, then, at the point of gaze, correlations
to stimulus features should vary between men and women. We cal-
culated correlation to stimulus features as AUC scores (Section 2,
Fig. 3), and then used a 2 � 2 � 2 between-participant ANOVA (par-
ticipant sex � speaker sex � face/scene ROI) with interaction to
determine if male or female participants orient gaze to static fea-
tures differently. We noted briefly that almost all AUC scores in
each category were significantly above chance, which is 0.5 (Fig. 9).

Participant sex did not modulate the AUC score for correlations
to static features (Fig. 9A) (main effect, F(1,133) = 1.7, p = 0.193),
but there was an interaction between participant sex and saccades
to the face versus the scene (interaction, F(1,133) = 9.1, p = 0.003)
(Table 5). Specifically, saccades to the female face tended to corre-
late with static features more strongly. In order to examine which
differences existed in individual ROIs, we performed a 2 � 2 partic-
ipant sex � speaker sex ANOVA, post hoc, for each ROI type sepa-
rately (Table 6). Male gaze correlated to static features more than
female gaze did for the body only (F(1,66) = 7.6, p = 0.008), which
contributes to the interaction.

Turning to correlations between AUC score and dynamic features
(Fig. 9B), the 2 � 2 � 2 ANOVA revealed a main effect of participant
sex (main effect, F(1,133) = 16.06, p = 0.0001). When looking more
specifically at the ANOVAs by region, male gaze correlated to dy-
namic features more for the body (F(1,66) = 9.67, p = 0.0028) and
weakly for other people (F(1,66) = 7.19, p = 0.0093). However, there
was no interaction between ROI type and participant sex
(F(1,133) = 1.118, p = 0.35). This suggested that motion or its corre-
lates was a greater predictor of male fixations in listening compared
to female fixations, regardless of ROI type.

We also note from the three-way ANOVA results on dynamic
features that the face was more dynamically salient than the scene
re-centered relative to the midpoint between the eyes and the mouth, and then
ations that were more frequently fixated by male and female participants are shown
to ±1, ±2, ±3, or ±Zcrit, where Zcrit indicates significance at the 0.05 level according to

fixation difference map is composed across different speakers, the mouth emerges as
est seen in color. Average face constructed from faceresearch.org (Tiddeman, Burt, &
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female participants (red) ± SEMs for (A) static and (B) dynamic features. Saccades to
female faces were more strongly correlated with salient features for female
speakers compared to male speakers. Also, male listeners made saccades to both the
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compared to female listeners. In particular, male saccade targets to the body of the
speaker and other people correlate more strongly with motion. �: p < 0.05, S̆idák–
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legend, the reader is referred to the web version of this article.)

Table 5
Correlations to low-level visual features.

3-way ANOVA Static AUC score Dynamic AUC score

F(1,133) p F(1,133) p

Main effects
Listener sex 1.7 0.19 16 1 � 10�4⁄

Speaker sex 39 6 � 10�9⁄ 87 4 � 10�16⁄

Face or scene 1.1 0.36 140 3 � 10�9⁄

Interactions
Listener � speaker 0.8 0.44 2.2 0.15
Listener � face/scene 9.1 0.003⁄ 1.7 0.20
Speaker � face/scene 91 1 � 10�16⁄ 120 4 � 10�20⁄

⁄ Significant at p = 0.05.

Table 6
ROI-specific correlations to low-level visual features.

2 � 2 ANOVA Participant sex Speaker sex Interaction

Region F p F p F p

Static feature
Mask 0.056 0.81 58 1 � 10�10⁄ 2.5 0.12
Mouth 3.7 0.059 200 1 � 10�21⁄ 0.78 0.38
Eyes 0.19 0.66 77 1 � 10�12⁄ 0.013 0.91
Body 7.6 0.008⁄ 5.1 0.027 5 0.030
People 4.9 0.031 4.9 0.031 0.7 0.41
Background 0.05 0.82 2.3 0.14 0.18 0.67

Dynamic feature
Mask 1.15 0.29 211.9 6 � 10�22⁄ 1.2 0.27
Mouth 5.48 0.022 81.66 5 � 10�13⁄ 2.8 0.097
Eyes 2.65 0.11 172.5 8 � 10�13⁄ 0.05 0.82
Body 9.67 0.003⁄ 3.79 0.056 0.53 0.47
People 7.19 0.009 5.89 0.018 2.2 0.14
Background 1.56 0.22 0.764 0.38 0.43 0.51

⁄ Significant at p � 0.0085, S̆idák corrected for a = 0.05.
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(F(1,133) = 142.5, p < 0.0001), although this is confounded by a sig-
nificant interaction with the sex of the speaker (F(1,133) = 120,
p < 0.0001). Specifically, saccades to the female face tended to cor-
relate with dynamic features more strongly, as they also did for
static features.
5. Discussion

We have explored the interaction between sex, viewing behav-
ior during a listening task, and the strength of static or dynamic
feature expression in a visual scene. Our results demonstrate that,
for our one-way communication task, eye movements may be di-
rected differently among men and women. First, women fixate
the eyes more when listening, and men fixate the mouth more.
This result is confirmed by both an ROI analysis and a direct com-
parison of fixations. Second, men have longer fixation durations on
all regions, and longer fixation times at the mouth facilitates listen-
ing performance for both men and women. This illustrates that
attention to the visual input is a relevant component of the listen-
ing task, and viewers were not passively viewing while listening.
Third, women make more saccades between the face and the body
of the speaker than men do. Finally, motion energy is a better pre-
dictor of male fixations than of female fixations, while static fea-
ture saliency is not a better predictor for the fixations of either
sex. We conclude that sex differences in fixation patterns to a talk-
ing person exist in both the object of fixation and the types of vi-
sual features being fixated.
5.1. Sex differences on viewing a person

We find several region-based sex differences in eye gaze when
viewing a talking person. For instance, women made more sac-
cades between the face of the speaker and the surrounding scene,
especially the body of the speaker. Because we found no significant
increases to feature correlations to female gaze to the eyes or body,
but in fact a decrease in dynamic feature correlations to the body,
feature conspicuity cannot be a reason for increased saccades to
the body. In the wider literature on sex differences, there are very
few possible underlying explanations for this. The most plausible
connection we found in the literature on sex differences is the find-
ing that women display higher accuracy in decoding nonverbal
cues than men (Hall, 1984; Hall & Matsumoto, 2004; McClure,
2000). If women are more able to decode nonverbal cues, then fix-
ating regions outside the mouth would yield more information
about the speaker for women than men. In this case, women would
assign greater task relevance to the eyes and body of the person
during a listening task.

An alternate possibility is that men and women vary on the ana-
lytic/holistic spectrum when listening. In this case, women would
be considered more analytic as they made more saccades between
different regions of the speaker. However, this is inconsistent with
the findings made by Hall and Matsumoto (2004) and Vassallo,
Cooper, and Douglas (2009) on the sex differences in emotion rec-
ognition during picture viewing. Using eye-tracking, Vassallo, Coo-
per, and Douglas (2009) found that men were found to fixate the
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nose more frequently. To explain this they also appealed to an ana-
lytic/holistic contrast, but in their work it was men who used a
more analytic, unitized approach. Given the evidence, we suggest
that women fixate the eyes and body more frequently due to their
advantage in nonverbal communication processing, which can be
interpreted as part of listening.

We also found that men make fewer transition saccades and
have longer fixation durations at all ROIs (Fig. 5). In general, fixa-
tion durations have been associated with more extensive process-
ing at fixation (Nuthmann & Henderson, 2010; Rayner, 1998). For
example, during a virtual block-stacking task (Droll et al., 2005),
fixations were longer when participants detected a change in the
object they were currently manipulating. Since longer fixations
to the mouth were associated with better listening trial outcomes,
men may have adopted a more visual strategy for performing the
listening task. This may also contribute to the perception that
men appear less attentive during communication (Briton & Hall,
1995); since fixation durations are longer to all ROIs during fo-
cused listening, off-task fixations are more noticeable to the
speaker.

Finally, we observed various effects of the sex of the speaker on
our results. First, saccades were more frequently made to the body
of the speaker when the speaker was female, and to other people in
the scene when the speaker was male. Furthermore, feature corre-
lations to the face were stronger when participants viewed female
faces specifically as opposed to male faces. It would be interesting
to see whether these results hold when controlling for the speaker
in visual stimuli more specifically.

5.2. Are sex differences more relatable to task relevance or salience?

Turning now to the positive results in the analysis on feature
correlations, we found that a motion model can predict visual
attention to both the face and the scene. Male attention more reli-
ably correlated with motion compared to female attention among
both scene and face saccades (Table 5), and thus men also fixate
moving stimuli more frequently. Specifically, men fixate the body
of the speaker and of other people more when they are moving
(Table 6). This finding suggests that the variation between men
and women in attention during listening is not completely ex-
plained by an endogenous change in the task-relevance of regions
such as the face or body. Even if men and women fixated the same
object, such as the body, motion still plays a role in eliciting more
attention in men.

Without manipulating the stimuli or task beyond the natural
parameters of listening, the question of why men more often fixate
motion cannot be completely answered here. To the best of our
knowledge, no one has reported a sex-based difference in fea-
ture-based correlations to eye movements in any other task do-
main. For instance, we have analyzed the free-viewing data on
movies originally from Carmi and Itti (2006) (available under the
CRCNS collaboration) and have not found any sex differences in
correlations of gaze to motion features, suggesting that the listen-
ing task at hand has a role in sex differences to motion. There are
other limitations to our study due to the laboratory setting of view-
ing. Eye-tracking during real-world outdoor activity, such as walk-
ing outdoors, highlights differences in viewing strategy compared
to laboratory conditions; people appear to be fixated when on a
collision course (Jovancevic-Misic & Hayhoe, 2009) and are less fix-
ated when close by Foulsham, Walker, and Kingstone (2011), nei-
ther of which are predicted by motion conspicuity.

Since motion is a ubiquitious bottom up cue that correlates
with situational changes, such as the entrance or presence of other
objects (Dorr et al., 2010), a difference in exogenous selection due
to motion in the scene is only one possibility. Salient features often
correlate with objects that are of cognitive interest (Elazary & Itti,
2008; Henderson et al., 2007, chap. 25), and motion is no excep-
tion. A complementary possibility is that motion is more often se-
lected because it correlates to objects that men consider more
task-relevant. Rather than holding either possibility to be exclu-
sively true, we highlight the need to consider an integrated
approach.

The role of motion as an exogenous visual attentional cue is still
under debate. It has been acknowledged that motion correlates
with eye gaze (Carmi & Itti, 2006; Itti, 2006; Le Meur, Le Callet, &
Barba, 2007; Mital et al., 2010). Some authors have objected that
stimulus onsets, jump cuts (such as those employed in Hollywood
movies) (Dorr et al., 2010) and central fixation bias (Tatler, 2007;
Vincent, Baddeley, & Correani, 2009) can artificially induce fixa-
tions consistent with attracting motion. In addition, it is possible
that longer clips reveal changing top-down attentional control that
can idiosyncratically drive gaze, supplanting any possible role of
motion (Tatler, Baddeley, & Gilchrist, 2005). We sought to mini-
mize any possible confounds of stimuli composition on the exoge-
nous capture of attention by motion by using long shots of
uncentered participants (Fig. 1). In support of exogenous effects
of motion on attention, other studies demonstrate that when mo-
tion is not a task-relevant cue, motion onset can still cause atten-
tional capture (Franconeri, Simons, & Junge, 2004; Hillstrom &
Yantis, 1994), which is the slowing of reaction times to a search
task when distractors begin to move. Even when motion would
be an irrelevant cue, as in Franconeri, Simons, and Junge (2004),
its onset can still elicit attentional capture. Therefore, motion ap-
pears to be sufficient in some settings to attract attention, but its
effects may be modulated by the nature of the stimuli and the task
in other settings.
5.3. Integrated models of visual attention

As an illustration, we can consider the possible hypotheses of
pure stimulus-driven and task-relevant models when trying to
explaining the sex differences in gaze we observe. The pure stimu-
lus-driven prediction states the following: correlations to feature
conspicuity are necessary to drive fixation. This means that we
should only see an increase in the frequency of fixation of a given
ROI when there is a concurrent increase in correlations to feature
values in that ROI. If we see an increase in fixation frequency to a gi-
ven region without a concurrent increase in the correlation to feature
values, we cannot explain that increase in fixation frequency and our
prediction is incomplete. Under this prediction, we would not be
able to explain why women more frequently fixate the eyes than
do men, as discussed above. Neither static nor dynamic feature
correlations of gaze to the eyes are greater for female fixations than
for male fixations. This rules out the pure stimulus-driven model.

On the other hand, the pure task-relevant prediction of eye gaze
states the following: the recognition of a task-relevant object’s
identity is necessary to drive fixation. We should only see an in-
crease in correlations to features of a given ROI if the ROI com-
monly exhibits those features and if there is a concurrent
increase in fixation frequency to that ROI. If we see an increase in
feature correlations of gaze to an ROI without a concurrent increase
in the frequency of fixation, then we cannot explain that increase in
feature correlations and our prediction is incomplete. Under this
prediction, we would not be able to explain why correlations of
motion saliency to gaze in the scene ROI are significantly larger
for men than for women, while the fixation frequency is the same.
We note that it does not help us to subdivide the scene ROI because
correlations of motion saliency to gaze in the body ROI are also sig-
nificantly greater for men than for women, while fixation fre-
quency is equal. Thus, we also cannot completely hold the either
pure task-relevant model to be true, and consider a third option,
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which is that task-relevant attention itself selects directly for
motion.

We speculate that motion is more fixated by men because, in
the listening task, men have a task-relevant attentional setting
during listening which is more attuned to motion. This bias, though
not related to the demands of the listening task, may nevertheless
arise during this and other tasks. Along these lines, many current
models of visual attention incorporate some idea of similarity to
target features (Kanan et al., 2009; Navalpakkam & Itti, 2007; Wis-
chnewski et al., 2010; Zelinsky, 2008) and associations to global
scene context (Peters & Itti, 2007; Torralba et al., 2006) to enhance
gaze prediction. For example, in the SNR model (Navalpakkam &
Itti, 2007), a top-down signal may bias or highlight feature streams
that provide a greater signal over noise for the particular sought-
after target. In the SUN model (Kanan et al., 2009), a Bayesian mod-
el biases those features which are predicted to carry the most
information about target location. Other proposals have suggested
that attention is directed towards proto-objects that exist at an
intermediate level of representation (Walther & Koch, 2006) with
coherent features that are then selected by task specifications, such
as search for small red objects (Bundesen, 1990; Wischnewski
et al., 2010). All of these constructions allow modelers to inject
task-relevant knowledge into the weighting of what would other-
wise be a pure bottom-up set of maps, which subsequently more
closely match real-world fixations. However, these models could
not identify moving objects as targets for attention without first
calculating motion as a low-level feature.

5.4. Attention to faces and their parts

Now we address what relation center-surround, feature-based
attention has to fixations to the face. In this study we found that
feature correlations of fixations to the face and the eyes were sig-
nificantly greater than chance, contradicting earlier studies using
static images where saliency did not correlate with fixations to
faces in free-viewing (Birmingham, Bischof, & Kingstone, 2009;
Nyström & Holmqvist, 2008). Specifically, Nyström and Holmqvist
(2008) found that lowering contrast of faces reduced saliency but
did not affect fixations to the face. Likewise, Birmingham, Bischof,
and Kingstone (2009) found that saliency did not correlate with
fixations to the eyes, and that the eyes were not more salient than
other image locations. In our listening task, correlations to static
and dynamic saliency may have elicited increased eye fixation,
especially since fixations to the eyes were among the regions dis-
playing the greatest static feature correlation. However, other
more task-driven influences, such as attention to non-verbal com-
munication, may also elicit fixation. Along these lines Cerf, Frady,
and Koch (2009) showed that the addition of a ‘‘feature’’ channel
implementing a dedicated, contrast-invariant face detector (Viola
& Jones, 2001) dramatically increased the predictive power of the
saliency framework to predicting saccades to images containing
faces. Regarding the work of Nyström and Holmqvist (2008), such
a contrast-invariant face detector would predict saccades to con-
trast-reduced faces as well. However, such a model performs more
poorly for images without faces because the face detector (Viola &
Jones, 2001) is prone to false positives. Our study is distinctive
from these studies in that it does not use static images as stimuli,
which preclude conspicuity due to motion. This would explain
that, while static salience may be an unnecessary factor in saccad-
ing faces in accordance with Nyström and Holmqvist (2008) and
Birmingham, Bischof, and Kingstone (2009), motion may still be in-
cluded as an additional influence attracting gaze to faces.

Nevertheless, the literature indicates that the mere presence of
a static face is still sufficient for its fixation. Moreover, attention to
the face is involuntary in some cases (Bindemann et al., 2005) and
fast, occurring within 100–110 ms in forced-choice tasks (Crouzet,
Kirchner, & Thorpe, 2010). One promising line of work suggests
that the amplitude spectrum can account for such speeded, auto-
matic saccades; even phase-scrambled images of faces are more
frequently saccaded than those of houses or other objects (Honey,
Kirchner, & VanRullen, 2008). Using ERP evidence, Rossion and
Caharel (2011) demonstrated that P1 positivity at 90–100 ms,
but not N170 negativity, was stronger for phase-scrambled images
of faces over similarly treated images of cars, while both were
stronger for intact faces over cars. This suggests that the faster
P1 response to faces can be triggered without a corresponding
N170 face effect, and may be responsible for the fast orienting to
faces. In more general research on visual attention, the amplitude
spectrum, as captured in a summary statistic over features such
as gist (Peters & Itti, 2008; Torralba et al., 2006), has been shown
to have a strong top-down influence in directing gaze.

While the automatic fixation of faces as a whole can be traced to
global statistics, it is more difficult to explain for what reasons men
more frequently fixate the mouth over the eyes. Specifically, we
see from the AUC correlations that the eyes carry more static sal-
ience than the mouth, but there is no indication that men are less
attracted to static salience (Fig. 9A). On the other hand, the mouth
and eyes do not significantly differ in dynamic salience; even if
men gaze more often at dynamic stimuli, this in itself does not ex-
plain the increased mouth fixation (Fig. 9B). One possibility is that
the amplitude spectrum that reveals the location of a face also re-
veals the specific locations of the mouth and eyes, and that male
fixation is biased to mouths in the amplitude spectrum space.
However, we also suggest some task-relevant influences that
may be present to explain the male bias towards mouth fixation.

One possibility is that men specifically fixated the mouth to
improve speech recognition and listening, as we showed mouth
engagement correlated with better listening performance. While
both men and women took advantage of the motion of the mouth
in order to perform the specific listening task, men were no more
prone to fixate the mouth than women more often when cor-
rectly performing the listening task. Buchan, Pare, and Munhall
(2008) also observed that increasing the signal to noise ratio of
the audio signal elicited greater mouth fixation in a test of speech
perception. A second possibility that has been raised is that men
avoid eye gaze because they perceive it as a competitive social
cue which hinders communication, while women pursue eye gaze
because it facilitates mutual understanding (Swaab & Swaab,
2009). We cannot isolate this hypothesis in our data because
we did not use live participants with two way discussion (Bailly,
Raidt, & Elisei, 2010).

While we have looked primarily at perceptual or psychological
theories so far, more directly biological factors may also play a sig-
nificant role. Intriguingly, similar fixation biases towards the
mouth and away from the eyes are found in high-functioning
autistic participants (Klin et al., 2002; Pelphrey et al., 2002; Riby,
Doherty-Sneddon, & Bruce, 2009) as well as amygdala-lesioned
participants (Spezio et al., 2007). In particular, the duration of
eye gaze in autistic participants correlates with amygdala activa-
tion (Dalton et al., 2005). A clever fMRI experiment on normal par-
ticipants carried out by Gamer and Büchel (2009) demonstrates
possible causation from amygdala activity. In this experiment,
emotional faces were shifted upwards or downwards during a brief
initial presentation such that either the mouth or the eyes was lo-
cated at initial fixation. During presentation of fearful faces, amyg-
dala activation was higher when the mouth was present at fixation
rather than the eyes; furthermore, this activation correlated with
the viewer’s tendency to gaze towards the eyes. This supports
the idea that amygdala activation quickly modulates attention in
visual cortices, speeding eye movements for analyzing emotion
when faces, especially fearful ones, are presented (Adolphs &
Spezio, 2006). Therefore, the greater female frequency of eye



J. Shen, L. Itti / Vision Research 65 (2012) 62–76 75
movements may be due to differences in lateralized amygdala acti-
vation in females (Cahill et al., 2004; Mechelli et al., 2005).

Even though orienting to the parts of faces may be due to lim-
bic, subcortical structures, it is still unclear whether or not they
should be classified as exogenous or endogenous, or possibly a hy-
brid of both. For instance, for autistic viewers, more frequent sac-
cades to the mouth have been attributed to impaired top-down
processing (Neumann et al., 2006). However, motion was not taken
into account as a feature of interest. On the other hand, for amyg-
dala-lesioned viewers, saccades to the eyes were restored to levels
of those of normal controls by using a gaze-contingent paradigm.
Because the gaze-contingent manipulation only displayed the
region of a face within a Gaussian mask of width 3�, it blocked bot-
tom-up processing of peripheral regions (Kennedy & Adolphs,
2010), suggesting that in normal viewing for amygdala-lesioned
viewers, stimulus-driven attention to the eyes is impaired. It would
be interesting to use gaze-contingent methods to study the rela-
tionship between modes of attention in both saccades to the
mouth and distracted saccades exhibited away from the face, to
examine whether or not they can be explained solely by stimu-
lus-driven capture.
6. Conclusion

This study examines the interaction between engagement in a
conversational task, bottom-up visual features, and individual dif-
ferences in sex in order to explain observed differences in gaze dur-
ing conversation. We demonstrate in naturalistic, dynamic settings
that, when listening to another person, men are more likely to gaze
at the mouth and less likely to gaze at the eyes compared to women.
In addition, we find that, while looking to the face, men attend more
to motion cues than do women, reflecting a sex-specific feature
influence on attention. We interpret this with a mixture of task-rel-
evant and stimulus-driven effects. Our current explanation is that
women rely more on features relating to the social nature of the
scene to direct attention, whereas men rely more on motion fea-
tures, possibly indicating that men and women maintain awareness
of their social surroundings with different task priorities in mind.
We surmise that future models of task-dependent modulation in vi-
sual attention can leverage these individual differences to enhance
predictive performance. Our research also allows us to understand
in a new light how visual design might be tailored to attract atten-
tion depending on the sex of its target audience.
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