
Optimal Kinodynamic Motion Planning

using Incremental Sampling-based Methods

Sertac Karaman Emilio Frazzoli

Abstract— Sampling-based algorithms such as the Rapidly-
exploring Random Tree (RRT) have been recently proposed
as an effective approach to computationally hard motion
planning problem. However, while the RRT algorithm is known
to be able to find a feasible solution quickly, there are no
guarantees on the quality of such solution, e.g., with respect
to a given cost functional. To address this limitation, the
authors recently proposed a new algorithm, called RRT∗, which
ensures asymptotic optimality, i.e., almost sure convergence of
the solution returned by the algorithm to an optimal solution,
while maintaining the same properties of the standard RRT
algorithm, both in terms of computation of feasible solutions,
and of computational complexity. In this paper, the RRT∗

algorithm is extended to deal with differential constraints. A
sufficient condition for asymptotic optimality is provided. It
is shown that the RRT∗ algorithm equipped with any local
steering procedure that satisfies this condition converges to
an optimal solution almost surely. In particular, simple local
steering procedures are provided for a Dubins’ vehicle as well
as a double integrator. Simulation examples are also provided
for these systems comparing the RRT and the RRT∗ algorithms.

I. INTRODUCTION

Motion planning is a fundamental problem that is em-

bedded and essential in almost all robotics applications [1],

ranging from health care [2] to industrial production [3],

and from autonomous urban navigation [4]–[6] to military

logistics [7]. Moreover, motion planning has many applica-

tions outside the domain of robotics, including, for instance,

verification, drug design, computer animation, etc. [8].

Informally speaking, given a robot with a description of

its dynamics, an initial state, a final state, a set of obstacles,

and a goal region, the motion planning problem is to find

a sequence of inputs that drives the system from its initial

condition to the goal region, while avoiding collision with

obstacles. Even though a vast set of applications make this

problem interesting, it was shown as early as 1979 that

a basic version of the problem, called the piano mover’s

problem, is PSPACE-hard [9]. Yet, many approaches, such

as cell decomposition [10] and potential fields [11] have been

proposed to tackle challenging instances of the problem.

More recently, with the advent of sampling-based meth-

ods [12], [13], several real-world motion planning problems

were solved in real-time in online settings [4].

Sampling-based approaches to motion planning randomly

sample a set of states from the state-space and check

their connectivity by methods that do not require explicit

construction of obstacles in the state-space, which provides

The authors are with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA, 02139.

considerable savings in computation time. The connectivity

of these samples provides a strong hypothesis on the connec-

tivity of the obstacle-free portion of the state-space, and, in

particular, the connectivity of the initial and goal states. Even

though sampling-based methods do not provide completeness

guarantees, they are probabilistically complete in the sense

that the probability of finding a feasible solution, if one

exists, approaches one as the number of samples increase.

One such sampling-based planner is the Rapidly-Exploring

Random Tree (RRT) algorithm, first proposed by LaValle

and Kuffner in [14]. The algorithm has received considerable

attention in the literature since its introduction. Recently, the

RRT algorithm and its variants were successfully demon-

strated on different robotic platforms in major robotics events

(see, e.g., [4], [15], [16]).

In many real-time applications, it is highly desirable to

find a feasible solution quickly and improve the “quality”

of solution in the remaining time until the execution of the

motion plan. In fact, many field implementations of the RRT

algorithm do not stop sampling once a feasible trajectory is

found, but keep searching for an better solution [4], [15].

However, the quality of the solution returned by the RRT,

or by algorithms designed to provably improve the quality

of the solution given more computation time, has remained

largely open despite the increasing recent interest [15], [17],

[18].

An important step towards efficiently optimizing using

randomized planners was taken in [19]. In particular, the

authors showed that the RRT algorithm converges to a non-

optimal solution with probability one. Furthermore, they

introduced a new algorithm, called RRT∗, and proved that it

is globally asymptotically optimal for systems without differ-

ential constraints, while maintaining the same probabilistic

completeness and computational efficiency of the baseline

RRT.

In this paper, we extend the RRT∗ algorithm to handle

systems with differential constraints. The main contribution

of this paper is the identification of a set of sufficient condi-

tions to ensure asymptotic optimality of the RRT∗ algorithm

for systems with differential constraints. These sufficient

conditions are satisfied by locally controllable systems (in

particular, controllable linear systems) and locally optimal

steering methods. Simulation examples that involve systems

with nonholonomic dynamics are also provided.

This paper is organized as follows. In Section II, we

provide a formal definition of the optimal kinodynamic

motion planning problem. In Section III, we provide the

RRT∗ algorithm extended to handle systems with differential

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 7681

constraints. In Section IV, we provide the sufficient condi-

tions for asymptotic optimality and state our main result. We

consider the Dubins vehicle and double integrator examples

in Section V and provide the related simulation results in

Section VI. We conclude the paper in Section VII.

II. PROBLEM DEFINITION

Let X ⊂ R
n and U ⊂ R

m be compact sets and consider

the dynamical system

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

where x(t) ∈ X ⊆ R
d, u(t) ∈ U ⊆ R

m, for all t, x0 ∈ X ,

and f is a smooth (continuously differentiable) function of

its variables. Let us denote the set of all essentially bounded

measurable functions defined from [0, T] to X , for any T ∈
R>0, by X and define U similary. The functions in X and

U are called trajectories and controls, respectively.

Let Xobs and Xgoal, called the obstacle region and the

goal region, respectively, be open subsets of X . Let Xfree,

also called the free space, denote the set defined as X \Xobs.

Informally speaking, the kinodynamic motion planning

problem is to find a control u : [0, T] → U , such that the

unique trajectory x(t) that satisfies Equation (1) reaches the

goal region while avoiding the obstacle region.

Problem 1 (Kinodynamic motion planning) Given the

domain X , obstacle region Xobs, goal region Xgoal, and

a smooth function f that describes the system dynamics,

find a control u ∈ U with domain [0, T] for some T ∈ R>0

such that the corresponding unique trajectory x ∈ X , with

ẋ(t) = f(x(t), u(t)) for all t ∈ [0, T],

• avoids the obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T],
• and reaches the goal region, i.e., x(T) ∈ Xgoal.

In this paper, we consider the optimal kinodynamic motion

planning problem, which is to solve the kinodynamic motion

planning problem while minimizing a given cost functional.

As it is general practice in optimal control [20], we assume

that this cost functional is the line integral of a Lipschitz

continuous function g : X → R>0, where g is bounded

away from zero in X1.

Problem 2 (Optimal kinodynamic motion planning)

Given the domain X , obstacle region Xobs, goal region

Xgoal, and a smooth function f that describes the system

dynamics, find a control u ∈ U with domain [0, T] for some

T ∈ R>0 such that the unique corresponding trajectory

x ∈ X , with ẋ(t) = f(x(t), u(t)) for all t ∈ [0, T],

• avoids the obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T],
• reaches the goal region, i.e., x(T) ∈ Xgoal,

• and minimizes the cost functional J(x) =∫ T

0
g(x(t)) dt.

1More general formulations of optimal control problems also consider
the input u as a part of the cost functional and/or a terminal cost function,
h : X → R>0, which incurs an extra additive term g(x(T)) in the cost
functional. Our results can be extended to these cases, although we avoid
this discussion here for the sake of simplicity.

III. RRT∗ ALGORITHM

Before providing the details of RRT∗, let us outline the

primitive procedures that the algorithm relies on.

Sampling: The sampling procedure Sample : N → Xfree

returns independent and identically distributed samples from

the obstacle-free space. To simplify theoretical arguments we

assume that the sampling distribution is uniform, even though

our results hold for a large class of sampling strategies.

Distance function: Let dist : X×X → R≥0 be a function

that returns the optimal cost of a trajectory between two

states, assuming no obstacles. In other words, dist(z1, z2) =
minT∈R≥0,u:[0,T]→U J(x), s.t. ẋ(t) = f(x(t), u(t)) for all

t ∈ [0, T], and x(0) = z1, x(T) = z2.

Nearest Neighbor: Given a graph G = (V,E) on Xfree

and a state z ∈ X , the procedure Nearest(G, z) returns

the vertex v ∈ V that is closest to z, according to the

distance function defined above, i.e., Nearest(G, z) =
arg minv∈V dist(v, z).

Near-by Vertices: Given a graph G = (V,E) on Xfree,

a state z ∈ X , and a number n ∈ N, the NearVertices

procedure returns all the vertices in V that are near z,

where the nearness is parametrized by n. More precisely,

for any z ∈ X , let Reach(z, l) : {z′ ∈ X : dist(z, z′) ≤
l ∨ dist(z′, z) ≤ l}. Given z and n, the distance threshold

l(n) is chosen in such a way that the set Reach(z, l(n))
contains a ball of volume γ log(n)/n, where γ is an ap-

propriate constant, and finally NearVertices(G, z, n) =
V ∩ Reach(z, l(n)).

Local Steering: Given two states z1, z2 ∈ X , the Steer

procedure returns the optimal trajectory starting at z1 and

ending at z2 in some local neighborhood. In other words,

there exists a ǭ > 0 such that Steer procedure returns a

trajectory x : [0, T] → X , with x(0) = z1, x(T) = z2,

the input u : [0, T] → U that drives the system along the

trajectory x, and the time T , such that J(Steer(z1, z2)) =
dist(z1, z2), for all ‖z1 − z2‖ ≤ ǭ.

Collision Check: Given a trajectory x : [0, T] → X , the

ObstacleFree procedure returns true iff x lies entirely in

the obstacle-free space, i.e., x(t) ∈ Xfree holds for all t ∈
[0, T].

The RRT∗ algorithm is given in Algorithms 1 and 2.

Initialized with the tree that includes xinit as its only vertex

and no edges, the algorithm iteratively builds a tree of

collision-free trajectories by first sampling a state from the

obstacle-free space (Line 4) and then extending the tree

towards this sample (Line 5), at each iteration. The cost of

the unique trajectory from the root vertex to a given vertex

z is denoted as Cost(z).

The Extend procedure is formalized in Algorithm 2.

Notice that the algorithm first extends the nearest vertex

towards the sample (Lines 2-4). The trajectory that extends

the nearest vertex znear towards the sample is denoted as

xnew. The final state on the trajectory xnew is denoted as

znew. If xnew is collision free, znew is added to the tree

(Line 6) and its parent is decided as follows. First, the

NearVertices procedure is invoked to determine the set

7682

Znearby of near-by vertices around znew (Line 8). Then,

among the vertices in Znearby, the vertex that can be steered

to znew exactly incuring minimum cost to get to znew is

chosen as the parent (Lines 9-15). Once the new vertex znew

is inserted into the tree together with the edge connecting it to

its parent, the extend operation also attempts to connect znew

to vertices that are already in the tree (Lines 16-21). That

is, for any vertex znear in Znearby, the algorithm attempts to

steer znew towards znear (Line 17); if the steering procedure

can exactly connect znew and znear with a collision-free

trajectory that incurs cost less than the current cost of

znear (Line 18), then znew is made the new parent of znear

(Lines 19-21), i.e., the vertex znear is “rewired”.

Algorithm 1: The RRT∗ Algorithm

V ← {zinit}; E ← ∅; i← 0;1

while i < N do2

G← (V,E);3

zrand ← Sample(i); i← i + 1;4

(V,E)← Extend(G, zrand);5

Algorithm 2: The Extend Procedure

V ′ ← V ; E′ ← E;1

znearest ← Nearest(G, z);2

(xnew, unew, Tnew)← Steer(znearest, z);3

znew ← xnew(Tnew);4

if ObstacleFree(xnew) then5

V ′ := V ′ ∪ {znew};6

zmin ← znearest; cmin ← Cost(znew);7

Znearby ← NearVertices(G, znew, |V |);8

for all znear ∈ Znearby do9

(xnear, unear, Tnear)← Steer(znear, znew);10

if ObstacleFree(xnear) and11

xnear(Tnear) = znew then

if Cost(znear) + J(xnear) < cmin then12

cmin ← Cost(znear) + J(xnear);13

zmin ← znear;14

E′ ← E′ ∪ {(zmin, znew)};15

for all znear ∈ Znearby \ {zmin} do16

(xnear, unear, Tnear)← Steer(znew, znear);17

if xnear(Tnear) = znear and18

ObstacleFree(xnear) and

Cost(znear) > Cost(znew) + J(xnear) then

zparent ← Parent(znear);19

E′ ← E′ \ {(zparent, znear)};20

E′ ← E′ ∪ {(znew, znear)};21

return G′ = (V ′, E′)22

IV. ASYMPTOTIC OPTIMALITY

In this section, we provide a set of sufficient conditions to

guarantee asymptotic optimality of the RRT∗ algorithm for

systems with differential constraints.

Let Bǫ(z) denote the closed ball centered at z, i.e.,

Bǫ(z) = {z′ ∈ X | ‖z′−z‖ ≤ ǫ}. Given two states z, z′ ∈ X ,

let Xz,z′ denote the set of all trajectories that start from z and

reach z′ through X . Note that the trajectories do not need to

avoid the obstacles. Given a state z ∈ Z and a constant ǫ > 0,

let Rǫ(z) denote the set of all states in X that are reachable

from z with a path x that does not leave the ǫ-ball centered

at z. More precisely, Rǫ(z) = {z′ ∈ Z | there exists x ∈
Xz,z′ such that x(t) ∈ Bǫ(z) for all t ∈ [0, T]}. Rǫ(z) is

called the ǫ-reachable set of z. Any element of Rǫ(z) is

said to be ǫ-reachable from z.

The following assumption characterizes local controllabil-

ity of the system in a weak sense.

Assumption 3 (Weakened Local Controllability) 2 There

exist constants α, ǭ ∈ R>0, p ∈ N, such that for any ǫ ∈
(0, ǭ), and any state z ∈ X , the set Rǫ(z) of all states that

can be reached from z with a path that lies entirely inside

the ǫ-ball centered at z, contains a ball of radius αǫp.

Assumption 3 holds, in particular, for locally controllable

systems, hence, controllable linear systems. Moreover, many

non-holonomic systems, including the Dubins vehicle, also

satisfy this weakened version of the local controllability

assumption.

Recall that a trajectory x is collision-free if it lies inside

the obstacle-free space, i.e., for all t ∈ [0, T], we have

that x(t) ∈ Xfree. Generalizing this notion, we say that a

trajectory x is ǫ-collision-free, for ǫ ∈ R>0, if for all states

along the trajectory are at least ǫ away from the obstacle

region, or, in other words, the ǫ-ball around any state along

x lies entirely inside Xfree, i.e., for all t ∈ [0, T], there holds

Bǫ(x(t)) ⊂ Xfree. Finally, we can state the assumption on

the environment, i.e., the obstacle region, to ensure that there

exists an optimal trajectory with enough free space around

it to allow almost-sure convergence.

Assumption 4 (ǫ-collision-free Approximate Trajectories)

There exists an optimal feasible trajectory x∗ : [0, T ∗] →
Xfree, constants ǭ, α ∈ R>0, p ∈ N, and a continuous

function q : R>0 → X with limǫ↓0 q(ǫ) = x∗ such

that for all ǫ ∈ (0, ǭ) the following hold for the path

xǫ = q(ǫ) : [0, Tǫ]→ Xfree:

• xǫ is an ǫ-collision-free path that starts from zinit and

reaches the goal, i.e., xǫ(0) = zinit and xǫ(T) ∈ Xgoal,

• for any t1 < t2 such that t1 < t2, let z1 =
xǫ(t1) and z2 = xǫ(t2), then the ball of radius

α‖z1− z2‖
p centered at z2 is ǫ-reachable from z1, i.e.,

Bα‖z1−z2‖p(z2) ⊂ Rǫ(z1) for some p ≥ 1.

Assumption 4 ensures the existence of an optimal path,

which has enough obstacle-free space around it so as to allow

almost-sure convergence. In particular, the function q ensures

the existence of a class of paths, each of which starts from

2This assumption should not be confused with the weak local controlla-
bility assumption, e.g., in [21]. Indeed, neither assumption implies the other.
However, any system that is locally controllable [21] satisfies Assumption 3.

7683

7684

radius, then proceeds straight, and finally turns left. Other

path types are defined similarly. Given two configurations,

any minimal path of this type, if it exists, is unique. The

main result of Dubins in [22] is that the optimal path that

drives the system from an initial state to a final state is one

of these six paths.

For the steering procedure of this section, we restrict our-

selves to only four types of paths, namely RSL, LSR, RSR,

LSL (excluding RLR and LRL), which are all illustrated in

Figure 2.

B. 2D Double Integrator

1) Dynamics: The double integrator dynamics is de-

scribed by the following differential equation with four

states:

ẋ = vx, v̇x = ax, ẏ = vy, v̇y = ay,

where |ax| ≤ 1 and |ay| ≤ 1.

2) Steering procedure: We use the steering procedure put

forward in [23]. Informally speaking, the procedure works

as follows. Let z = (x, y, vx, vy) and z′ = (x′, y′, v′x, v′y)
be two states. The Steer procedure first computes the

time optimal control for both of the axes individually, i.e.,

computes the optimal control to reach from (x, vx) to (x′, v′x)
and also from (y, vy) to (y′, v′y). Let tx be the time that the

first optimal control reaches (x′, v′x) and let ty be defined

similarly. Without loss of any generality assume tx ≤ ty .

Then, it fixes the control for the y-axis, and computes a

control for the x-axis that reaches (x′, v′x) in exactly ty
amount of time by computing the time optimal trajectory

when |ay| ≤ ā using a binary search over ā (see [23] for

details).

C. A simple 3D airplane model

1) Dynamics: In the next section, we also present results

for a simplified 3D airplane model, which consists of a

Dubins’ car on the plane and a double integrator for the

altitude dynamics. This model has five states in total.

2) Steering procedure: The Steer procedure indepen-

dently determines the trajectory on the plane, and the trajec-

tory on the vertical axis. If the amount of time required to

execute the former is more than the amount of time required

to execute the latter, then the Steer procedure uses binary

search as in the previous section to find a trajectory for the

altitude.

VI. SIMULATIONS

This section is devoted to simulation examples involving

dynamical systems described in the previous section.

First, a system with the Dubins’ vehicle dynamics was

considered. RRT and RRT∗ algorithms were also run in an

environment including obstacles and tree maintained by the

RRT∗ algorithm was shown in Figures 3(a)-3(c) in different

stages; for comparison, the tree maintained by the RRT

algorithm is shown in Figure 3(d). The RRT∗ algorithm

achieved the tree in Figures 3(a) and 3(c) in 0.1 and 5

seconds of computation time, respectively.

(a)

Fig. 4. RRT∗ algorithm after 5000 iterations in an environment with
obstacles. The example took around 7 seconds to compute.

Second, a system with a 2D double integrator dynamics

was considered. The RRT∗ algorithm is shown in different

stages in an environment with obstacles in Figures 3(e)-3(g).

The tree maintained by the RRT algorithm, on the other hand,

is shown in Figure 3(h). The RRT∗ algorithm achieved the

tree shown in Figures 3(e) and 3(g) in around 0.2 and 10

seconds, respectively. The RRT algorithm achieved the tree

shown in Figure 3(h) in around 2 seconds of computation

time. The cost of the best path in the tree by the RRT∗ shown

in Figure 3(g) was 27 time units, as opposed to the cost of

the best path in the tree maintained by the RRT shown in

Figure 3(h), which was 55 time units.

Third, the simple 3D airplane model is considered. The

tree maintained by the RRT∗ algorithm is shown in an

environment cluttered with obstacles resembling an urban

city environment is shown in Figure 4.

The simulations clearly illustrate the difference between

the quality of the solutions returned by the RRT and RRT∗

algorithms. Most often, RRT∗ is able to provide significant

improvement in quality with no substantial extra computa-

tional effort. The RRT algorithm, on the other hand, generally

gets stuck with the first solution found and is unable to im-

prove the solution; such behavior is well known empirically

and is at the basis of the negative result in [19], on the almost-

sure non-optimality of RRT. In most of the cases considered

in this paper, the RRT∗ algorithm is able to get close to the

optimal solution within reasonable computation time (all the

simulations presented in this paper took no more than 10

seconds to compute on a laptop computer).

VII. CONCLUSION

In this paper, the optimal kinodynamic motion planning

problem was considered. The RRT∗ algorithm was extended

to handle kinodynamic constraints. In particular, sufficient

conditions on the system dynamics, local steering function,

and free-space to guarantee asymptotic optimality were pro-

vided. The effectiveness of the algorithm was also shown

7685

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

18

(a)

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

18

(b)

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

18

(c)

−2 0 2 4 6 8 10 12 14 16 18 20

−2

0

2

4

6

8

10

12

14

16

18

(d)

0 5 10 15
−2

0

2

4

6

8

10

12

14

16

18

(e)

0 5 10 15
−2

0

2

4

6

8

10

12

14

16

18

(f)

0 5 10 15

−2

0

2

4

6

8

10

12

14

16

18

(g)

0 5 10 15
−2

0

2

4

6

8

10

12

14

16

18

(h)

Fig. 3. RRT and RRT∗ algorithms were run in various environments for a dynamical system with Dubins’ vehicle dynamics as well as one with a 2D
double integrator dynamics. In Figures 3(a) and 3(c), the tree maintained by the RRT∗ algorithm is shown when including around 500 and 6500 vertices,
respectively. In Figure 3(d), the tree maintained by the RRT algorithm is shown when including around 2000 vertices. In Figures 3(e) and 3(g), the tree
maintained by the RRT∗ algorithm is shown right after 300, and 1500 iterations, respectively. The tree maintained by the RRT algorithm right after 1500
iterations is shown in Figure 3(h) for comparison.

via simulations. The computational complexity of the algo-

rithms, e.g., with respect to that of the baseline RRT has

not been explicitly addressed in this paper. We conjecture

that the RRT∗ computational overhead per iteration is still

within a constant, independent of the tree size. However,

we have not analyzed this issue in detail, and will leave it

to future work. Another point we are investigating is the

relaxation of some of the requirements on the primitive

procedures. For example, it may not be necessary to have

an optimal steering procedure, but an approximately optimal

procedure may suffice. Finally, future work will include

applying the techniques outlined in this paper to high-

dimensional dynamical systems, and practical demonstration

on robotic platforms.

ACKNOWLEDGMENTS

This research was supported in part by the Michi-

gan/AFRL Collaborative Center on Control Sciences,

AFOSR grant no. FA 8650-07-2-3744.

REFERENCES

[1] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[2] R. Alterovitz, M. Branicky, and K. Goldberg. Motion planning under
uncertainty for image-guided medical needle steering. International

Journal of Robotics Research, 27:1361–1374, 2008.

[3] J.C. Latombe. Robot Motion Planning. Kluwer Academic, 1990.

[4] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J.P. How.
Real-time motion planning with applications to autonomous urban
driving. IEEE Transactions on Control Systems, 17(5):1105–1118,
2009.

[5] M. Likhachev and D. Ferguson. Planning long dynamically-feasible
maneuvers for autonomous vehicles. International Journal of Robotics

Research, 28(8):933–945, 2009.

[6] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Experimental

Robotics, chapter Path Planning for Autonomous Driving in Unknown
Environments, pages 55–64. Springer, 2009.

[7] S. Teller, M. R. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher,
E. Frazzoli, J. Glass, J.P. How, A. S. Huang, J. Jeon, S. Karaman,
B. Luders, N. Roy, and T. Sainath. A voice-commandable robotic
forklift working alongside humans in minimally-prepared outdoor
environments. In IEEE International Conference on Robotics and

Automation, 2010.

[8] J. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. International Journal of Robotics Research,
18(11):1119–1128, 1999.

[9] J.H. Reif. Complexity of the mover’s problem and generalizations.
In Proceedings of the IEEE Symposium on Foundations of Computer

Science, 1979.

[10] R. Brooks and T. Lozano-Perez. A subdivision algorithm in configura-
tion space for findpath with rotation. In International Joint Conference

on Artificial Intelligence, 1983.

[11] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[12] L. Kavraki and J. Latombe. Randomized preprocessing of configura-
tion space for fast path planning. In IEEE International Conference

on Robotics and Automation, 1994.

[13] L.E. Kavraki, P. Svestka, J Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[14] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.

7686

7687

